
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 224–231,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Efficient Search for Inversion Transduction Grammar

Hao Zhang and Daniel Gildea
Computer Science Department

University of Rochester
Rochester, NY 14627

Abstract

We develop admissible A* search heuris-
tics for synchronous parsing with Inver-
sion Transduction Grammar, and present
results both for bitext alignment and for
machine translation decoding. We also
combine the dynamic programming hook
trick with A* search for decoding. These
techniques make it possible to find opti-
mal alignments much more quickly, and
make it possible to find optimal transla-
tions for the first time. Even in the pres-
ence of pruning, we are able to achieve
higher BLEU scores with the same amount
of computation.

1 Introduction

The Inversion Transduction Grammar (ITG) of
Wu (1997) is a syntactically motivated algorithm
for producing word-level alignments of pairs of
translationally equivalent sentences in two lan-
guages. The algorithm builds a synchronous parse
tree for both sentences, and assumes that the trees
have the same underlying structure but that the or-
dering of constituents may differ in the two lan-
guages. ITG imposes constraints on which align-
ments are possible, and these constraints have
been shown to be a good match for real bitext data
(Zens and Ney, 2003).

A major motivation for the introduction of ITG
was the existence of polynomial-time algorithms
both for alignment and translation. Alignment,
whether for training a translation model using EM
or for finding the Viterbi alignment of test data,
is O(n6) (Wu, 1997), while translation (decod-
ing) is O(n7) using a bigram language model, and
O(n11) with trigrams. While polynomial-time al-
gorithms are a major improvement over the NP-
complete problems posed by the alignment models
of Brown et al. (1993), the degree of these polyno-

mials is high, making both alignment and decod-
ing infeasible for realistic sentences without very
significant pruning. In this paper, we explore use
of the “hook trick” (Eisner and Satta, 1999; Huang
et al., 2005) to reduce the asymptotic complexity
of decoding, and the use of heuristics to guide the
search.

Our search heuristics are a conservative esti-
mate of the outside probability of a bitext cell in
the complete synchronous parse. Some estimate
of this outside probability is a common element
of modern statistical (monolingual) parsers (Char-
niak et al., 1998; Collins, 1999), and recent work
has developed heuristics that are admissible for A*
search, guaranteeing that the optimal parse will
be found (Klein and Manning, 2003). We extend
this type of outside probability estimate to include
both word translation and n-gram language model
probabilities. These measures have been used to
guide search in word- or phrase-based MT sys-
tems (Wang and Waibel, 1997; Och et al., 2001),
but in such models optimal search is generally not
practical even with good heuristics. In this paper,
we show that the same assumptions that make ITG
polynomial-time can be used to efficiently com-
pute heuristics which guarantee us that we will
find the optimal alignment or translation, while
significantly speeding the search.

2 Inversion Transduction Grammar

An Inversion Transduction Grammar can generate
pairs of sentences in two languages by recursively
applying context-free bilingual production rules.
Most work on ITG has focused on the 2-normal
form, which consists of unary production rules
that are responsible for generating word pairs:

X → e/f

224

and binary production rules in two forms that are
responsible for generating syntactic subtree pairs:

X → [Y Z]

and
X → 〈Y Z〉

The rules with square brackets enclosing the
right hand side expand the left hand side symbol
into the two symbols on the right hand side in the
same order in the two languages, whereas the rules
with pointed brackets expand the left hand side
symbol into the two right hand side symbols in re-
verse order in the two languages.

3 A* Viterbi Alignment Selection

A* parsing is a special case of agenda-based chart
parsing, where the priority of a node X[i, j] on the
agenda, corresponding to nonterminal X spanning
positions i through j, is the product of the node’s
current inside probability with an estimate of the
outside probability. By the current inside proba-
bility, we mean the probability of the so-far-most-
probable subtree rooted on the node X[i, j], with
leaves being iwj , while the outside probability is
the highest probability for a parse with the root
being S[0, N] and the sequence 0wiXjwn forming
the leaves. The node with the highest priority is re-
moved from the agenda and added to the chart, and
then explored by combining with all of its neigh-
boring nodes in the chart to update the priorities
of the resulting nodes on the agenda. By using
estimates close to the actual outside probabilities,
A* parsing can effectively reduce the number of
nodes to be explored before putting the root node
onto the chart. When the outside estimate is both
admissible and monotonic, whenever a node is put
onto the chart, its current best inside parse is the
Viterbi inside parse.

