
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 1080–1089,
Honolulu, October 2008. c©2008 Association for Computational Linguistics

Latent-Variable Modeling of String Transductions
with Finite-State Methods∗

Markus Dreyer and Jason R. Smith and Jason Eisner
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218, USA

{markus,jsmith,jason}@cs.jhu.edu

Abstract

String-to-string transduction is a central prob-
lem in computational linguistics and natural
language processing. It occurs in tasks as di-
verse as name transliteration, spelling correc-
tion, pronunciation modeling and inflectional
morphology. We present a conditional log-
linear model for string-to-string transduction,
which employs overlapping features over la-
tent alignment sequences, and which learns la-
tent classes and latent string pair regions from
incomplete training data. We evaluate our ap-
proach on morphological tasks and demon-
strate that latent variables can dramatically
improve results, even when trained on small
data sets. On the task of generating mor-
phological forms, we outperform a baseline
method reducing the error rate by up to 48%.
On a lemmatization task, we reduce the error
rates in Wicentowski (2002) by 38–92%.

1 Introduction

A recurring problem in computational linguistics
and language processing is transduction of charac-
ter strings, e.g., words. That is, one wishes to model
some systematic mapping from an input string x to
an output string y. Applications include:

• phonology: underlying representation ↔ surface
representation
• orthography: pronunciation↔ spelling
• morphology: inflected form ↔ lemma, or differ-

ently inflected form
• fuzzy name matching (duplicate detection) and

spelling correction: spelling↔ variant spelling
∗This work was supported by the Human Language Tech-

nology Center of Excellence and by National Science Founda-
tion grant No. 0347822 to the final author. We would also like
to thank Richard Wicentowski for providing us with datasets for
lemmatization, and the anonymous reviewers for their valuable
feedback.

• lexical translation (cognates, loanwords, translit-
erated names): English word↔ foreign word

We present a configurable and robust framework
for solving such word transduction problems. Our
results in morphology generation show that the pre-
sented approach improves upon the state of the art.

2 Model Structure

A weighted edit distance model (Ristad and Yian-
ilos, 1998) would consider each character in isola-
tion. To consider more context, we pursue a very
natural generalization. Given an input x, we evalu-
ate a candidate output y by moving a sliding window
over the aligned (x, y) pair. More precisely, since
many alignments are possible, we sum over all these
possibilities, evaluating each alignment separately.1

At each window position, we accumulate log-
probability based on the material that appears within
the current window. The window is a few charac-
ters wide, and successive window positions over-
lap. This stands in contrast to a competing approach
(Sherif and Kondrak, 2007; Zhao et al., 2007)
that is inspired by phrase-based machine translation
(Koehn et al., 2007), which segments the input string
into substrings that are transduced independently, ig-
noring context.2

1At the other extreme, Freitag and Khadivi (2007) use no
alignment; each feature takes its own view of how (x, y) relate.

2We feel that this independence is inappropriate. By anal-
ogy, it would be a poor idea for a language model to score a
string highly if it could be segmented into independently fre-
quent n-grams. Rather, language models use overlapping n-
grams (indeed, it is the language model that rescues phrase-
based MT from producing disjointed translations). We believe
phrase-based MT avoids overlapping phrases in the channel
model only because these would complicate the modeling of
reordering (though see, e.g., Schwenk et al. (2007) and Casacu-
berta (2000)). But in the problems of section 1, letter reordering
is rare and we may assume it is local to a window.

1080

Figure 1: One of many possible alignment strings A for
the observed pair breaking/broke, enriched with latent
strings `1 and `2. Observed letters are shown in bold. The
box marks a trigram to be scored. See Fig. 2 for features
that fire on this trigram.

Joint n-gram models over the input and output di-
mensions have been used before, but not for mor-
phology, where we will apply them.3 Most notable
is the local log-linear grapheme-to-phoneme model
of Chen (2003), as well as generative models for
that task (Deligne et al. (1995), Galescu and Allen
(2001), Bisani and Ney (2002)).

We advance that approach by adding new latent
dimensions to the (input, output) tuples (see Fig. 1).4

This enables us to use certain linguistically inspired
features and discover unannotated information. Our
features consider less or more than a literal n-gram.
On the one hand, we generalize with features that
abstract away from the n-gram window contents; on
the other, we specialize the n-gram with features that
make use of the added latent linguistic structure.

In section 5, we briefly sketch our framework for
concisely expressing and efficiently implementing
models of this form. Our framework uses familiar
log-linear techniques for stochastic modeling, and
weighted finite-state methods both for implementa-
tion and for specifying features. It appears general
enough to cover most prior work on word transduc-
tion. We imagine that it will be useful for future
work as well: one might easily add new, linguisti-
cally interesting classes of features, each class de-
fined by a regular expression.

2.1 Basic notation

We use an input alphabet Σx and output alphabet
Σy. We conventionally use x ∈ Σ∗x to denote the
input string and y ∈ Σ∗y to denote the output string.

3Clark (2001) does use pair HMMs for morphology.
4Demberg et al. (2007) similarly added extra dimensions.

