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Abstract

This paper presents an empirical study on
how different selections of input translation
systems affect translation quality in system
combination. We give empirical evidence
that the systems to be combined should be
of similar quality and need to be almost
uncorrelated in order to be beneficial for sys-
tem combination. Experimental results are
presented for composite translations com-
puted from large numbers of different re-
search systems as well as a set of transla-
tion systems derived from one of the best-
ranked machine translation engines in the
2006 NIST machine translation evaluation.

1 Introduction

Computing consensus translations from the outputs
of multiple machine translation engines has become
a powerful means to improve translation quality in
many machine translation tasks. Analogous to the
ROVER approach in automatic speech recognition
(Fiscus, 1997), a composite translation is computed
by voting on the translation outputs of multiple
machine translation systems. Depending on how
the translations are combined and how the voting
scheme is implemented, the composite translation
may differ from any of the original hypotheses.
While elementary approaches simply select for each
sentence one of the original translations, more so-
phisticated methods allow for combining transla-
tions on a word or a phrase level.

Although system combination could be shown
to result in substantial improvements in terms of
translation quality (Matusov et al., 2006; Sim et al.,
2007), not every possible ensemble of translation
outputs has the potential to outperform the primary

translation system. In fact, an adverse combina-
tion of translation systems may even deteriorate
translation quality. This holds to a greater extent,
when the ensemble of translation outputs contains a
significant number of translations produced by low
performing but highly correlated systems.

In this paper we present an empirical study on
how different ensembles of translation outputs affect
performance in system combination. In particular,
we will address the following questions:

• To what extent can translation quality benefit
from combining systems developed by multiple
research labs?
Despite an increasing number of translation
engines, most state-of-the-art systems in statis-
tical machine translation are nowadays based
on implementations of the same techniques.
For instance, word alignment models are often
trained using the GIZA++ toolkit (Och and
Ney, 2003); error minimizing training criteria
such as theMinimum Error Rate Training
(Och, 2003) are employed in order to learn
feature function weights for log-linear models;
and translation candidates are produced using
phrase-based decoders (Koehn et al., 2003)
in combination withn-gram language models
(Brants et al., 2007).

All these methods are established asde facto
standards and form an integral part of most
statistical machine translation systems. This,
however, raises the question as to what ex-
tent translation quality can be expected to
improve when similarly designed systems are
combined.

• How can a set of diverse translation systems be
built from a single translation engine?
Without having access to different translation
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engines, it is desirable to build a large number
of diverse translation systems from asingle
translation engine that are useful in system
combination. The mere use ofN -best lists
and word lattices is often not effective, because
N -best candidates may be highly correlated,
thus resulting in small diversity compared to
the first best hypothesis. Therefore, we need a
canonical way to build a large pool of diverse
translation systems from asingle translation
engine.

• How can an ensemble of translation outputs
be selected from a large pool of translation
systems?
Once a large pool of translation systems is
available, we need an effective means to select
a small ensemble of translation outputs for
which the combined system outperforms the
best individual system.

These questions will be investigated on the basis
of three approaches to system combination: (i) an
MBR-like candidate selection method based on
BLEU correlation matrices, (ii) confusion networks
built from word sausages, and (iii) a novel two-
pass search algorithm that aims at finding consensus
translations by reordering bags of words constituting
the consensus hypothesis.

Experiments were performed on two Chinese-
English text translation corpora under the conditions
of the large data track as defined for the 2006 NIST
machine translation evaluation (MT06). Results
are reported for consensus translations built from
system outputs provided by MT06 participants as
well as systems derived from one of the best-ranked
translation engines.

The remainder of this paper is organized as fol-
lows: in Section 2, we describe three combina-
tion methods for computing consensus translations.
In Sections 3.1 and 3.2, we present experimental
results on combining system outputs provided by
MT06 participants. Section 3.3 shows how correla-
tion among translation systems affects performance
in system combination. In Section 3.4, we discuss
how a single translation engine can be modified
in order to produce a large number of diverse
translation systems. First experimental results us-
ing a greedy search algorithm to select a small
ensemble of translation outputs from a large pool
of canonically built translation systems are reported.
A summary presented in Section 4 concludes the
paper.

