
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 858–867, Prague, June 2007. c©2007 Association for Computational Linguistics

Large Language Models in Machine Translation

Thorsten Brants Ashok C. Popat Peng Xu Franz J. Och Jeffrey Dean

Google, Inc.
1600 Amphitheatre Parkway

Mountain View, CA 94303, USA
{brants,popat,xp,och,jeff}@google.com

Abstract

This paper reports on the benefits of large-
scale statistical language modeling in ma-
chine translation. A distributed infrastruc-
ture is proposed which we use to train on
up to 2 trillion tokens, resulting in language
models having up to 300 billion n-grams. It
is capable of providing smoothed probabil-
ities for fast, single-pass decoding. We in-
troduce a new smoothing method, dubbed
Stupid Backoff, that is inexpensive to train
on large data sets and approaches the quality
of Kneser-Ney Smoothing as the amount of
training data increases.

1 Introduction

Given a source-language (e.g., French) sentence f ,
the problem of machine translation is to automati-
cally produce a target-language (e.g., English) trans-
lation ê. The mathematics of the problem were for-
malized by (Brown et al., 1993), and re-formulated
by (Och and Ney, 2004) in terms of the optimization

ê = arg max
e

M
∑

m=1

λmhm(e, f) (1)

where {hm(e, f)} is a set of M feature functions and
{λm} a set of weights. One or more feature func-
tions may be of the form h(e, f) = h(e), in which
case it is referred to as a language model.

We focus on n-gram language models, which are
trained on unlabeled monolingual text. As a general
rule, more data tends to yield better language mod-
els. Questions that arise in this context include: (1)

How might one build a language model that allows
scaling to very large amounts of training data? (2)
How much does translation performance improve as
the size of the language model increases? (3) Is there
a point of diminishing returns in performance as a
function of language model size?

This paper proposes one possible answer to the
first question, explores the second by providing
learning curves in the context of a particular statis-
tical machine translation system, and hints that the
third may yet be some time in answering. In particu-
lar, it proposes a distributed language model training
and deployment infrastructure, which allows direct
and efficient integration into the hypothesis-search
algorithm rather than a follow-on re-scoring phase.
While it is generally recognized that two-pass de-
coding can be very effective in practice, single-pass
decoding remains conceptually attractive because it
eliminates a source of potential information loss.

2 N -gram Language Models

Traditionally, statistical language models have been
designed to assign probabilities to strings of words
(or tokens, which may include punctuation, etc.).
Let wL

1 = (w1, . . . , wL) denote a string of L tokens
over a fixed vocabulary. An n-gram language model
assigns a probability to wL

1 according to

P (wL
1) =

L
∏

i=1

P (wi|w
i−1
1) ≈

L
∏

i=1

P̂ (wi|w
i−1
i−n+1)

(2)
where the approximation reflects a Markov assump-
tion that only the most recent n − 1 tokens are rele-
vant when predicting the next word.

858

For any substring w
j
i of wL

1 , let f(wj
i) denote the

frequency of occurrence of that substring in another
given, fixed, usually very long target-language string
called the training data. The maximum-likelihood
(ML) probability estimates for the n-grams are given
by their relative frequencies

r(wi|w
i−1
i−n+1) =

f(wi
i−n+1)

f(wi−1
i−n+1)

. (3)

While intuitively appealing, Eq. (3) is problematic
because the denominator and / or numerator might
be zero, leading to inaccurate or undefined probabil-
ity estimates. This is termed the sparse data prob-
lem. For this reason, the ML estimate must be mod-
ified for use in practice; see (Goodman, 2001) for a
discussion of n-gram models and smoothing.

In principle, the predictive accuracy of the lan-
guage model can be improved by increasing the or-
der of the n-gram. However, doing so further exac-
erbates the sparse data problem. The present work
addresses the challenges of processing an amount
of training data sufficient for higher-order n-gram
models and of storing and managing the resulting
values for efficient use by the decoder.

3 Related Work on Distributed Language
Models

The topic of large, distributed language models is
relatively new. Recently a two-pass approach has
been proposed (Zhang et al., 2006), wherein a lower-
order n-gram is used in a hypothesis-generation
phase, then later the K-best of these hypotheses are
re-scored using a large-scale distributed language
model. The resulting translation performance was
shown to improve appreciably over the hypothesis
deemed best by the first-stage system. The amount
of data used was 3 billion words.