However, their added dimensions were supervised, not latent,
and their model was a standard generative n-gram model whose
generalization was limited to standard n-gram smoothing.

There are many possible alignments between x
and y. We represent each as an alignment string
A ∈ Σ∗

xy
, over an alignment alphabet of ordered

pairs, Σxy
def= ((Σx ∪ {ε})× (Σy ∪ {ε}))− {(ε, ε)}.

For example, one alignment of x = breaking
with y = broke is the 9-character string A =
(b,b)(r,r)(e,o)(a, ε)(k,k)(ε,e)(i, ε)(n, ε)(g, ε).
It is pictured in the first two lines of Fig. 1.

The remainder of Fig. 1 shows how we intro-
duce latent variables, by enriching the alignment
characters to be tuples rather than pairs. Let Σ def=
(Σxy × Σ`1 × Σ`2 × · · · × Σ`K), where Σ`i are al-
phabets used for the latent variables `i.

FSA and FST stand for “finite-state acceptor” and
“finite-state transducer,” while WFSA and WFST
are their weighted variants. The ◦ symbol denotes
composition.

Let T be a relation and w a string. We write T [w]
to denote the image of w under T (i.e., range(w ◦
T)), a set of 0 or more strings. Similarly, if W is a
weighted language (typically encoded by a WFSA),
we write W [w] to denote the weight of w in W .

Let πx ⊆ Σ∗ × Σ∗x denote the deterministic reg-
ular relation that projects an alignment string to its
corresponding input string, so that πx[A] = x. Sim-
ilarly, define πy ⊆ Σ∗ × Σ∗y so that πy[A] = y. Let
Axy be the set of alignment strings A compatible
with x and y; formally, Axy

def= {A ∈ Σ∗ : πx[A] =
x∧πy[A] = y}. This set will range over all possible
alignments between x and y, and also all possible
configurations of the latent variables.

2.2 Log-linear modeling
We use a standard log-linear model whose features
are defined on alignment strings A ∈ Axy, allow-
ing them to be sensitive to the alignment of x and y.
Given a collection of features fi : Σ∗ → R with as-
sociated weights θi ∈ R, the conditional likelihood
of the training data is

pθ(y | x) =

∑
A∈Axy

exp
∑

i θifi(A)∑
y′

∑
A∈Axy′ exp

∑
i θifi(A)

(1)

Given a parameter vector θ, we compute equa-
tion (1) using a finite-state machine. We define a
WFSA,Uθ, such thatUθ[A] yields the unnormalized
probability uθ(A) def= exp

∑
i θifi(A) for any A ∈

Σ∗. (See section 5 for the construction.) To obtain

1081

the numerator of equation (1), with its
∑

A∈Axy
, we

sum over all paths in Uθ that are compatible with x
and y. That is, we build x ◦ π−1

x ◦ Uθ ◦ πy ◦ y and
sum over all paths. For the denominator we build the
larger machine x ◦ π−1

x ◦ Uθ and again compute the
pathsum. We use standard algorithms (Eisner, 2002)
to compute the pathsums as well as their gradients
with respect to θ for optimization (section 4.1).

Below, we will restrict our notion of valid align-
ment strings in Σ∗. Uθ is constructed not to accept
invalid ones, thus assigning them probability 0.

Note that the possible output strings y′ in the de-
nominator in equation (1) may have arbitrary length,
leading to an infinite summation over alignment
strings. Thus, for some values of θ, the sum in
the denominator diverges and the probability dis-
tribution is undefined. There exist principled ways
to avoid such θ during training. However, in our
current work, we simply restrict to finitely many
alignment strings (given x), by prohibiting as invalid
those with > k consecutive insertions (i.e., charac-
ters like (ε,a)).5 Finkel et al. (2008) and others have
similarly bounded unary rule cycles in PCFGs.

2.3 Latent variables

The alignment between x and y is a latent ex-
planatory variable that helps model the distribution
p(y | x) but is not observed in training. Other latent
variables can also be useful. Morphophonological
changes are often sensitive to phonemes (whereas x
and y may consist of graphemes); syllable bound-
aries; a conjugation class; morpheme boundaries;
and the position of the change within the form.

Thus, as mentioned in section 2.1, we enrich the
alignment string A so that it specifies additional la-
tent variables to which features may wish to refer.
In Fig. 1, two latent strings are added, enabling the
features in Fig. 2(a)–(h). The first character is not

5We set k to a value between 1 and 3, depending on the tasks,
always ensuring that no input/output pairs observed in training
are excluded. The insertion restriction does slightly enlarge the
FSA Uθ: a state must keep track of the number of consecutive
ε symbols in the immediately preceding x input, and for a few
states, this cannot be determined just from the immediately pre-
ceding (n − 1)-gram. Despite this, we found empirically that
our approximation is at least as fast as the exact method of Eis-
ner (2002), who sums around cyclic subnetworks to numerical
convergence. Furthermore, our approximation does not require
us to detect divergence during training.