2 Methods for System Combination

System combination in machine translation aims to
build a composite translation from system outputs
of multiple machine translation engines. Depending
on how the systems are combined and which voting
scheme is implemented, the consensus translation
may differ from any of the original candidate trans-
lations. In this section, we discuss three approaches
to system combination.

2.1 System Combination via Candidate
Selection

The easiest and most straightforward approach to
system combination simply returns one of the orig-
inal candidate translations. Typically, this selection
is made based on translation scores, confidence esti-
mations, language and other models (Nomoto, 2004;
Paul et al., 2005). For many machine translation
systems, however, the scores are often not normal-
ized or may even not be available, which makes
it difficult to apply this technique. We therefore
propose an alternative method based on “correlation
matrices” computed from the BLEU performance
measure (Papineni et al., 2001).

Lete1, ..., eM denote the outputs ofM translation
systems, each given as a sequence of words in
the target language. An element of the BLEU
correlation matrixB � pbijq is defined as the
sentence-based BLEU score between a candidate
translationei and a pseudo-reference translationejpi, j � 1, ...,Mq:

bij � BPpei, ejq � exp
$''%1

4

4̧

n�1

log ρnpei, ejq
,//-.

(1)

Here,BP denotes the brevity penalty factor withρn

designating then-gram precisions.
Because the BLEU score is computed on a sen-

tence rather than a corpus-level,n-gram precisions
are capped by the maximum over12�|ei|

and ρn in
order to avoid singularities, where|ei| is the length
of the candidate translation1.

Due to the following properties,B can be inter-
preted as a correlation matrix, although the term
does not hold in a strict mathematical sense: (i)
bij P r0, 1s; (ii) bij � 1.0 ðñ ei � ej ; (iii) bij �
0.0 ðñ eiXej � H, i.e.,bij is zero if and only if
none of the words which constituteei can be found

1 Note that for non-zeron-gram precisions,ρn is always
larger than 1

2�|e| .
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in ej and vice versa. The BLEU correlation matrix
is in general, however, not symmetric, although in
practice,||bij � bji|| is typically negligible.

Each translation systemm is assigned to asystem
prior weightωm P r0, 1s, which reflects the perfor-
mance of systemm relatively to all other translation
systems. If no prior knowledge is available,ωm is
set to1{M .

Now, let ω � pω1, ..., ωM qJ denote a vector of
system prior weights and letb1, ...,bM denote the
row vectors of the matrixB. Then the translation
system with the highest consensus is given by:

e� � em� with

m� � argmax
em

!
ωJ � bm

) (2)

The candidate selection rule in Eq. (2) has two useful
properties:

• The selection does not depend on scored trans-
lation outputs; the mere target word sequence
is sufficient. Hence, this technique is also
applicable to rule-based translation systems2.

• Using the components of the row-vectorbm

as feature function values for the candidate
translationem (m � 1, ...,M ), the system
prior weightsω can easily be trained using
the Minimum Error Rate Training described in
(Och, 2003).

Note that the candidate selection rule in Eq. (2)
is equivalent to re-ranking candidate translations
according to theMinimum Bayes Risk(MBR) deci-
sion rule (Kumar and Byrne, 2004), provided that
the system prior weights are used as estimations
of the posterior probabilitiesppe|fq for a source
sentencef . Due to the proximity of this method
to the MBR selection rule, we call this combination
schemeMBR-like system combination.

2.2 ROVER-Like Combination Schemes

ROVER-like combination schemes aim at comput-
ing a composite translation by voting on confusion
networks that are built from translation outputs
of multiple machine translation engines via an it-
erative application of alignments (Fiscus, 1997).
To accomplish this, one of the original candidate
translations, e.g.em, is chosen as the primary
translation hypothesis, while all other candidatesenpn � mq are aligned with the word sequence of

2 This property is not exclusive to this combination scheme
but also holds for the methods discussed in Sections 2.2 and 2.3.