More recently, a large-scale distributed language
model has been proposed in the contexts of speech
recognition and machine translation (Emami et al.,
2007). The underlying architecture is similar to
(Zhang et al., 2006). The difference is that they in-
tegrate the distributed language model into their ma-
chine translation decoder. However, they don’t re-
port details of the integration or the efficiency of the
approach. The largest amount of data used in the
experiments is 4 billion words.

Both approaches differ from ours in that they store
corpora in suffix arrays, one sub-corpus per worker,
and serve raw counts. This implies that all work-
ers need to be contacted for each n-gram request.
In our approach, smoothed probabilities are stored
and served, resulting in exactly one worker being
contacted per n-gram for simple smoothing tech-
niques, and in exactly two workers for smoothing
techniques that require context-dependent backoff.
Furthermore, suffix arrays require on the order of 8
bytes per token. Directly storing 5-grams is more
efficient (see Section 7.2) and allows applying count
cutoffs, further reducing the size of the model.

4 Stupid Backoff

State-of-the-art smoothing uses variations of con-
text-dependent backoff with the following scheme:

P (wi|w
i−1
i−k+1) =

{

ρ(wi
i−k+1) if (wi

i−k+1) is found

λ(wi−1
i−k+1)P (wi

i−k+2) otherwise
(4)

where ρ(·) are pre-computed and stored probabili-
ties, and λ(·) are back-off weights. As examples,
Kneser-Ney Smoothing (Kneser and Ney, 1995),
Katz Backoff (Katz, 1987) and linear interpola-
tion (Jelinek and Mercer, 1980) can be expressed in
this scheme (Chen and Goodman, 1998). The recur-
sion ends at either unigrams or at the uniform distri-
bution for zero-grams.

We introduce a similar but simpler scheme,
named Stupid Backoff 1 , that does not generate nor-
malized probabilities. The main difference is that
we don’t apply any discounting and instead directly
use the relative frequencies (S is used instead of
P to emphasize that these are not probabilities but
scores):

S(wi|w
i−1
i−k+1) =

f(wi
i−k+1)

f(wi−1
i−k+1)

if f(wi
i−k+1) > 0

αS(wi|w
i−1
i−k+2) otherwise

(5)

1The name originated at a time when we thought that such
a simple scheme cannot possibly be good. Our view of the
scheme changed, but the name stuck.

859

In general, the backoff factor α may be made to de-
pend on k. Here, a single value is used and heuris-
tically set to α = 0.4 in all our experiments2 . The
recursion ends at unigrams:

S(wi) =
f(wi)

N
(6)

with N being the size of the training corpus.
Stupid Backoff is inexpensive to calculate in a dis-

tributed environment while approaching the quality
of Kneser-Ney smoothing for large amounts of data.
The lack of normalization in Eq. (5) does not affect
the functioning of the language model in the present
setting, as Eq. (1) depends on relative rather than ab-
solute feature-function values.

5 Distributed Training

We use the MapReduce programming model (Dean
and Ghemawat, 2004) to train on terabytes of data
and to generate terabytes of language models. In this
programming model, a user-specified map function
processes an input key/value pair to generate a set of
intermediate key/value pairs, and a reduce function
aggregates all intermediate values associated with
the same key. Typically, multiple map tasks oper-
ate independently on different machines and on dif-
ferent parts of the input data. Similarly, multiple re-
duce tasks operate independently on a fraction of the
intermediate data, which is partitioned according to
the intermediate keys to ensure that the same reducer
sees all values for a given key. For additional details,
such as communication among machines, data struc-
tures and application examples, the reader is referred
to (Dean and Ghemawat, 2004).

Our system generates language models in three
main steps, as described in the following sections.

5.1 Vocabulary Generation

Vocabulary generation determines a mapping of
terms to integer IDs, so n-grams can be stored us-
ing IDs. This allows better compression than the
original terms. We assign IDs according to term fre-
quency, with frequent terms receiving small IDs for
efficient variable-length encoding. All words that

2The value of 0.4 was chosen empirically based on good
results in earlier experiments. Using multiple values depending
on the n-gram order slightly improves results.

occur less often than a pre-determined threshold are
mapped to a special id marking the unknown word.