Figure 2: The boxes (a)-(h) represent some of the features
that fire on the trigram shown in Fig. 1. These features are
explained in detail in section 3.

just an input/output pair, but the 4-tuple (b,b,2,1).
Here, `1 indicates that this form pair (breaking /

broke) as a whole is in a particular cluster, or word
class, labeled with the arbitrary number 2. Notice in
Fig. 1 that the class 2 is visible in all local windows
throughout the string. It allows us to model how cer-
tain phenomena, e.g. the vowel change from ea to
o, are more likely in one class than in another. Form
pairs in the same class as the breaking / broke ex-
ample might include the following Germanic verbs:
speak, break, steal, tear, and bear.

Of course, word classes are latent (not labeled in
our training data). Given x and y, Axy will include
alignment strings that specify class 1, and others
that are identical except that they specify class 2;
equation (1) sums over both possibilities.6 In a valid
alignment stringA, `1 must be a constant string such
as 111... or 222..., as in Fig. 1, so that it spec-
ifies a single class for the entire form pair. See sec-
tions 4.2 and 4.3 for examples of what classes were
learned in our experiments.

The latent string `2 splits the string pair into num-
bered regions. In a valid alignment string, the re-
gion numbers must increase throughout `2, although
numbers may be skipped to permit omitted regions.
To guide the model to make a useful division into
regions, we also require that identity characters such
as (b,b) fall in even regions while change charac-
ters such as (e,o) (substitutions, deletions, or inser-

6The latent class is comparable to the latent variable on the
tree root symbol S in Matsuzaki et al. (2005).

1082

tions) fall in odd regions.7 Region numbers must not
increase within a sequence of consecutive changes
or consecutive identities.8 In Fig. 1, the start of re-
gion 1 is triggered by e:o, the start of region 2 by
the identity k:k, region 3 by ε:e.

Allowing region numbers to be skipped makes it
possible to consistently assign similar labels to sim-
ilar regions across different training examples. Ta-
ble 2, for example, shows pairs that contain a vowel
change in the middle, some of which contain an ad-
ditional insertion of ge in the begining (verbinden
/ verbunden, reibt / gerieben). We expect the model
to learn to label the ge insertion with a 1 and vowel
change with a 3, skipping region 1 in the examples
where the ge insertion is not present (see section
4.2, Analysis).

In the next section we describe features over these
enriched alignment strings.

3 Features

One of the simplest ways of scoring a string is an n-
gram model. In our log-linear model (1), we include
ngram features fi(A), each of which counts the oc-
currences in A of a particular n-gram of alignment
characters. The log-linear framework lets us include
ngram features of different lengths, a form of back-
off smoothing (Wu and Khudanpur, 2000).

We use additional backoff features on alignment
strings to capture phonological, morphological, and
orthographic generalizations. Examples are found in
features (b)-(h) in Fig. 2. Feature (b) matches vowel
and consonant character classes in the input and
output dimensions. In the id/subst ngram feature,
we have a similar abstraction, where the character
classes ins, del, id, and subst are defined over in-
put/output pairs, to match insertions, deletions, iden-
tities (matches), and substitutions.

In string transduction tasks, it is helpful to in-
clude a language model of the target. While this
can be done by mixing the transduction model with
a separate language model, it is desirable to in-
clude a target language model within the transduc-

7This strict requirement means, perhaps unfortunately, that a
single region cannot accommodate the change ayc:xyz unless
the two y’s are not aligned to each other. It could be relaxed,
however, to a prior or an initialization or learning bias.

8The two boundary characters #, numbered 0 and max
(max=6 in our experiments), are neither changes nor identities.

tion model. We accomplish this by creating target
language model features, such as (c) and (g) from
Fig. 2, which ignore the input dimension. We also
have features which mirror features (a)-(d) but ig-
nore the latent classes and/or regions (e.g. features
(e)-(h)).

Notice that our choice of Σ only permits mono-
tonic, 1-to-1 alignments, following Chen (2003).
We may nonetheless favor the 2-to-1 alignment
(ea,o) with bigram features such as (e,o)(a,ε). A
“collapsed” version of a feature will back off from
the specific alignment of the characters within a win-
dow: thus, (ea,o) is itself a feature. Currently, we
only include collapsed target language model fea-
tures. These ignore epsilons introduced by deletions
in the alignment, so that collapsed ok fires in a win-
dow that contains oεk.

4 Experiments

We evaluate our model on two tasks of morphol-
ogy generation. Predicting morphological forms has
been shown to be useful for machine translation and
other tasks.9 Here we describe two sets of exper-
iments: an inflectional morphology task in which
models are trained to transduce verbs from one form
into another (section 4.2), and a lemmatization task
(section 4.3), in which any inflected verb is to be re-
duced to its root form.

4.1 Training and decoding

We train θ to maximize the regularized10 conditional
log-likelihood11∑

(x,y∗)∈C

log pθ(y∗ | x) + ||θ||2/2σ2, (2)

where C is a supervised training corpus. To max-
imize (2) during training, we apply the gradient-
based optimization method L-BFGS (Liu and No-
cedal, 1989).12

9E.g., Toutanova et al. (2008) improve MT performance
by selecting correct morphological forms from a knowledge
source. We instead focus on generalizing from observed forms
and generating new forms (but see with rootlist in Table 3).