To relate A* parsing with A* search for find-
ing the lowest cost path from a certain source
node to a certain destination node in a graph, we
view the forest of all parse trees as a hypergraph.
The source node in the hypergraph fans out into
the nodes of unit spans that cover the individual
words. From each group of children to their par-
ent in the forest, there is a hyperedge. The destina-
tion node is the common root node for all the parse
trees in the forest. Under the mapping, a parse is a
hyperpath from the source node to the destination
node. The Viterbi parse selection problem thus be-
comes finding the lowest-cost hyperpath from the

source node to the destination node. The cost in
this scenario is thus the negative of log probabil-
ity. The inside estimate and outside estimate natu-
rally correspond to the ĝ and ĥ for A* searching,
respectively.

A stochastic ITG can be thought of as a stochas-
tic CFG extended to the space of bitext. A node in
the ITG chart is a bitext cell that covers a source
substring and a target substring. We use the no-
tion of X[l, m, i, j] to represent a tree node in ITG
parse. It can potentially be combined with any
bitext cells at the four corners, as shown in Fig-
ure 1(a).

Unlike CFG parsing where the leaves are fixed,
the Viterbi ITG parse selection involves finding
the Viterbi alignment under ITG constraint. Good
outside estimates have to bound the outside ITG
Viterbi alignment probability tightly.

3.1 A* Estimates for Alignment

Under the ITG constraints, each source language
word can be aligned with at most one target lan-
guage word and vice versa. An ITG constituent
X[l, m, i, j] implies that the words in the source
substring in the span [l, m] are aligned with the
words in the target substring [i, j]. It further im-
plies that the words outside the span [l, m] in the
source are aligned with the words outside the span
[i, j] in the target language. Figure 1(b) displays
the tic-tac-toe pattern for the inside and outside
components of a particular cell. To estimate the
upper bound of the ITG Viterbi alignment proba-
bility for the outside component with acceptable
complexity, we need to relax the ITG constraint.
Instead of ensuring one-to-one in both directions,
we use a many-to-one constraint in one direction,
and we relax all constraints on reordering within
the outside component.

The many-to-one constraint has the same dy-
namic programming structure as IBM Model 1,
where each target word is supposed to be trans-
lated from any of the source words or the NULL
symbol. In the Model 1 estimate of the outside
probability, source and target words can align us-
ing any combination of points from the four out-
side corners of the tic-tac-toe pattern. Thus in
Figure 1(b), there is one solid cell (correspond-
ing to the Model 1 Viterbi alignment) in each col-
umn, falling either in the upper or lower outside
shaded corner. This can be also be thought of as
squeezing together the four outside corners, creat-

225

l

m

0 i j N

l

m

0 i j N

l

m

n

0 i j k N

(a) (b) (c)

Figure 1: (a) A bitext cell X[l, m, i, j] (shaded) for ITG parsing. The inside cell can be combined with
adjacent cells in the four outside corners (lighter shading) to expand into larger cells. One possible
expansion to the lower left corner is displayed. (b) The tic-tac-toe pattern of alignments consistent with
a given cell. If the inner box is used in the final synchronous parse, all other alignments must come
from the four outside corners. (c) Combination of two adjacent cells shown with region for new outside
heuristic.

ing a new cell whose probability is estimated using
IBM Model 1. In contrast, the inside Viterbi align-
ment satisfies the ITG constraint, implying only
one solid cell in each column and each row. Math-
ematically, our Model 1 estimate for the outside
component is:

hM1(l, m, i, j) =
∏

t<i,
t>j

max
s<l,
s>m

P (ft, es)

This Model 1 estimate is admissible. Maximiz-
ing over each column ensures that the translation
probability for each target word is greater than or
equal to the corresponding word translation prob-
ability under the ITG constraint. Model 1 virtually
assigns a probability of 1 for deleting any source
word. As a product of word-to-word translation
probabilities including deletions and insertions,
the ITG Viterbi alignment probability cannot be
higher than the product of maximal word-to-word
translation probabilities using the Model 1 esti-
mate.