The vocabulary generation map function reads
training text as input. Keys are irrelevant; values are
text. It emits intermediate data where keys are terms
and values are their counts in the current section
of the text. A sharding function determines which
shard (chunk of data in the MapReduce framework)
the pair is sent to. This ensures that all pairs with
the same key are sent to the same shard. The re-
duce function receives all pairs that share the same
key and sums up the counts. Simplified, the map,
sharding and reduce functions do the following:

Map(string key, string value) {
// key=docid, ignored; value=document
array words = Tokenize(value);
hash_map<string, int> histo;
for i = 1 .. #words

histo[words[i]]++;
for iter in histo

Emit(iter.first, iter.second);
}

int ShardForKey(string key, int nshards) {
return Hash(key) % nshards;

}

Reduce(string key, iterator values) {
// key=term; values=counts
int sum = 0;
for each v in values

sum += ParseInt(v);
Emit(AsString(sum));

}

Note that the Reduce function emits only the aggre-
gated value. The output key is the same as the inter-
mediate key and automatically written by MapRe-
duce. The computation of counts in the map func-
tion is a minor optimization over the alternative of
simply emitting a count of one for each tokenized
word in the array. Figure 1 shows an example for
3 input documents and 2 reduce shards. Which re-
ducer a particular term is sent to is determined by a
hash function, indicated by text color. The exact par-
titioning of the keys is irrelevant; important is that all
pairs with the same key are sent to the same reducer.

5.2 Generation of n-Grams

The process of n-gram generation is similar to vo-
cabulary generation. The main differences are that
now words are converted to IDs, and we emit n-
grams up to some maximum order instead of single

860

Figure 1: Distributed vocabulary generation.

words. A simplified map function does the follow-
ing:
Map(string key, string value) {
// key=docid, ignored; value=document
array ids = ToIds(Tokenize(value));
for i = 1 .. #ids

for j = 0 .. maxorder-1
Emit(ids[i-j .. i], "1");

}

Again, one may optimize the Map function by first
aggregating counts over some section of the data and
then emit the aggregated counts instead of emitting
“1” each time an n-gram is encountered.

The reduce function is the same as for vocabu-
lary generation. The subsequent step of language
model generation will calculate relative frequencies
r(wi|w

i−1
i−k+1) (see Eq. 3). In order to make that step

efficient we use a sharding function that places the
values needed for the numerator and denominator
into the same shard.

Computing a hash function on just the first words
of n-grams achieves this goal. The required n-
grams wi

i−n+1 and wi−1
i−n+1 always share the same

first word wi−n+1, except for unigrams. For that we
need to communicate the total count N to all shards.

Unfortunately, sharding based on the first word
only may make the shards very imbalanced. Some
terms can be found at the beginning of a huge num-
ber of n-grams, e.g. stopwords, some punctuation
marks, or the beginning-of-sentence marker. As an
example, the shard receiving n-grams starting with

the beginning-of-sentence marker tends to be several
times the average size. Making the shards evenly
sized is desirable because the total runtime of the
process is determined by the largest shard.

The shards are made more balanced by hashing
based on the first two words:

int ShardForKey(string key, int nshards) {
string prefix = FirstTwoWords(key);
return Hash(prefix) % nshards;

}

This requires redundantly storing unigram counts in
all shards in order to be able to calculate relative fre-
quencies within shards. That is a relatively small
amount of information (a few million entries, com-
pared to up to hundreds of billions of n-grams).

5.3 Language Model Generation

The input to the language model generation step is
the output of the n-gram generation step: n-grams
and their counts. All information necessary to calcu-
late relative frequencies is available within individ-
ual shards because of the sharding function. That is
everything we need to generate models with Stupid
Backoff. More complex smoothing methods require
additional steps (see below).

Backoff operations are needed when the full n-
gram is not found. If r(wi|w

i−1
i−n+1) is not found,

then we will successively look for r(wi|w
i−1
i−n+2),

r(wi|w
i−1
i−n+3), etc. The language model generation

step shards n-grams on their last two words (with
unigrams duplicated), so all backoff operations can
be done within the same shard (note that the required
n-grams all share the same last word wi).