10The variance σ2 of the L2 prior is chosen by optimizing on
development data. We are also interested in trying an L1 prior.

11Alternatives would include faster error-driven methods
(perceptron, MIRA) and slower max-margin Markov networks.

12This worked a bit better than stochastic gradient descent.

1083

To decode a test example x, we wish to find
ŷ = argmaxy∈Σ∗y

pθ(y | x). Constructively, ŷ is the
highest-probability string in the WFSA T [x], where
T = π−1

x ◦Uθ◦πy is the trained transducer that maps
x nondeterministically to y. Alas, it is NP-hard to
find the highest-probability string in a WFSA, even
an acyclic one (Casacuberta and Higuera, 2000).
The problem is that the probability of each string y
is a sum over many paths in T [x] that reflect differ-
ent alignments of y to x. Although it is straightfor-
ward to use a determinization construction (Mohri,
1997)13 to collapse these down to a single path per
y (so that ŷ is easily read off the single best path),
determinization can increase the WFSA’s size expo-
nentially. We approximate by pruning T [x] back to
its 1000-best paths before we determinize.14

Since the alignments, classes and regions are not
observed in C, we do not enjoy the convex objec-
tive function of fully-supervised log-linear models.
Training equation (2) therefore converges only to
some local maximum that depends on the starting
point in parameter space. To find a good starting
point we employ staged training, a technique in
which several models of ascending complexity are
trained consecutively. The parameters of each more
complex model are initialized with the trained pa-
rameters of the previous simpler model.

Our training is done in four stages. All weights
are initialized to zero. ¬ We first train only fea-
tures that fire on unigrams of alignment charac-
ters, ignoring features that examine the latent strings
or backed-off versions of the alignment characters
(such as vowel/consonant or target language model
features). The resulting model is equivalent to
weighted edit distance (Ristad and Yianilos, 1998).
 Next,15 we train all n-grams of alignment charac-
ters, including higher-order n-grams, but no backed-
off features or features that refer to latent strings.

13Weighted determinization is not always possible, but it is
in our case because our limit to k consecutive insertions guar-
antees that T [x] is acyclic.

14This value is high enough; we see no degradations in per-
formance if we use only 100 or even 10 best paths. Below that,
performance starts to drop slightly. In both of our tasks, our
conditional distributions are usually peaked: the 5 best output
candidates amass > 99% of the probability mass on average.
Entropy is reduced by latent classes and/or regions.

15When unclamping a feature at the start of stages –¯, we
initialize it to a random value from [−0.01, 0.01].

13SIA. liebte, pickte, redete, rieb, trieb, zuzog
13SKE. liebe, picke, rede, reibe, treibe, zuziehe
2PIE. liebt, pickt, redet, reibt, treibt, zuzieht
13PKE.lieben, picken, reden, reiben, treiben, zuziehen
2PKE. abbrechet, entgegentretet, zuziehet
z. abzubrechen, entgegenzutreten, zuzuziehen
rP. redet, reibt, treibt, verbindet, überfischt
pA.geredet, gerieben, getrieben, verbunden, überfischt

Table 2: CELEX forms used in our experiments. Changes
from one form to the other are in bold (information not
given in training). The changes from rP to pA are very
complex. Note also the differing positions of zu in z.

® Next, we add backed-off features as well as all
collapsed features. ¯ Finally, we train all features.
In our experiments, we permitted latent classes 1–
2 and, where regions are used, regions 0–6. For
speed, stages –¯ used a pruned Σ that included
only “plausible” alignment characters: a may not
align to b unless it did so in the trained stage-(1)
model’s optimal alignment of at least one training
pair (x, y∗).

4.2 Inflectional morphology

We conducted several experiments on the CELEX
morphological database. We arbitrarily consid-
ered mapping the following German verb forms:16

13SIA → 13SKE, 2PIE → 13PKE, 2PKE → z,
and rP → pA.17 We refer to these tasks as 13SIA,
2PIE, 2PKE and rP. Table 2 shows some examples
of regular and irregular forms. Common phenomena
include stem changes (ei:ie), prefixes inserted af-
ter other morphemes (abzubrechen) and circumfixes
(gerieben).

We compile lists of form pairs from CELEX. For
each task, we sample 2500 data pairs without re-
placement, of which 500 are used for training, 1000
as development and the remaining 1000 as test data.
We train and evaluate models on this data and repeat

16From the available languages in CELEX (German, Dutch,
and English), we selected German as the language with the
most interesting morphological phenomena, leaving the mul-
tilingual comparison for the lemmatization task (section 4.3),
where there were previous results to compare with. The 4 Ger-
man datasets were picked arbitrarily.

17A key to these names: 13SIA=1st/3rd sg. ind. past;
13SKE=1st/3rd sg. subjunct. pres.; 2PIE=2nd pl. ind. pres.;
13PKE=1st/3rd pl. subjunct. pres.; 2PKE=2nd pl. subjunct.
pres.; z=infinitive; rP=imperative pl.; pA=past part.