the primary translation. To limit the costs when
aligning a permutation of the primary translation,
the alignment metric should allow for small shifts
of contiguous word sequences in addition to the
standard edit operationsdeletions, insertions, and
substitutions. These requirements are met by the
Translation Edit Rate(TER) (Snover et al., 2006):

TERpei, ejq� Del� Ins� Sub� Shift
|ej | (3)

The outcome of the iterated alignments is a word
transition network which is also known asword
sausagebecause of the linear sequence of corre-
spondence sets that constitute the network. Since
both the order and the elements of a correspondence
set depend on the choice of the primary transla-
tion, each candidate translation is chosen in turn
as the primary system. This results in a total of
M word sausages that are combined into a single
super network. The word sequence along the cost-
minimizing path defines the composite translation.

To further optimize the word sausages, we replace
each system prior weightωm with the lp-norm over
the normalized scalar product between the weight
vectorω and the row vectorbm:

ω1
m �

pωJ � bmq`¸
m̃

pωJ � bm̃q` , ` P r0,�8q (4)

As ` approaches�8, ω1
m � 1 if and only if

systemm has the highest consensus among all input
systems; otherwise,ω1

m � 0. Thus, the word
sausages are able to emulate the candidate selection
rule described in Section 2.1. Setting` � 0 yields
uniform system prior weights, and settingB to
the unity matrix provides the original prior weights
vector. Word sausages which take advantage of the
refined system prior weights are denoted byword
sausages+.

2.3 A Two-Pass Search Algorithm

The basic idea of the two-pass search algorithm is
to compute a consensus translation by reordering
words that are considered to be constituents of the
final consensus translation.

Initially, the two-pass search is given a repository
of candidate translations which serve as pseudo
references together with a vector of system prior
weights. In the first pass, the algorithm uses
a greedy strategy to determine abag of words
which minimizes theposition-independent word er-
ror rate (PER). These words are considered to be

988



constituents of the final consensus translation. The
greedy strategy implicitly ranks the constituents,
i.e., words selected at the beginning of the first
phase reduce the PER the most and are considered
to be more important than constituents selected in
the end. The first pass finishes when putting further
constituents into the bag of words does not improve
the PER.

The list of constituents is then passed to a sec-
ond search algorithm, which starts with the empty
string and then expands all active hypotheses by
systematically inserting the next unused word from
the list of constituents at different positions in the
current hypothesis. For instance, a partial consensus
hypothesis of lengthl expands intol � 1 new
hypotheses of lengthl�1. The resulting hypotheses
are scored with respect to the TER measure based on
the repository of weighted pseudo references. Low-
scoring hypotheses are pruned to keep the space of
active hypotheses small. The algorithm will finish
if either no constituents are left or if expanding the
set of active hypotheses does not further decrease
the TER score. Optionally, the best consensus hy-
pothesis found by the two-pass search is combined
with all input translation systems via the MBR-like
combination scheme described in Section 2.1. This
refinement is calledtwo-pass+.

2.4 Related Work

Research on multi-engine machine translation goes
back to the early nineties. In (Robert and Nirenburg,
1994), a semi-automatic approach is described that
combines outputs from three translation systems to
build a consensus translation. (Nomoto, 2004) and
(Paul et al., 2005) used translation scores, language
and other models to select one of the original
translations as consensus translation. (Bangalore et
al., 2001) used a multiple string alignment algorithm
in order to compute a single confusion network,
on which a consensus hypothesis was computed
through majority voting. Because the alignment
procedure was based on the Levenshtein distance,
it was unable to align translations with significantly
different word orders. (Jayaraman and Lavie, 2005)
tried to overcome this problem by using confi-
dence scores and language models in order to rank
a collection of synthetic combinations of words
extracted from the original translation hypotheses.
Experimental results were only reported for the
METEOR metric (Banerjee and Lavie, 2005). In
(Matusov et al., 2006), pairwise word alignments
of the original translation hypotheses were estimated
for an enhanced statistical alignment model in order

Table 1: Corpus statistics for two Chinese-English
text translation sets: ZHEN-05 is a random
selection of test data used in NIST evaluations prior
to 2006; ZHEN-06 comprises the NIST portion of
the Chinese-English evaluation data used in the
2006 NIST machine translation evaluation.

corpus Chinese English
ZHEN-05 sentences 2390

chars / words 110647 67737
ZHEN-06 sentences 1664

chars / words 64292 41845

to explicitly capture word re-ordering. Although
the proposed method was not compared with other
approaches to system combination, it resulted in
substantial gains and provided new insights into
system combination.