5.4 Other Smoothing Methods

State-of-the-art techniques like Kneser-Ney
Smoothing or Katz Backoff require additional,
more expensive steps. At runtime, the client needs
to additionally request up to 4 backoff factors for
each 5-gram requested from the servers, thereby
multiplying network traffic. We are not aware of
a method that always stores the history backoff
factors on the same shard as the longer n-gram
without duplicating a large fraction of the entries.
This means one needs to contact two shards per
n-gram instead of just one for Stupid Backoff.
Training requires additional iterations over the data.

861

Step 0 Step 1 Step 2
context counting unsmoothed probs and interpol. weights interpolated probabilities

Input key wi
i−n+1 (same as Step 0 output) (same as Step 1 output)

Input value f(wi
i−n+1) (same as Step 0 output) (same as Step 1 output)

Intermediate key wi
i−n+1 wi−1

i−n+1 wi−n+1
i

Sharding wi
i−n+1 wi−1

i−n+1 wi−n+2
i−n+1 , unigrams duplicated

Intermediate value fKN (wi
i−n+1) wi,fKN (wi

i−n+1)
fKN (wi

i−n+1)−D

fKN (w
i−1

i−n+1
)

,λ(wi−1
i−n+1)

Output value fKN (wi
i−n+1) wi,

fKN (wi

i−n+1)−D

fKN (wi−1

i−n+1
)

,λ(wi−1
i−n+1) PKN (wi|w

i−1
i−n+1), λ(wi−1

i−n+1)

Table 1: Extra steps needed for training Interpolated Kneser-Ney Smoothing

Kneser-Ney Smoothing counts lower-order n-
grams differently. Instead of the frequency of the
(n− 1)-gram, it uses the number of unique single
word contexts the (n−1)-gram appears in. We use
fKN(·) to jointly denote original frequencies for the
highest order and context counts for lower orders.
After the n-gram counting step, we process the n-
grams again to produce these quantities. This can
be done similarly to the n-gram counting using a
MapReduce (Step 0 in Table 1).

The most commonly used variant of Kneser-Ney
smoothing is interpolated Kneser-Ney smoothing,
defined recursively as (Chen and Goodman, 1998):

PKN (wi|w
i−1
i−n+1) =

max(fKN(wi
i−n+1) − D, 0)

fKN(wi−1
i−n+1)

+ λ(wi−1
i−n+1)PKN (wi|w

i−1
i−n+2),

where D is a discount constant and {λ(wi−1
i−n+1)} are

interpolation weights that ensure probabilities sum
to one. Two additional major MapReduces are re-
quired to compute these values efficiently. Table 1
describes their input, intermediate and output keys
and values. Note that output keys are always the
same as intermediate keys.

The map function of MapReduce 1 emits n-gram
histories as intermediate keys, so the reduce func-
tion gets all n-grams with the same history at the
same time, generating unsmoothed probabilities and
interpolation weights. MapReduce 2 computes the
interpolation. Its map function emits reversed n-
grams as intermediate keys (hence we use wi−n+1

i

in the table). All unigrams are duplicated in ev-
ery reduce shard. Because the reducer function re-
ceives intermediate keys in sorted order it can com-
pute smoothed probabilities for all n-gram orders
with simple book-keeping.

Katz Backoff requires similar additional steps.
The largest models reported here with Kneser-Ney
Smoothing were trained on 31 billion tokens. For
Stupid Backoff, we were able to use more than 60
times of that amount.

6 Distributed Application

Our goal is to use distributed language models in-
tegrated into the first pass of a decoder. This may
yield better results than n-best list or lattice rescor-
ing (Ney and Ortmanns, 1999). Doing that for lan-
guage models that reside in the same machine as the
decoder is straight-forward. The decoder accesses
n-grams whenever necessary. This is inefficient in a
distributed system because network latency causes a
constant overhead on the order of milliseconds. On-
board memory is around 10,000 times faster.

We therefore implemented a new decoder archi-
tecture. The decoder first queues some number of
requests, e.g. 1,000 or 10,000 n-grams, and then
sends them together to the servers, thereby exploit-
ing the fact that network requests with large numbers
of n-grams take roughly the same time to complete
as requests with single n-grams.