1084

Features Task
ng vc tlm tlm-coll id lat.cl. lat.reg. 13SIA 2PIE 2PKE rP

ngrams x 82.3 (.23) 88.6 (.11) 74.1 (.52) 70.1 (.66)

ngrams+x

x x 82.8 (.21) 88.9 (.11) 74.3 (.52) 70.0 (.68)
x x 82.0 (.23) 88.7 (.11) 74.8 (.50) 69.8 (.67)
x x x 82.5 (.22) 88.6 (.11) 74.9 (.50) 70.0 (.67)
x x x 81.2 (.24) 88.7 (.11) 74.5 (.50) 68.6 (.69)
x x x x 82.5 (.22) 88.8 (.11) 74.5 (.50) 69.2 (.69)
x x 82.4 (.22) 88.9 (.11) 74.8 (.51) 69.9 (.68)
x x x 83.0 (.21) 88.9 (.11) 74.9 (.50) 70.3 (.67)
x x x 82.2 (.22) 88.8 (.11) 74.8 (.50) 70.0 (.67)
x x x x 82.9 (.21) 88.6 (.11) 75.2 (.50) 69.7 (.68)
x x x x 81.9 (.23) 88.6 (.11) 74.4 (.51) 69.1 (.68)
x x x x x 82.8 (.21) 88.7 (.11) 74.7 (.50) 69.9 (.67)

ngrams+x
+latent

x x x x x x 84.8 (.19) 93.6 (.06) 75.7 (.48) 81.8 (.43)
x x x x x x 87.4 (.16) 93.8 (.06) 88.0 (.28) 83.7 (.42)
x x x x x x x 87.5 (.16) 93.4 (.07) 87.4 (.28) 84.9 (.39)

Moses3 73.9 (.40) 92.0 (.09) 67.1 (.70) 67.6 (.77)
Moses9 85.0 (.21) 94.0 (.06) 82.3 (.31) 70.8 (.67)
Moses15 85.3 (.21) 94.0 (.06) 82.8 (.30) 70.8 (.67)

Table 1: Exact-match accuracy and average edit distance (the latter in parentheses) versus the correct answer on the
German inflection task, using different combinations of feature classes. The label ngrams corresponds to the second
stage of training, ngrams+x to the third where backoff features may fire (vc = vowel/consonant, tlm = target LM, tlm-
coll = collapsed tlm, id = identity/substitution/deletion features), and ngrams+x+latent to the fourth where features
sensitive to latent classes and latent regions are allowed to fire. The highest n-gram order used is 3, except for Moses9
and Moses15 which examine windows of up to 9 and 15 characters, respectively. We mark in bold the best result for
each dataset, along with all results that are statistically indistinguishable (paired permutation test, p < 0.05).

the process 5 times. All results are averaged over
these 5 runs.

Table 1 and Fig. 3 report separate results after
stages , ®, and ¯ of training, which include suc-
cessively larger feature sets. These are respectively
labeled ngrams, ngrams+x, and ngrams+x+latent.
In Table 1, the last row in each section shows the
full feature set at that stage (cf. Fig. 3), while earlier
rows test feature subsets.18

Our baseline is the SMT toolkit Moses (Koehn et
al., 2007) run over letter strings rather than word
strings. It is trained (on the same data splits) to
find substring-to-substring phrase pairs and translate
from one form into another (with phrase reordering
turned off). Results reported as moses3 are obtained
from Moses runs that are constrained to the same
context windows that our models use, so the maxi-
mum phrase length and the order of the target lan-
guage model were set to 3. We also report results
using much larger windows, moses9 and moses15.

18The number k of consecutive insertions was set to 3.

Results. The results in Table 1 show that including
latent classes and/or regions improves the results
dramatically. Compare the last line in ngrams+x
to the last line in ngrams+x+latent. The accuracy
numbers improve from 82.8 to 87.5 (13SIA), from
88.7 to 93.4 (2PIE), from 74.7 to 87.4 (2PKE), and
from 69.9 to 84.9 (rP).19 This shows that error re-
ductions between 27% and 50% were reached. On
3 of 4 tasks, even our simplest ngrams method beats
the moses3 method that looks at the same amount of
context.20 With our full model, in particular using
latent features, we always outperform moses3—and
even outperform moses15 on 3 of the 4 datasets, re-
ducing the error rate by up to 48.3% (rP). On the
fourth task (2PIE), our method and moses15 are sta-
tistically tied. Moses15 has access to context win-
dows of five times the size than we allowed our
methods in our experiments.

19All claims in the text are statistically significant under a
paired permutation test (p < .05).

20This bears out our contention in footnote 2 that a “segment-
ing” channel model is damaging. Moses cannot fully recover by
using overlapping windows in the language model.

1085

While the gains from backoff features in Table 1
were modest (significant gains only on 13SIA), the
learning curve in Fig. 3 suggests that they were help-
ful for smaller training sets on 2PKE (see ngrams vs
ngrams+x on 50 and 100) and helped consistently
over different amounts of training data for 13SIA.