3 Experimental Results

Experiments were conducted on two corpora for
Chinese-English text translations, the first of which
is compiled from a random selected subset of eval-
uation data used in the NIST MT evaluations up to
the year 2005. The second data set consists of the
NIST portion of the Chinese-English data used in
the MT06 evaluation and comprises 1664 Chinese
sentences collected from broadcast news articles
(565 sentences), newswire texts (616 sentences), and
news group texts (483 sentences). Both corpora
provide 4 reference translations per source sentence.
Table 1 summarizes some corpus statistics.

For all experiments, system performance was
measured in terms of the IBM-BLEU score (Pap-
ineni et al., 2001). Compared to the NIST imple-
mentation of the BLEU score, IBM-BLEU follows
the original definition of the brevity penalty (BP)
factor: while in the NIST implementation the BP is
always based on the length of the shortest reference
translation, the BP in the IBM-BLEU score is based
on the length of the reference translation which is
closest to the candidate translation length. Typically,
IBM-BLEU scores tend to be smaller than NIST-
BLEU scores. In the following, BLEU always refers
to the IBM-BLEU score.

Except for the results reported in Section 3.2, we
used uniform system prior weights throughout all
experiments. This turned out to be more stable when
combining different sets of translation systems and
helped to improve generalization.
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Table 2: BLEU scores and brevity penalty (BP) factors determined on the ZHEN-06 test set for primary
systems together with consensus systems for the MBR-like candidate selection method obtained by
combining each three adjacent systems with uniform system prior weights. Primary systems are sorted in
descending order with respect to their BLEU score. The 95% confidence intervals are computed using the
bootstrap re-sampling normal approximation method (Noreen, 1989).

combination primary system consensus oracle
BLEU CI 95% BP BLEU ∆ BP pair-CI 95% BLEU BP

01, 02, 03 32.10 (�0.88) 0.93 32.97 (+0.87) 0.92 [+0.29, +1.46] 38.54 0.94
01, 15, 16� 32.10 (�0.88) 0.93 23.55 ( -8.54) 0.92 [ -9.29, -7.80] 33.55 0.95
02, 03, 04 31.71 (�0.90) 0.96 31.55 ( -0.16) 0.92 [ -0.65, +0.29] 37.23 0.95
03, 04, 05 29.59 (�0.88) 0.87 29.55 ( -0.04) 0.88 [ -0.53, +0.41] 35.55 0.92
03, 04, 06� 29.59 (�0.88) 0.87 29.83 (+0.24) 0.90 [ -0.29, +0.71] 35.69 0.93
04, 05, 06 27.70 (�0.87) 0.94 28.52 (+0.82) 0.91 [+0.15, +1.49] 34.67 0.94
05, 06, 07 27.05 (�0.81) 0.88 28.21 (+1.16) 0.92 [+0.63, +1.66] 33.89 0.94
05, 06, 08� 27.05 (�0.81) 0.88 28.47 (+1.42) 0.91 [+0.95, +1.95] 34.18 0.93
06, 07, 08 27.02 (�0.76) 0.92 28.12 (+1.10) 0.94 [+0.59, +1.59] 33.87 0.95
07, 08, 09 26.75 (�0.79) 0.97 27.79 (+1.04) 0.94 [+0.52, +1.51] 33.54 0.95
08, 09, 10 26.41 (�0.81) 0.92 26.78 (+0.37) 0.94 [ -0.07, +0.86] 32.47 0.96
09, 10, 11 25.05 (�0.84) 0.90 24.96 ( -0.09) 0.94 [ -0.59, +0.46] 30.92 0.97
10, 11, 12 23.48 (�0.68) 1.00 24.24 (+0.76) 0.94 [+0.27, +1.30] 30.08 0.96
11, 12, 13 23.26 (�0.74) 0.95 24.05 (+0.79) 0.92 [+0.40, +1.23] 29.56 0.93
12, 13, 14 22.38 (�0.78) 0.87 22.68 (+0.30) 0.89 [ -0.28, +0.95] 28.58 0.91
13, 14, 15 22.13 (�0.72) 0.89 21.29 ( -0.84) 0.90 [ -1.33, -0.33] 26.61 0.92
14, 15, 16 17.42 (�0.66) 0.93 18.45 (+1.03) 0.92 [+0.45, +1.56] 23.30 0.95
15 17.20 (�0.64) 0.91 — — — — — —
16 15.21 (�0.63) 0.96 — — — — — —