The Model 1 estimate is also monotonic, a prop-
erty which is best understood geometrically. A
successor state to cell (l, m, i, j) in the search is
formed by combining the cell with a cell which
is adjacent at one of the four corners, as shown
in Figure 1(c). Of the four outside corner regions
used in calculating the search heuristic, one will
be the same for the successor state, and three will
be a subset of the old corner region. Without
loss of generality, assume we are combining a cell
(m, n, j, k) that is adjacent to (l, m, i, j) to the up-

per right. We define

HM1(l, m, i, j) = − log hM1(l, m, i, j)

as the negative log of the heuristic in order to cor-
respond to an estimated cost or distance in search
terminology. Similarly, we speak of the cost of a
chart entry c(X[l, m, i, j]) as its negative log prob-
ability, and the cost of a cell c(l, m, i, j) as the
cost of the best chart entry with the boundaries
(l, m, i, j). The cost of the cell (m, n, j, k) which
is being combined with the old cell is guaranteed
to be greater than the contribution of the columns
j through k to the heuristic HM1(l, m, i, j). The
contribution of the columns k through N to the
new heuristic HM1(l, n, i, k) is guaranteed to be
greater in cost than their contribution to the old
heuristic. Thus,

HM1(l, m, i, j) ≤ c(m, n, j, k) + c(X → Y Z)

+ HM1(l, n, i, k)

meaning that the heuristic is monotonic or consis-
tent.

The Model 1 estimate can be applied in both
translation directions. The estimates from both
directions are an upper bound of the actual ITG
Viterbi probability. By taking the minimum of the
two, we can get a tighter upper bound.

We can precompute the Model 1 outside esti-
mate for all bitext cells before parsing starts. A
naı̈ve implementation would take O(n6) steps of
computation, because there are O(n4) cells, each
of which takes O(n2) steps to compute its Model 1
probability. Fortunately, exploiting the recursive

226

j

u v
</S><S>

i

Figure 2: The region within the dashed lines is the translation hypothesis X[i, j, u, v]. The word sequence
on the top is the Viterbi translation of the sentence on the bottom. Wide range word order change may
happen.

nature of the cells, we can compute values for the
inside and outside components of each cell using
dynamic programming in O(n4) time (Zhang and
Gildea, 2005).

4 A* Decoding

The of ITG decoding algorithm of Wu (1996) can
be viewed as a variant of the Viterbi parsing al-
gorithm for alignment selection. The task of stan-
dard alignment is to find word level links between
two fixed-order strings. In the decoding situation,
while the input side is a fixed sequence of words,
the output side is a bag of words to be linked with
the input words and then reordered. Under the ITG
constraint, if the target language substring [i, j] is
translated into s1 in the source language and the
target substring [j, k] is translated into s2, then s1

and s2 must be consecutive in the source language
as well and two possible orderings, s1s2 and s2s1,
are allowed. Finding the best translation of the
substring of [i, k] involves searching over all pos-
sible split points j and two possible reorderings
for each split. In theory, the inversion probabilities
associated with the ITG rules can do the job of re-
ordering. However, a language model as simple as
bigram is generally stronger. Using an n-gram lan-
guage model implies keeping at least n−1 bound-
ary words in the dynamic programming table for a
hypothetical translation of a source language sub-
string. In the case of a bigram ITG decoder, a
translation hypothesis for the source language sub-
string [i, j] is denoted as X[i, j, u, v], where u and
v are the left boundary word and right boundary
word of the target language counterpart.

As indicated by the similarity of parsing item
notation, the dynamic programming property of

the Viterbi decoder is essentially the same as the
bitext parsing for finding the underlying Viterbi
alignment. By permitting translation from the null
target string of [i, i] into source language words as
many times as necessary, the decoder can translate
an input sentence into a longer output sentence.
When there is the null symbol in the bag of candi-
date words, the decoder can choose to translate a
word into null to decrease the output length. Both
insertions and deletions are special cases of the bi-
text parsing items.

Given the similarity of the dynamic program-
ming framework to the alignment problem, it is
not surprising that A* search can also be ap-
plied in a similar way. The initial parsing items
on the agenda are the basic translation units:
X[i, i + 1, u, u], for normal word-for-word trans-
lations and deletions (translations into nothing),
and also X[i, i, u, u], for insertions (translations
from nothing). The goal item is S[0, N, 〈s〉, 〈/s〉],
where 〈s〉 stands for the beginning-of-sentence
symbol and 〈/s〉 stands for the end-of-sentence
symbol. The exploration step of the A* search
is to expand the translation hypothesis of a sub-
string by combining with neighboring translation
hypotheses. When the outside estimate is admis-
sible and monotonic, the exploration is optimal
in the sense that whenever a hypothesis is taken
from the top of the agenda, it is a Viterbi transla-
tion of the corresponding target substring. Thus,
when S[0, N, 〈s〉, 〈/s〉] is added to the chart, we
have found the Viterbi translation for the entire
sentence.