Analysis. The types of errors that our system (and
the moses baseline) make differ from task to task.
Due to lack of space, we mainly focus on the com-
plex rP task. Here, most errors come from wrongly
copying the input to the output, without making a
change (40-50% of the errors in all models, except
for our model with latent classes and no regions,
where it accounts for only 30% of the errors). This
is so common because about half of the training ex-
amples contain identical inputs and outputs (as in
the imperative berechnet and the participle (ihr habt)
berechnet). Another common error is to wrongly as-
sume a regular conjugation (just insert the prefix ge-
at the beginning). Interestingly, this error by sim-
plification is more common in the Moses models
(44% of moses3 errors, down to 40% for moses15)
than in our models, where it accounts for 37% of
the errors of our ngrams model and only 19% if la-
tent classes or latent regions are used; however, it
goes up to 27% if both latent classes and regions
are used.21 All models for rP contain errors where
wrong analogies to observed words are made (ver-
schweisst/verschwissen in analogy to the observed
durchweicht/durchwichen, or bebt/geboben in anal-
ogy to hebt/gehoben). In the 2PKE task, most errors
result from inserting the zu morpheme at a wrong
place or inserting two of them, which is always
wrong. This error type was greatly reduced by la-
tent regions, which can discover different parame-
ters for different positions, making it easier to iden-
tify where to insert the zu.

Analysis of the 2 latent classes (when used) shows
that a split into regular and irregular conjugations
has been learned. For the rP task we compute,
for each data pair in development data, the poste-
rior probabilities of membership in one or the other
class. 98% of the regular forms, in which the past
participle is built with ge- . . . -t, fall into one class,

21We suspect that training of the models that use classes and
regions together was hurt by the increased non-convexity; an-
nealing or better initialization might help.

Figure 3: Learning curves for German inflection tasks,
13SIA (left) and 2PKE (right), as a function of the num-
ber of training pairs. ngrams+x means all backoff fea-
tures were used, ngrams+x+latent means all latent fea-
tures were used in addition. Moses15 examines windows
of up to 15 characters.

which in turn consists nearly exclusively (96%) of
these forms. Different irregular forms are lumped
into the other class.

The learned regions are consistent across different
pairs. On development data for the rP task, 94.3%
of all regions that are labeled 1 are the insertion se-
quence (ε,ge), region 3 consists of vowel changes
93.7% of the time; region 5 represents the typical
suffixes (t,en), (et,en), (t,n) (92.7%). In the
2PKE task, region 0 contains different prefixes (e.g.
entgegen in entgegenzutreten), regions 1 and 2 are
empty, region 3 contains the zu affix, region 4 the
stem, and region 5 contains the suffix.

The pruned alignment alphabet excluded a few
gold standard outputs so that the model contains
paths for 98.9%–99.9% of the test examples. We
verified that the insertion limit did not hurt oracle
accuracy.

4.3 Lemmatization

We apply our models to the task of lemmatization,
where the goal is to generate the lemma given an in-
flected word form. We compare our model to Wicen-
towski (2002, chapter 3), an alternative supervised
approach. Wicentowski’s Base model simply learns
how to replace an arbitrarily long suffix string of an
input word, choosing some previously observed suf-
fix→ suffix replacement based on the input word’s

1086

Without rootlist (generation) With rootlist (selection)
Wicentowski (2002) This paper Wicentowski (2002) This paper

Lang. Base Af. WFA. n n+x n+x+l Base Af. WFA. n n+x n+x+l
Basque 85.3 81.2 80.1 91.0 (.20) 91.1 (.20) 93.6 (.14) 94.5 94.0 95.0 90.9 (.29) 90.8 (.31) 90.9 (.30)

English 91.0 94.7 93.1 92.4 (.09) 93.4 (.08) 96.9 (.05) 98.3 98.6 98.6 98.7 (.04) 98.7(.04) 98.7(.04)

Irish 43.3 - 70.8 96.8 (.07) 97.0 (.06) 97.8 (.04) 43.9 - 89.1 99.6 (.02) 99.6 (.02) 99.5 (.03)

Tagalog 0.3 80.3 81.7 80.5 (.32) 83.0 (.29) 88.6 (.19) 0.8 91.8 96.0 97.0 (.07) 97.2 (.07) 97.7 (.05)

Table 3: Exact-match accuracy and average edit distance (the latter in parentheses) on the 8 lemmatization tasks (2
tasks × 4 languages). The numbers from Wicentowski (2002) are for his Base, Affix and WFAffix models. The
numbers for our models are for the feature sets ngrams, ngrams+x, ngrams+x+latent. The best result per task is in
bold (as are statistically indistinguishable results when we can do the comparison, i.e., for our own models). Corpus
sizes: Basque 5,842, English 4,915, Irish 1,376, Tagalog 9,479.

final n characters (interpolating across different val-
ues of n). His Affix model essentially applies the
Base model after stripping canonical prefixes and
suffixes (given by a user-supplied list) from the input
and output. Finally, his WFAffix uses similar meth-
ods to also learn substring replacements for a stem
vowel cluster and other linguistically significant re-
gions in the form (identified by a deterministic align-
ment and segmentation of training pairs). This ap-
proach is a bit like our change regions combined
with Moses’s region-independent phrase pairs.