The n-best search of our machine translation de-
coder proceeds as follows. It maintains a graph of
the search space up to some point. It then extends
each hypothesis by advancing one word position in
the source language, resulting in a candidate exten-
sion of the hypothesis of zero, one, or more addi-
tional target-language words (accounting for the fact
that variable-length source-language fragments can
correspond to variable-length target-language frag-
ments). In a traditional setting with a local language
model, the decoder immediately obtains the nec-
essary probabilities and then (together with scores

862

Figure 2: Illustration of decoder graph and batch-
querying of the language model.

from other features) decides which hypotheses to
keep in the search graph. When using a distributed
language model, the decoder first tentatively extends
all current hypotheses, taking note of which n-grams
are required to score them. These are queued up for
transmission as a batch request. When the scores are
returned, the decoder re-visits all of these tentative
hypotheses, assigns scores, and re-prunes the search
graph. It is then ready for the next round of exten-
sions, again involving queuing the n-grams, waiting
for the servers, and pruning.

The process is illustrated in Figure 2 assuming a
trigram model and a decoder policy of pruning to
the four most promising hypotheses. The four ac-
tive hypotheses (indicated by black disks) at time t

are: There is, There may, There are, and There were.
The decoder extends these to form eight new nodes
at time t + 1. Note that one of the arcs is labeled ε,
indicating that no target-language word was gener-
ated when the source-language word was consumed.
The n-grams necessary to score these eight hypothe-
ses are There is lots, There is many, There may be,
There are lots, are lots of, etc. These are queued up
and their language-model scores requested in a batch
manner. After scoring, the decoder prunes this set as
indicated by the four black disks at time t + 1, then
extends these to form five new nodes (one is shared)
at time t + 2. The n-grams necessary to score these
hypotheses are lots of people, lots of reasons, There
are onlookers, etc. Again, these are sent to the server
together, and again after scoring the graph is pruned
to four active (most promising) hypotheses.

The alternating processes of queuing, waiting and
scoring/pruning are done once per word position in
a source sentence. The average sentence length in
our test data is 22 words (see section 7.1), thus we
have 23 rounds3 per sentence on average. The num-
ber of n-grams requested per sentence depends on
the decoder settings for beam size, re-ordering win-
dow, etc. As an example for larger runs reported in
the experiments section, we typically request around
150,000 n-grams per sentence. The average net-
work latency per batch is 35 milliseconds, yield-
ing a total latency of 0.8 seconds caused by the dis-
tributed language model for an average sentence of
22 words. If a slight reduction in translation qual-
ity is allowed, then the average network latency per
batch can be brought down to 7 milliseconds by re-
ducing the number of n-grams requested per sen-
tence to around 10,000. As a result, our system can
efficiently use the large distributed language model
at decoding time. There is no need for a second pass
nor for n-best list rescoring.

We focused on machine translation when describ-
ing the queued language model access. However,
it is general enough that it may also be applicable
to speech decoders and optical character recognition
systems.

7 Experiments

We trained 5-gram language models on amounts of
text varying from 13 million to 2 trillion tokens.
The data is divided into four sets; language mod-
els are trained for each set separately4 . For each
training data size, we report the size of the result-
ing language model, the fraction of 5-grams from
the test data that is present in the language model,
and the BLEU score (Papineni et al., 2002) obtained
by the machine translation system. For smaller train-
ing sizes, we have also computed test-set perplexity
using Kneser-Ney Smoothing, and report it for com-
parison.

7.1 Data Sets

We compiled four language model training data sets,
listed in order of increasing size:

3One additional round for the sentence end marker.
4Experience has shown that using multiple, separately

trained language models as feature functions in Eq (1) yields
better results than using a single model trained on all data.

863

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 10 100 1000 10000 100000 1e+06

 0.1

 1

 10

 100

 1000

N
um

be
r

of
 n

-g
ra

m
s

A
pp

ro
x.

 L
M

 s
iz

e
in

 G
B

LM training data size in million tokens

x1.8/x2

x1.8/x2

x1.8/x2

x1.6/x2

target
+ldcnews

+webnews
+web

Figure 3: Number of n-grams (sum of unigrams to
5-grams) for varying amounts of training data.

target: The English side of Arabic-English parallel
data provided by LDC5 (237 million tokens).
ldcnews: This is a concatenation of several English
news data sets provided by LDC6 (5 billion tokens).
webnews: Data collected over several years, up to
December 2005, from web pages containing pre-
dominantly English news articles (31 billion to-
kens).
web: General web data, which was collected in Jan-
uary 2006 (2 trillion tokens).