227

β(X[i, j, u, v]) = max
{

β〈〉(X[i, j, u, v]), β[](X[i, j, u, v])
}

β[](X[i, j, u, v]) = max
k,v1,u2,Y,Z

[

β(Y [i, k, u, v1]) · β(Z[k, j, u2, v]) · P (X → [Y Z]) · Plm(u2 | v1)
]

= max
k,u2,Y,Z

[

max
v1

[

β(Y [i, k, u, v1]) · Plm(u2 | v1)
]

· P (X → [Y Z]) · β(Z[k, j, u2, v])

]

Figure 3: Top: An ITG decoding constituent can be built with either a straight or an inverted rule.
Bottom: An efficient factorization for straight rules.

4.1 A* Estimates for Translation

The key to the success of A* decoding is an out-
side estimate that combines word-for-word trans-
lation probabilities and n-gram probabilities. Fig-
ure 2 is the picture of the outside translations
and bigrams of a particular translation hypothesis
X[i, j, u, v].

Our heuristic involves precomputing two val-
ues for each word in the input string, involving
forward- and backward-looking language model
probabilities. For the forward looking value hf at
input position n, we take a maximum over the set
of words Sn that the input word tn can be trans-
lated as:

hf (n) = max
s∈Sn

[

Pt(s | tn) max
s′∈S

Plm(s′ | s)

]

where:
S =

⋃

n

Sn

is the set of all possible translations for all words
in the input string. While hf considers lan-
guage model probabilities for words following s,
the backward-looking value hb considers language
model probabilities for s given possible preceding
words:

hb(n) = max
s∈Sn

[

Pt(s | tn) max
s′∈S

Plm(s | s′)

]

Our overall heuristic for a partial translation
hypothesis X[i, j, u, v] combines language model
probabilities at the boundaries of the input sub-
string with backward-looking values for the pre-
ceding words, and forward-looking values for the
following words:

h(i, j, u, v) =

[

max
s∈S

Plm(u | s)

] [

max
s∈S

Plm(s | v)

]

·
∏

n<i,
n>j

max [hb(n), hf (n)]

Because we don’t know whether a given input

word will appear before or after the partial hypoth-
esis in the final translation, we take the maximum
of the forward and backward values for words out-
side the span [i, j].

4.2 Combining the Hook Trick with A*

The hook trick is a factorization technique for dy-
namic programming. For bilexical parsing, Eis-
ner and Satta (1999) pointed out we can reduce
the complexity of parsing from O(n5) to O(n4)
by combining the non-head constituents with the
bilexical rules first, and then combining the resul-
tant hook constituents with the head constituents.
By doing so, the maximal number of interactive
variables ranging over n is reduced from 5 to 4.
For ITG decoding, we can apply a similar factor-
ization trick. We describe the bigram-integrated
decoding case here, and refer to Huang et al.
(2005) for more detailed discussion. Figure 3
shows how to decompose the expression for the
case of straight rules; the same method applies to
inverted rules. The number of free variables on the
right hand side of the second equation is 7: i, j, k,
u, v, v1, and u2.1 After factorization, counting the
free variables enclosed in the innermost max oper-
ator, we get five: i, k, u, v1, and u2. The decompo-
sition eliminates one free variable, v1. In the out-
ermost level, there are six free variables left. The
maximum number of interacting variables is six
overall. So, we reduced the complexity of ITG de-
coding using bigram language model from O(n7)
to O(n6). If we visualize an ITG decoding con-
stituent Y extending from source language posi-
tion i to k and target language boundary words u
and v1 with a diagram:

Y
i k

u v1

1
X , Y , and Z range over grammar nonterminals, of which

there are a constant number.

228

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70

se
co

nd
s

sentence length

full
uniform

ibm1encn
ibm1sym

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 10 20 30 40 50 60 70

ar

cs

max sentence length

full
uniform

ibm1encn
ibm1sym

Figure 4: Speed of various techniques for finding the optimal alignment.

the hook corresponding to the innermost max op-
erator in the equation can be visualized as follows:

Y
i k

u u2

with the expected language model state u2 “hang-
ing” outside the target language string.