We compare against all three models. Note that
Affix and WFAffix have an advantage that our mod-
els do not, namely, user-supplied lists of canonical
affixes for each language. It is interesting to see
how our models with their more non-committal tri-
gram structure compare to this. Table 3 reports re-
sults on the data sets used in Wicentowski (2002),
for Basque, English, Irish, and Tagalog. Follow-
ing Wicentowski, 10-fold cross-validation was used.
The columns n+x and n+x+l mean ngram+x and
ngram+x+latent, respectively. As latent variables,
we include 2 word classes but no change regions.22

For completeness, Table 3 also compares with Wi-
centowski (2002) on a selection (rather than genera-
tion) task. Here, at test time, the lemma is selected
from a candidate list of known lemmas, namely, all
the output forms that appeared in training data.23

These additional results are labeled with rootlist in
the right half of Table 3.

On the supervised generation task without rootlist,

22The insertion limit k was set to 2 for Basque and 1 for the
other languages.

23Though test data contained no (input, output) pairs from
training data, it reused many of the output forms, since many
inflected inputs are to be mapped to the same output lemma.

our models outperform Wicentowski (2002) by a
large margin. Comparing our results that use la-
tent classes (n+x+l) with Wicentowski’s best mod-
els we observe error reductions ranging from about
38% (Tagalog) to 92% (Irish). On the selection task
with rootlist, we outperform Wicentowski (2002) in
English, Irish, and Tagalog.

Analysis. We examined the classes learned on En-
glish lemmatization by our ngrams+x+latent model.
For each of the input/output pairs in development
data, we found the most probable latent class. For
the most part, the 2 classes are separated based on
whether or not the correct output ends in e. This
use of latent classes helped address many errors like
wronging / wronge or owed / ow). Such missing or
surplus final e’s account for 72.5% of the errors for
ngrams and 70.6% of the errors for ngrams+x, but
only 34.0% of the errors for ngrams+x+latent.

The test oracles are between 99.8% – 99.9%, due
to the pruned alignment alphabet. As on the inflec-
tion task, the insertion limit does not exclude any
gold standard paths.

5 Finite-State Feature Implementation

We used the OpenFST library (Allauzen et al., 2007)
to implement all finite-state computations, using the
expectation semiring (Eisner, 2002) for training.

Our model is defined by the WFSA Uθ, which is
used to score alignment strings in Σ∗ (section 2.2).
We now sketch how to construct Uθ from features.

n-gram construction The construction that we
currently use is quite simple. All of our current
features fire on windows of width ≤ 3. We build
a WFSA with the structure of a 3-gram language

1087

model over Σ∗. Each of the |Σ|2 states remembers
two previous alignment characters ab of history; for
each c ∈ Σ, it has an outgoing arc that accepts c (and
leads to state bc). The weight of this arc is the total
weight (from θ) of the small set of features that fire
when the trigram window includes abc. By conven-
tion, these also include features on bc and c (which
may be regarded as backoff features ?bc and ??c).
Since each character in Σ is actually a 4-tuple, this
trigram machine is fairly large. We build it lazily
(“on the fly”), constructing arcs only as needed to
deal with training or test data.

Feature templates Our experiments use over
50,000 features. How do we specify these features
to the above construction? Rather than writing ordi-
nary code to extract features from a window, we find
it convenient to harness FSTs as a “little language”
(Bentley, 1986) for specifying entire sets of features.

A feature template T is an nondeterministic FST
that maps the contents of the sliding window, such
as abc, to one or more features, which are also
described as strings.24 The n-gram machine de-
scribed above can compute T [((a?b)?c)?] to find
out what features fire on abc and its suffixes. One
simple feature template performs “vowel/consonant
backoff”; e.g., it maps abc to the feature named
VCC. Fig. 2 showed the result of applying several
actual feature templates to the window shown in
Fig. 1. The extended regular expression calculus
provides a flexible and concise notation for writ-
ing down these FSTs. As a trivial example, the tri-
gram “vowel/consonant backoff” transducer can be
described as T = V V V , where V is a transducer
that performs backoff on a single alignment charac-
ter. Feature templates should make it easy to experi-
ment with adding various kinds of linguistic knowl-
edge. We have additional algorithms for compiling
Uθ from a set of arbitrary feature templates,25 in-
cluding templates whose features consider windows
of variable or even unbounded width. The details are
beyond the scope of this paper, but it is worth point-
ing out that they exploit the fact that feature tem-
plates are FSTs and not arbitrary code.

24Formally, if i is a string naming a feature, then fi(A)
counts the number of positions in A that are immediately pre-
ceded by some string in T−1[i].

25Provided that the total number of features is finite.

6 Conclusions

The modeling framework we have presented here
is, we believe, an attractive solution to most string
transduction problems in NLP. Rather than learn the
topology of an arbitrary WFST, one specifies the
topology using a small set of feature templates, and
simply trains the weights.