For testing we use the “NIST” part of the 2006
Arabic-English NIST MT evaluation set, which is
not included in the training data listed above7. It
consists of 1797 sentences of newswire, broadcast
news and newsgroup texts with 4 reference transla-
tions each. The test set is used to calculate transla-
tion BLEU scores. The English side of the set is also
used to calculate perplexities and n-gram coverage.

7.2 Size of the Language Models

We measure the size of language models in total
number of n-grams, summed over all orders from
1 to 5. There is no frequency cutoff on the n-grams.

5http://www.nist.gov/speech/tests/mt/doc/
LDCLicense-mt06.pdf contains a list of parallel resources
provided by LDC.

6The bigger sets included are LDC2005T12 (Gigaword,
2.5B tokens), LDC93T3A (Tipster, 500M tokens) and
LDC2002T31 (Acquaint, 400M tokens), plus many smaller
sets.

7The test data was generated after 1-Feb-2006; all training
data was generated before that date.

target webnews web
tokens 237M 31G 1.8T
vocab size 200k 5M 16M
n-grams 257M 21G 300G
LM size (SB) 2G 89G 1.8T
time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours 2 days –
machines 100 400 1500

Table 2: Sizes and approximate training times for
3 language models with Stupid Backoff (SB) and
Kneser-Ney Smoothing (KN).

There is, however, a frequency cutoff on the vocab-
ulary. The minimum frequency for a term to be in-
cluded in the vocabulary is 2 for the target, ldcnews
and webnews data sets, and 200 for the web data set.
All terms below the threshold are mapped to a spe-
cial term UNK, representing the unknown word.

Figure 3 shows the number of n-grams for lan-
guage models trained on 13 million to 2 trillion to-
kens. Both axes are on a logarithmic scale. The
right scale shows the approximate size of the served
language models in gigabytes. The numbers above
the lines indicate the relative increase in language
model size: x1.8/x2 means that the number of n-
grams grows by a factor of 1.8 each time we double
the amount of training data. The values are simi-
lar across all data sets and data sizes, ranging from
1.6 to 1.8. The plots are very close to straight lines
in the log/log space; linear least-squares regression
finds r2 > 0.99 for all four data sets.

The web data set has the smallest relative increase.
This can be at least partially explained by the higher
vocabulary cutoff. The largest language model gen-
erated contains approx. 300 billion n-grams.

Table 2 shows sizes and approximate training
times when training on the full target, webnews, and
web data sets. The processes run on standard current
hardware with the Linux operating system. Gen-
erating models with Kneser-Ney Smoothing takes
6 – 7 times longer than generating models with
Stupid Backoff. We deemed generation of Kneser-
Ney models on the web data as too expensive and
therefore excluded it from our experiments. The es-
timated runtime for that is approximately one week
on 1500 machines.

864

 50

 100

 150

 200

 250

 300

 350

 10 100 1000 10000 100000 1e+06
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
P

er
pl

ex
ity

F
ra

ct
io

n
of

 c
ov

er
ed

 5
-g

ra
m

s

LM training data size in million tokens

+.022/x2

+.035/x2

+.038/x2

+.026/x2

target KN PP
ldcnews KN PP

webnews KN PP
target C5

+ldcnews C5
+webnews C5

+web C5

Figure 4: Perplexities with Kneser-Ney Smoothing
(KN PP) and fraction of covered 5-grams (C5).