3.1 Combining Multiple Research Systems

In a first experiment, we investigated the effect
of combining translation outputs provided from
different research labs. Each translation system
corresponds to a primary system submitted to the
NIST MT06 evaluation3. Table 2 shows the BLEU
scores together with their corresponding BP factors
for the primary systems of 16 research labs (site
names were anonymized). Primary systems are
sorted in descending order with respect to their
BLEU score. Table 2 also shows the consensus
translation results for the MBR-like candidate selec-
tion method. Except where marked with an asterisk,
all consensus systems are built from the outputs
of three adjacent systems. While only few com-
bined systems show a degradation, the majority of
all consensus translations achieve substantial gains
between 0.2% and 1.4% absolute in terms of BLEU
score on top of the best individual (primary) system.
The column CI provides 95% confidence intervals
for BLEU scores with respect to the primary system
baseline using the bootstrap re-sampling normal

3 For more information seehttp://www.nist.gov/
speech/tests/mt/mt06eval_official_results.
html

approximation method (Noreen, 1989). The column
“pair-CI” shows 95% confidence intervals relative
to the primary system using the paired bootstrap
re-sampling method (Koehn, 2004). The princi-
ple of the paired bootstrap method is to create a
large number of corresponding virtual test sets by
consistently selecting candidate translations with re-
placement from both the consensus and the primary
system. The confidence interval is then estimated
over the differences between the BLEU scores of
corresponding virtual test sets. Improvements are
considered to be significant if the left boundary of
the confidence interval is larger than zero.

Oracle BLEU scores shown in Table 2 are com-
puted by selecting the best translation among the
three candidates. The oracle scores might indicate a
larger potential of the MBR-like selection rule, and
further gains could be expected if the candidate se-
lection rule is combined with confidence measures.

Table 2 shows that it is important that all trans-
lation systems achieve nearly equal quality; com-
bining high-performing systems with low-quality
translations typically results in clear performance
losses compared to the primary system, which is the
case when combining, e.g., systems 01, 15, and 16.
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Table 3: BLEU scores and brevity penalty (BP) factors determined on the ZHEN-06 test set for the
combination of multiple research systems using the MBR-like selection method with uniform and trained
system prior weights. Prior weights are trained using 5-fold cross validation. The 95% confidence intervals
realtive to uniform weights are computed using the paired bootstrap re-sampling method (Koehn, 2004).

# systems combination uniform ω opt. on dev. ω opt. on test
BLEU BP BLEU BP pair-CI 95% BLEU BP

3 01 – 03 32.98 0.92 33.03 0.93 [ -0.23, +0.34] 33.60 0.93
4 01 – 04 33.44 0.93 33.46 0.93 [ -0.26, +0.29] 34.97 0.94
5 01 – 05 33.07 0.92 33.14 0.93 [ -0.29, +0.43] 34.33 0.93
6 01 – 06 32.86 0.92 33.53 0.93 [+0.26, +1.08] 34.43 0.93
7 01 – 07 33.08 0.93 33.51 0.93 [+0.04, +0.82] 34.49 0.93
8 01 – 08 33.12 0.93 33.47 0.93 [ -0.06, +0.75] 34.50 0.94
9 01 – 09 33.15 0.93 33.22 0.93 [ -0.35, +0.51] 34.68 0.93