We evaluated on two morphology generation
tasks. When inflecting German verbs we, even with
the simplest features, outperform the moses3 base-
line on 3 out of 4 tasks, which uses the same amount
of context as our models. Introducing more sophis-
ticated features that have access to latent classes and
regions improves our results dramatically, even on
small training data sizes. Using these we outper-
form moses9 and moses15, which use long context
windows, reducing error rates by up to 48%. On the
lemmatization task we were able to improve the re-
sults reported in Wicentowski (2002) on three out of
four tested languages and reduce the error rates by
38% to 92%. The model’s errors are often reason-
able misgeneralizations (e.g., assume regular con-
jugation where irregular would have been correct),
and it is able to use even a small number of latent
variables (including the latent alignment) to capture
useful linguistic properties.

In future work, we would like to identify a set of
features, latent variables, and training methods that
port well across languages and string-transduction
tasks. We would like to use features that look at
wide context on the input side, which is inexpen-
sive (Jiampojamarn et al., 2007). Latent variables
we wish to consider are an increased number of
word classes; more flexible regions—see Petrov et
al. (2007) on learning a state transition diagram for
acoustic regions in phone recognition—and phono-
logical features and syllable boundaries. Indeed, our
local log-linear features over several aligned latent
strings closely resemble the soft constraints used by
phonologists (Eisner, 1997). Finally, rather than de-
fine a fixed set of feature templates as in Fig. 2,
we would like to refine empirically useful features
during training, resulting in language-specific back-
off patterns and adaptively sized n-gram windows.
Many of these enhancements will increase the com-
putational burden, and we are interested in strategies
to mitigate this, including approximation methods.

1088

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-

ciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Proc. of CIAA, volume 4783.

Jon Bentley. 1986. Programming pearls [column]. Com-
munications of the ACM, 29(8), August.

Maximilian Bisani and Hermann Ney. 2002. Inves-
tigations on jointmultigram models for grapheme-to-
phoneme conversion.

Francisco Casacuberta and Colin De La Higuera. 2000.
Computational complexity of problems on probabilis-
tic grammars and transducers. In Proc. of the 5th Inter-
national Colloquium on Grammatical Inference: Al-
gorithms and Applications, volume 1891.

Francisco Casacuberta. 2000. Inference of finite-
state transducers by using regular grammars and mor-
phisms. In A.L. Oliveira, editor, Grammatical Infer-
ence: Algorithms and Applications, volume 1891.

Stanley F. Chen. 2003. Conditional and joint models for
grapheme-to-phoneme conversion. In Proc. of Inter-
speech.

Alexander Clark. 2001. Learning morphology with Pair
Hidden Markov Models. In Proc. of the Student Work-
shop at the 39th Annual Meeting of the Association for
Computational Linguistics, Toulouse, France, July.

Sabine Deligne, Francois Yvon, and Frédéric Bimbot.
1995. Variable-length sequence matching for phonetic
transcription using joint multigrams. In Eurospeech.

Vera Demberg, Helmut Schmid, and Gregor Möhler.
2007. Phonological constraints and morphological
preprocessing for grapheme-to-phoneme conversion.
In Proc. of ACL, Prague, Czech Republic, June.

Jason Eisner. 1997. Efficient generation in primitive Op-
timality Theory. In Proc. of ACL-EACL, Madrid, July.

Jason Eisner. 2002. Parameter estimation for probabilis-
tic finite-state transducers. In Proc. of ACL.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, conditional
random field parsing. In Proceedings of ACL-08:
HLT, pages 959–967, Columbus, Ohio, June. Associa-
tion for Computational Linguistics.

Dayne Freitag and Shahram Khadivi. 2007. A sequence
alignment model based on the averaged perceptron. In
Proc. of EMNLP-CoNLL.

Lucian Galescu and James F. Allen. 2001. Bi-directional
conversion between graphemes and phonemes using a
joint N-gram model.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden markov models to letter-to-phoneme con-
version. In Proc. of NAACL-HLT, Rochester, New
York, April.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,

Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proc.
of ACL, Companion Volume, Prague, Czech Republic,
June.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Math. Programming, 45(3, (Ser. B)):503–528.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proc. of ACL, Ann Arbor, Michigan, June.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Linguis-
tics, 23(2).

Slav Petrov, Adam Pauls, and Dan Klein. 2007. Learning
structured models for phone recognition. In Proc. of
EMNLP-CoNLL.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learn-
ing string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5).

Holger Schwenk, Marta R. Costa-jussa, and Jose A.
R. Fonollosa. 2007. Smooth bilingual n-gram transla-
tion. In Proc. of EMNLP-CoNLL, pages 430–438.

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-
based transliteration. In Proc. of ACL, Prague, Czech
Republic, June.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp.
2008. Applying morphology generation models to
machine translation. In Proceedings of ACL-08: HLT,
Columbus, Ohio, June.

Richard Wicentowski. 2002. Modeling and Learning
Multilingual Inflectional Morphology in a Minimally
Supervised Framework. Ph.D. thesis, Johns-Hopkins
University.

Jun Wu and Sanjeev Khudanpur. 2000. Efficient training
methods for maximum entropy language modeling. In
Proc. of ICSLP, volume 3, Beijing, October.

Bing Zhao, Nguyen Bach, Ian Lane, and Stephan Vo-
gel. 2007. A log-linear block transliteration model
based on bi-stream HMMs. In Proc. of NAACL-HLT,
Rochester, New York, April.

1089