7.3 Perplexity and n-Gram Coverage

A standard measure for language model quality is
perplexity. It is measured on test data T = w

|T |
1 :

PP (T) = e
− 1
|T |

|T |�

i=1
log p(wi|w

i−1
i−n+1)

(7)

This is the inverse of the average conditional prob-
ability of a next word; lower perplexities are bet-
ter. Figure 4 shows perplexities for models with
Kneser-Ney smoothing. Values range from 280.96
for 13 million to 222.98 for 237 million tokens tar-
get data and drop nearly linearly with data size (r2 =
0.998). Perplexities for ldcnews range from 351.97
to 210.93 and are also close to linear (r2 = 0.987),
while those for webnews data range from 221.85 to
164.15 and flatten out near the end. Perplexities are
generally high and may be explained by the mix-
ture of genres in the test data (newswire, broadcast
news, newsgroups) while our training data is pre-
dominantly written news articles. Other held-out
sets consisting predominantly of newswire texts re-
ceive lower perplexities by the same language mod-
els, e.g., using the full ldcnews model we find per-
plexities of 143.91 for the NIST MT 2005 evaluation
set, and 149.95 for the NIST MT 2004 set.

Note that the perplexities of the different language
models are not directly comparable because they use
different vocabularies. We used a fixed frequency
cutoff, which leads to larger vocabularies as the
training data grows. Perplexities tend to be higher
with larger vocabularies.

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 10 100 1000 10000 100000 1e+06

T
es

t d
at

a
B

LE
U

LM training data size in million tokens

+0.62BP/x2

+0.56BP/x2

+0.51BP/x2

+0.66BP/x2

+0.70BP/x2

+0.39BP/x2

+0.15BP/x2

target KN
+ldcnews KN

+webnews KN
target SB

+ldcnews SB
+webnews SB

+web SB

Figure 5: BLEU scores for varying amounts of data
using Kneser-Ney (KN) and Stupid Backoff (SB).

Perplexities cannot be calculated for language
models with Stupid Backoff because their scores are
not normalized probabilities. In order to neverthe-
less get an indication of potential quality improve-
ments with increased training sizes we looked at the
5-gram coverage instead. This is the fraction of 5-
grams in the test data set that can be found in the
language model training data. A higher coverage
will result in a better language model if (as we hy-
pothesize) estimates for seen events tend to be bet-
ter than estimates for unseen events. This fraction
grows from 0.06 for 13 million tokens to 0.56 for 2
trillion tokens, meaning 56% of all 5-grams in the
test data are known to the language model.

Increase in coverage depends on the training data
set. Within each set, we observe an almost constant
growth (correlation r2 ≥ 0.989 for all sets) with
each doubling of the training data as indicated by
numbers next to the lines. The fastest growth oc-
curs for webnews data (+0.038 for each doubling),
the slowest growth for target data (+0.022/x2).

7.4 Machine Translation Results

We use a state-of-the-art machine translation system
for translating from Arabic to English that achieved
a competitive BLEU score of 0.4535 on the Arabic-
English NIST subset in the 2006 NIST machine
translation evaluation8 . Beam size and re-ordering
window were reduced in order to facilitate a large

8See http://www.nist.gov/speech/tests/mt/
mt06eval official results.html for more results.

865

number of experiments. Additionally, our NIST
evaluation system used a mixture of 5, 6, and 7-gram
models with optimized stupid backoff factors for
each order, while the learning curve presented here
uses a fixed order of 5 and a single fixed backoff fac-
tor. Together, these modifications reduce the BLEU
score by 1.49 BLEU points (BP)9 at the largest train-
ing size. We then varied the amount of language
model training data from 13 million to 2 trillion to-
kens. All other parts of the system are kept the same.

Results are shown in Figure 5. The first part
of the curve uses target data for training the lan-
guage model. With Kneser-Ney smoothing (KN),
the BLEU score improves from 0.3559 for 13 mil-
lion tokens to 0.3832 for 237 million tokens. At
such data sizes, Stupid Backoff (SB) with a constant
backoff parameter α = 0.4 is around 1 BP worse
than KN. On average, one gains 0.62 BP for each
doubling of the training data with KN, and 0.66 BP
per doubling with SB. Differences of more than 0.51
BP are statistically significant at the 0.05 level using
bootstrap resampling (Noreen, 1989; Koehn, 2004).

We then add a second language model using ldc-
news data. The first point for ldcnews shows a large
improvement of around 1.4 BP over the last point
for target for both KN and SB, which is approxi-
mately twice the improvement expected from dou-
bling the amount of data. This seems to be caused
by adding a new domain and combining two models.
After that, we find an improvement of 0.56–0.70 BP
for each doubling of the ldcnews data. The gap be-
tween Kneser-Ney Smoothing and Stupid Backoff
narrows, starting with a difference of 0.85 BP and
ending with a not significant difference of 0.24 BP.