The trick is generic to the control strategies of
actual parsing, because the hooks can be treated
as just another type of constituent. Building hooks
is like applying special unary rules on top of non-
hooks. In terms of of outside heuristic for hooks,
there is a slight difference from that for non-hooks:

h(i, j, u, v) =

[

max
s∈S

Plm(s | v)

]

·
∏

n<i,
n>j

max [hb(n), hf (n)]

That is, we do not need the backward-looking es-
timate for the left boundary word u.

5 Experiments

We tested the performance of our heuristics for
alignment on a Chinese-English newswire corpus.
Probabilities for the ITG model were trained using
Expectation Maximization on a corpus of 18,773
sentence pairs with a total of 276,113 Chinese
words and 315,415 English words. For EM train-
ing, we limited the data to sentences of no more
than 25 words in either language. Here we present
timing results for finding the Viterbi alignment of
longer sentences using this fixed translation model
with different heuristics. We compute alignments
on a total of 117 test sentences, which are broken
down by length as shown in Table 1.

Length # sentences
0-9 5

10–19 26
20–29 29
30–39 22
40–49 24
50–59 10

60 1

Table 1: Length of longer sentence in each pair
from test data.

method time speedup
full 815s –

uniform 547s 1.4
ibm1encn 269s 3.0
ibm1sym 205s 3.9

Table 2: Total time for each alignment method.

Results are presented both in terms of time and
the number of arcs added to the chart before the
optimal parse is found. Full refers to exhaus-
tive parsing, that is, building a complete chart
with all n4 arcs. Uniform refers to a best-first
parsing strategy that expands the arcs with the
highest inside probability at each step, but does
not incorporate an estimate of the outside proba-
bility. Ibm1encn denotes our heuristic based on
IBM model 1, applied to translations from English
to Chinese, while ibm1sym applies the Model 1
heuristic in both translation directions and takes
the minimum. The factor by which times were de-
creased was found to be roughly constant across
different length sentences. The alignment times
for the entire test set are shown in Table 2, the
best heuristic is 3.9 times faster than exhaustive

229

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 5 10 15 20

hy

pe
re

dg
es

input sentence length

BI-UNIFORM
BI-HOOK-UNIFORM

BI-HOOK-A*
BI-HOOK-A*-BEAM

 13.7

 13.8

 13.9

 14

 14.1

 14.2

 14.3

 14.4

 14.5

 0 100 200 300 400 500 600 700

bl
eu

average number of arcs (unit is 1k)

BI-HOOK-A*+BEAM
BI-CYK-BEAM

Figure 5: On the left, we compare decoding speed for uniform outside estimate best-first decoding with
and without the hook trick, as well as results using our heuristic (labeled A*) and with beam pruning
(which no longer produces optimal results). On the right, we show the relationship between computation
time and BLEU scores as the pruning threshold is varied for both A* search and bottom-up CYK parsing.

dynamic programming.
We did our ITG decoding experiments on the

LDC 2002 MT evaluation data set for translation
of Chinese newswire sentences into English. The
evaluation data set has 10 human translation refer-
ences for each sentence. There are a total of 371
Chinese sentences of no more than 20 words in
the data set. These sentences are the test set for
our different versions of ITG decoders using both
a bigram language model and a trigram language
model. We evaluate the translation results by com-
paring them against the reference translations us-
ing the BLEU metric. The word-for-word transla-
tion probabilities are from the translation model
of IBM Model 4 trained on a 160-million-word
English-Chinese parallel corpus using GIZA++.
The language model is trained on a 30-million-
word English corpus. The rule probabilities for
ITG are from the same training as in the alignment
experiments described above.

We compared the BLEU scores of the A* de-
coder and the ITG decoder that uses beam ratio
pruning at each stage of bottom-up parsing. In the
case of bigram-integrated decoding, for each input
word, the best 2 translations are put into the bag of
output words. In the case of trigram-integrated de-
coding, top 5 candidate words are chosen. The A*
decoder is guaranteed to find the Viterbi transla-
tion that maximizes the product of n-grams prob-
abilities, translation probabilities (including inser-
tions and deletions) and inversion rule probabili-
ties by choosing the right words and the right word
order subject to the ITG constraint.

Figure 5 (left) demonstrates the speedup ob-

Decoder Combinations BLEU
BI-UNIFORM 8.02M 14.26
BI-HOOK-A* 2.10M 14.26

BI-HOOK-A*-BEAM 0.40M 14.43
BI-CYK-BEAM 0.20M 14.14

Table 3: Decoder speed and BLEU scores for bi-
gram decoding.