10 01 – 10 33.01 0.93 33.59 0.94 [+0.18, +0.96] 34.79 0.94
11 01 – 11 32.84 0.94 33.40 0.94 [+0.13, +0.98] 34.76 0.94
12 01 – 12 32.73 0.93 33.49 0.94 [+0.34, +1.18] 34.83 0.94
13 01 – 13 32.71 0.93 33.54 0.94 [+0.39, +1.26] 34.91 0.94
14 01 – 14 32.66 0.93 33.69 0.94 [+0.58, +1.47] 34.97 0.94
15 01 – 15 32.47 0.93 33.57 0.94 [+0.63, +1.57] 34.99 0.94
16 01 – 16 32.51 0.93 33.62 0.94 [+0.62, +1.59] 35.00 0.94

3.2 Non-Uniform System Prior Weights

As pointed out in Section 2.1, a useful property
of the MBR-like system selection method is that
system prior weights can easily be trained using
the Minimum Error Rate Training (Och, 2003).
In this section, we investigate the effect of using
non-uniform system weights for the combination of
multiple research systems. Since for each research
system, only the first best translation candidate
was provided, we used a five-fold cross validation
scheme in order to train and evaluate the system
prior weights. For this purpose, all research systems
were consistently split into five random partitions of
almost equal size. The partitioning procedure was
document preserving, i.e., sentences belonging to
the same document were guaranteed to be assigned
to the same partition. Each of the five partitions
played once the role of the evaluation set while
the other four partitions were used as development
data to train the system prior weights. Consensus
systems were computed for each held out set using
the system prior weights estimated on the respec-
tive development sets. The combination results
determined on all held out sets were then concate-
nated and evaluated with respect to the ZHEN-06
reference translations. Table 3 shows the results
for the combinations of up to 16 research systems
using either uniform or trained system prior weights.
System 01 achieved the highest BLEU score on all

five constellations of development partitions and is
therefore the primary system to which all results in
Table 3 compare. In comparison to uniform weights,
consensus translations using trained weights are
more robust toward the integration of low perform-
ing systems into the combination scheme. The
best combined system obtained with trained system
prior weights (01-14) is, however, not significantly
better than the best combined system using uniform
weights (01-04), for which the 95% confidence
interval yieldsr�0.17, 0.66s according to the paired
bootstrap re-sampling method.

Table 3 also shows the theoretically achievable
BLEU scores when optimizing the system prior
weights on the held out data. This provides an upper
bound to what extent system combination might
benefit if an ideal set of system prior weights were
used.

3.3 Effect of Correlation on System
Combination

The degree of correlation among input translation
systems is a key factor which decides whether
translation outputs can be combined such a way that
the overall system performance improves. Correla-
tion can be considered as a reciprocal measure of
diversity: if the correlation is too large (¡ 90%),
there will be insufficient diversity among the input
systems and the consensus system will at most be
able to only marginally outperform the best indi-
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Table 4:BLEU scores obtained on ZHEN-05 with uniform prior weights and a 10-way system combination
using the MBR-like candidate selection rule, word sausages, and the two-pass search algorithm together
with their improved versions “sausages+” and “two-pass+”, respectively for different sample sizes of the
FBIS training corpus.

sampling primary mbr-like sausages sausages+ two-pass two-pass+r%s BLEU CI 95% BP BLEU BP BLEU BP BLEU BP BLEU BP BLEU BP
5 27.82 (�0.65) 1.00 29.51 1.00 29.00 0.97 30.25 0.99 29.58 0.94 29.93 0.96
10 29.70 (�0.69) 1.00 31.42 1.00 30.74 0.98 31.99 0.99 31.30 0.95 31.75 0.97
20 31.37 (�0.69) 1.00 32.56 1.00 32.64 1.00 33.17 0.99 32.60 0.96 32.76 0.98
40 32.66 (�0.66) 1.00 33.52 1.00 33.23 0.99 33.98 1.00 33.65 0.97 33.88 0.99
80 33.67 (�0.66) 1.00 34.17 1.00 33.93 0.9934.38 1.00 34.20 0.99 34.35 1.00
100 33.90 (�0.67) 1.00 34.03 1.0033.98 1.00 34.02 1.00 33.90 1.00 34.08 1.00

vidual translation system. If the correlation is too
low (  5%), there might be no consensus among the
input systems and the quality of the consensus trans-
lations will hardly differ from a random selection of
the candidates.