Adding a third language models based on web-
news data does not show a jump at the start of the
curve. We see, however, steady increases of 0.39–
0.51 BP per doubling. The gap between Kneser-Ney
and Stupid Backoff is gone, all results with Stupid
Backoff are actually better than Kneser-Ney, but the
differences are not significant.

We then add a fourth language model based on
web data and Stupid Backoff. Generating Kneser-
Ney models for these data sizes is extremely ex-
pensive and is therefore omitted. The fourth model

91 BP = 0.01 BLEU. We show system scores as BLEU, dif-
ferences as BP.

shows a small but steady increase of 0.15 BP per
doubling, surpassing the best Kneser-Ney model
(trained on less data) by 0.82 BP at the largest
size. Goodman (2001) observed that Kneser-Ney
Smoothing dominates other schemes over a broad
range of conditions. Our experiments confirm this
advantage at smaller language model sizes, but show
the advantage disappears at larger data sizes.

The amount of benefit from doubling the training
size is partly determined by the domains of the data
sets10. The improvements are almost linear on the
log scale within the sets. Linear least-squares regres-
sion shows correlations r2 > 0.96 for all sets and
both smoothing methods, thus we expect to see sim-
ilar improvements when further increasing the sizes.

8 Conclusion

A distributed infrastructure has been described to
train and apply large-scale language models to ma-
chine translation. Experimental results were pre-
sented showing the effect of increasing the amount
of training data to up to 2 trillion tokens, resulting
in a 5-gram language model size of up to 300 billion
n-grams. This represents a gain of about two orders
of magnitude in the amount of training data that can
be handled over that reported previously in the liter-
ature (or three-to-four orders of magnitude, if one
considers only single-pass decoding). The infra-
structure is capable of scaling to larger amounts of
training data and higher n-gram orders.

The technique is made efficient by judicious
batching of score requests by the decoder in a server-
client architecture. A new, simple smoothing tech-
nique well-suited to distributed computation was
proposed, and shown to perform as well as more
sophisticated methods as the size of the language
model increases.

Significantly, we found that translation quality as
indicated by BLEU score continues to improve with
increasing language model size, at even the largest
sizes considered. This finding underscores the value
of being able to train and apply very large language
models, and suggests that further performance gains
may be had by pursuing this direction further.

10There is also an effect of the order in which we add the
models. As an example, web data yields +0.43 BP/x2 when
added as the second model. A discussion of this effect is omit-
ted due to space limitations.

866

References

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2):263–311.

Stanley F. Chen and Joshua Goodman. 1998. An empiri-
cal study of smoothing techniques for language model-
ing. Technical Report TR-10-98, Harvard, Cambridge,
MA, USA.

Jeffrey Dean and Sanjay Ghemawat. 2004. Mapreduce:
Simplified data processing on large clusters. In Sixth
Symposium on Operating System Design and Imple-
mentation (OSDI-04), San Francisco, CA, USA.

Ahmad Emami, Kishore Papineni, and Jeffrey Sorensen.
2007. Large-scale distributed language modeling. In
Proceedings of ICASSP-2007, Honolulu, HI, USA.

Joshua Goodman. 2001. A bit of progress in language
modeling. Technical Report MSR-TR-2001-72, Mi-
crosoft Research, Redmond, WA, USA.

Frederick Jelinek and Robert L. Mercer. 1980. Inter-
polated estimation of Markov source parameters from
sparse data. In Pattern Recognition in Practice, pages
381–397. North Holland.

Slava Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3).

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 181–
184.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP-04, Barcelona, Spain.

Hermann Ney and Stefan Ortmanns. 1999. Dynamic
programming search for continuous speech recogni-
tion. IEEE Signal Processing Magazine, 16(5):64–83.

Eric W. Noreen. 1989. Computer-Intensive Methods for
Testing Hypotheses. John Wiley & Sons.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30(4):417–449.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of ACL-
02, pages 311–318, Philadelphia, PA, USA.

Ying Zhang, Almut Silja Hildebrand, and Stephan Vogel.
2006. Distributed language modeling for n-best list
re-ranking. In Proceedings of EMNLP-2006, pages
216–223, Sydney, Australia.

867