Decoder Cbns BLEU
TRI-A*-BEAM(10−3) 213.4M 17.83
TRI-A*-BEAM(10−2) 20.7M 17.09

TRI-CYK-BEAM(10−3) 21.2M 16.86

Table 4: Results for trigram decoding.

tained through the hook trick, the heuristic, and
pruning, all based on A* search. Table 3 shows the
improvement of BLEU score after applying the A*
algorithm to find the optimal translation under the
model. Figure 5 (right) investigates the relation-
ship between the search effort and BLEU score for
A* and bottom-up CYK parsing, both with prun-
ing. Pruning for A* works in such a way that we
never explore a low probability hypothesis falling
out of a certain beam ratio of the best hypothesis
within the bucket of X[i, j, ∗, ∗], where ∗ means
any word. Table 4 shows results for trigram-
integrated decoding. However, due to time con-
straint, we have not explored time/performance
tradeoff as we did for bigram decoding.

The number of combinations in the table is
the average number of hyperedges to be explored
in searching, proportional to the total number of

230

computation steps.

6 Conclusion

A* search for Viterbi alignment selection under
ITG is efficient using IBM Model 1 as an outside
estimate. The experimental results indicate that
despite being a more relaxed word-for-word align-
ment model than ITG, IBM Model 1 can serve
as an efficient and reliable approximation of ITG
in terms of Viterbi alignment probability. This is
more true when we apply Model 1 to both trans-
lation directions and take the minimum of both.
We have also tried to incorporate estimates of bi-
nary rule probabilities to make the outside esti-
mate even sharper. However, the further improve-
ment was marginal.

We are able to find the ITG Viterbi translation
using our A* decoding algorithm with an outside
estimate that combines outside bigrams and trans-
lation probabilities for outside words. The hook
trick gave us a significant further speedup; we be-
lieve this to be the first demonstrated practical ap-
plication of this technique.

Interestingly, the BLEU score for the opti-
mal translations under the probabilistic model is
lower than we achieve with our best bigram-
based system using pruning. However, this sys-
tem makes use of the A* heuristic, and our
speed/performance curve shows that the heuris-
tic allows us to achieve higher BLEU scores with
the same amount of computation. In the case of
trigram integrated decoding, there is 1 point of
BLEU score improvement by moving from a typ-
ical CYK plus beam search decoder to a decoder
using A* plus beam search.

However, without knowing what words will ap-
pear in the output language, a very sharp outside
estimate to further bring down the number of com-
binations is difficult to achieve.

The brighter side of the move towards optimal
decoding is that the A* search strategy leads us
to the region of the search space that is close to
the optimal result, where we can more easily find
good translations.

Acknowledgments This work was supported
by NSF ITR IIS-09325646 and NSF ITR IIS-
0428020.

References

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics,
19(2):263–311.

Eugene Charniak, Sharon Goldwater, and Mark John-
son. 1998. Edge-based best-first chart parsing. In
Proceedings of the Sixth Workshop on Very Large
Corpora.

Michael John Collins. 1999. Head-driven Statistical
Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. In 37th Annual Meeting of the
Association for Computational Linguistics.

Liang Huang, Hao Zhang, and Daniel Gildea. 2005.
Machine translation as lexicalized parsing with
hooks. In International Workshop on Parsing Tech-
nologies (IWPT05), Vancouver, BC.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: Fast exact viterbi parse selection. In Pro-
ceedings of the 2003 Meeting of the North American
chapter of the Association for Computational Lin-
guistics (NAACL-03).

Franz Josef Och, Nicola Ueffing, and Herman Ney.
2001. An efficient a* search algorithm for statis-
tical machine translation. In Proceedings of the
ACL Workshop on Data-Driven Machine Transla-
tion, pages 55–62, Toulouse, France.

Ye-Yi Wang and Alex Waibel. 1997. Decoding algo-
rithm in statistical machine translation. In 35th An-
nual Meeting of the Association for Computational
Linguistics.

Dekai Wu. 1996. A polynomial-time algorithm for sta-
tistical machine translation. In 34th Annual Meeting
of the Association for Computational Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Richard Zens and Hermann Ney. 2003. A compara-
tive study on reordering constraints in statistical ma-
chine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Lin-
guistics, Sapporo, Japan.

Hao Zhang and Daniel Gildea. 2005. Stochastic lex-
icalized inversion transduction grammar for align-
ment. In Proceedings of the 43rd Annual Confer-
ence of the Association for Computational Linguis-
tics (ACL-05), Ann Arbor, MI.

231