To study how correlation affects performance in
system combination, we built a large number of
systems trained on randomly sampled portions of the
FBIS4 training data collection. Sample sizes ranged
between 5% and 100% with each larger data set dou-
bling the size of the next smaller collection. For each
sample size, we created 10 data sets, thus resulting in
a total of6�10 training corpora. On each data set, a
new translation system was trained from scratch and

4 LDC catalog number: LDC2003E14
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Figure 1: Incremental system combination on
ZHEN-05 using the MBR-like candidate selection
rule and uniform prior weights. Systems were
trained with different sample sizes of the FBIS data.

used for decoding the ZHEN-05 test sentences. All
60 systems applied the MBR decision rule (Kumar
and Byrne, 2004), which gave an additional 0.5%
gain on average on top of using themaximum a-
posteriori (MAP) decision rule. Systems trained on
equally amounts of training data were incrementally
combined. Figure 1 shows the evolution of the
BLEU scores as a function of the number of sys-
tems as the sample size is increased from 5–100%.
Table 4 shows the BLEU scores obtained with a 10-
way system combination using the MBR-like can-
didate selection rule, word sausages, and the two-
pass search algorithm together with their improved
versions “sausages+” and “two-pass+”, respectively.
In order to measure the correlation between the in-
dividual translation systems, we computed the inter-
system BLEU score matrix as shown exemplary
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Table 5: Minimum, maximum, and average inter-system BLEU score correlations for (i) the primary
systems of the 2006 NIST machine translation evaluation on the ZHEN-06 test data, (ii) different training
corpus sizes (FBIS), and (iii) a greedy strategy which chooses 15 systems out of a pool of 200 translation
systems.

ZHEN-6 ZHEN-5 ZHEN-5 ZHEN-6
16 primary FBIS sampling, 10 systems 15 systems 15 systems
systems 5% 10% 20% 40% 80% 100% greedy selection ZHEN-5 selection

min 0.08 0.38 0.44 0.47 0.53 0.60 0.72 0.55 0.50
mean 0.18 0.40 0.45 0.50 0.56 0.66 0.79 0.65 0.61
median 0.19 0.40 0.45 0.49 0.56 0.64 0.78 0.63 0.58
max 0.28 0.42 0.47 0.53 0.58 0.70 0.88 0.85 0.83

in Table 6 for the 16 MT06 primary submissions.
Figure 2 shows the evolution of the correlation
averaged over 10 systems as the sample size is
increased from 5–100%. Note that all systems were
optimized using a non-deterministic implementation
of the Minimum Error Rate Trainingdescribed in
(Och, 2003). Hence, using all of the FBIS corpus
data does not necessarily result in fully correlated
systems, since the training procedure may pick a
different solution for same training data in order
to increase diversity. Both Table 4 and Figure 1
clearly indicate that increasing the correlation (and
thus reducing the diversity) substantially reduces the
potential of a consensus system to outperform the
primary translation system. Ideally, the correlation
should not be larger than30%.

Especially for low inter-system correlations and
reduced translation quality, both the enhanced ver-
sions of the word sausage combination method
and the two-pass search outperform the MBR-like
candidate selection scheme. This advantage, how-
ever, diminishes as soon as the correlation increases
and translations produced by the individual systems
become more similar.

3.4 Toward Automatic System Generation and
Selection

Sampling the training data is an effective means
to investigate the effect of system correlation on
consensus performance. However, this is done at the
expense of the overall system quality. What we need
instead is a method to reduce correlation without
sacrificing system performance.

A simple, though computationally very expensive
way to build an ensemble of low-correlated sta-
tistical machine translation systems from a single
translation engine is to train a large pool of sys-
tems, in which each of the systems is trained with
a slightly different set of parameters. Changing

only few parameters at a time typically results in
only small changes in system performance but may
have a strong impact on system correlation. In
our experiments we observed that changing pa-
rameters which affect the training procedure at a
very early stage, are most effective and introduce
larger diversity. For instance, changing the training
procedure for word alignment models turned out to
be most beneficial; for details see (Och and Ney,
2003). Other parameters that were changed include
the maximum jump width in word re-ordering, the
choice of feature function weights for the log-linear
translation models, and the set of language models
used in decoding.

Once a large pool of translation systems has
been generated, we need a method to select a
small ensemble of diverse translation outputs that
are beneficial for computing consensus translations.
Here, we used a greedy strategy to rank the systems
with respect to their ability to improve system

Table 6: Inter-system BLEU score matrix for
primary systems of the NIST 2006 TIDES machine
translation evaluation on the ZHEN-06 test data.

Id 01 02 03 04 05 � � � 14 15 16
01 1.00 0.27 0.26 0.23 0.26� � � 0.15 0.15 0.12
02 0.27 1.00 0.27 0.22 0.25� � � 0.15 0.15 0.12
03 0.26 0.27 1.00 0.21 0.28� � � 0.15 0.15 0.10
04 0.23 0.22 0.21 1.00 0.19� � � 0.14 0.12 0.12
05 0.26 0.25 0.28 0.19 1.00� � � 0.16 0.17 0.11
06 0.27 0.24 0.25 0.21 0.26� � � 0.16 0.18 0.13
...

...
...

14 0.15 0.15 0.15 0.14 0.16� � � 1.00 0.12 0.08
15 0.15 0.15 0.15 0.12 0.17� � � 0.12 1.00 0.09
16 0.12 0.12 0.10 0.12 0.11� � � 0.08 0.09 1.00
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Figure 3:BLEU score of the consensus translation as a function of the number of systems on the ZHEN-05
sentences (left) and ZHEN-06 sentences (right). The middle curve (right) shows the variation of the BLEU
score on the ZHEN-06 data when the greedy selection of the ZHEN-05 is used.

combination. Initially, the greedy strategy selected
the best individual system and then continued by
adding those systems to the ensemble, which gave
the highest gain in terms of BLEU score according
to the MBR-like system combination method. Note
that the greedy strategy is not guaranteed to increase
the BLEU score of the combined system when a
new system is added to the ensemble of translation
systems.

In a first experiment, we trained approximately
200 systems using different parameter settings in
training. Each system was then used to decode both
the ZHEN-05 and the ZHEN-06 test sentences using
the MBR decision rule. The upper curve in Figure 3
(left) shows the evolution of the BLEU score on
the ZHEN-05 sentences in the course of the number
of selected systems. The upper curve in Figure 3
(right) shows the BLEU score of the consensus
translation as a function of the number of systems
when the selection is done on the ZHEN-06 set. This
serves as an oracle. The middle curve (right) shows
the function of the BLEU score when the system
selection made on the ZHEN-05 set is used in order
to combine the translation outputs for the ZHEN-06
data. Although system combination gave moderate
improvements on top of the primary system, the
greedy strategy still needs further refinements in or-
der to improve generalization. While the correlation
statistics shown in Table 5 indicate that changing the
training parameters helps to substantially decrease
system correlation, there is still need for additional
methods in order to reduce the level of inter-system

BLEU scores such that they fall within the range ofr0.2, 0.3s.
4 Conclusions

In this paper, we presented an empirical study
on how different selections of translation outputs
affect translation quality in system combination.
Composite translations were computed using (i) a
candidate selection method based on inter-system
BLEU score matrices, (ii) an enhanced version of
word sausage networks, and (iii) a novel two-pass
search algorithm which determines and re-orders
bags of words that build the constituents of the final
consensus hypothesis. All methods gave statistically
significant improvements.

We showed that both a high diversity among the
original translation systems and a similar translation
quality among the translation systems are essential
in order to gain substantial improvements on top of
the best individual translation systems.

Experiments were conducted on the NIST portion
of the Chinese English text translation corpus used
for the 2006 NIST machine translation evaluation.
Combined systems were built from primary systems
of up to 16 different research labs as well as systems
derived from one of the best-ranked translation
engines.

We trained a large pool of translation systems
from a single translation engine and presented first
experimental results for a greedy search to select an
ensemble of translation systems for system combi-
nation.
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