
An open-source highly scalable web service architecture for the Apertium
machine translation engine

Vı́ctor M. Sánchez-Cartagena
Department de Llenguatges i Sistemes

Informàtics, Universitat d’Alacant,
Spain, vmsanchez@dlsi.ua.es

Juan Antonio Pérez-Ortiz
Department de Llenguatges i Sistemes

Informàtics, Universitat d’Alacant,
Spain, japerez@dlsi.ua.es

Abstract

Some machine translation services like
Google Ajax Language API have be-
come very popular as they make the
collaboratively created contents of the
web 2.0 available to speakers of many
languages. One of the keys of its suc-
cess is its clear and easy-to-use applica-
tion programming interface (API) and a
scalable and reliable service. This pa-
per describes a highly scalable imple-
mentation of an Apertium-based trans-
lation web service, that aims to make
contents available to speakers of lesser
resourced languages. The API of this
service is compatible with Google’s
one, and the scalability of the system is
achieved by a new architecture that al-
lows adding or removing new servers at
any time; for that, an application place-
ment algorithm which decides which
language pairs should be translated on
which servers is designed. Our exper-
iments show how the resulting archi-
tecture improves the translation rate in
comparison to existing Apertium-based
servers.

1 Introduction

Although Apertium (Armentano-Oller et al.,
2005) is a popular machine translation toolbox,
Apertium-based machine translators are not mas-
sively used over the Internet. The reason for this

low usage is that the only way to access the trans-
lators is querying a server through some of the
existing HTTP web forms, like the one located
at apertium.org. This method has two disadvan-
tages: it makes difficult for external developers to
easily grab the results of the translations, and it
is not scalable as it needs to launch an Apertium
instance and load all the linguistic data for each
request.

Our proposal consists of creating the right
framework for the Apertium engine to support a
massive access. We have designed a clean and in-
tuitive application programming interface (API),
and created a scalable and reliable open-source
architecture implementing its services.

We will start off by describing the relationship
between web 2.0 applications and machine trans-
lation (section 2). In section 3 we will list differ-
ent approaches to solve the Apertium limitations
related to massive access. Then, in section 4 we
will explain how our API works. Later, in sec-
tion 5 our scalable architecture will be described.
Section 6 contains the experiments we made to
test our system. Finally, sections 7 and 8 show a
list of future works and the conclusions that can
be drawn from the development of our system.

2 Machine Translation in Web 2.0

Machine translation services are becoming very
useful in the web 2.0 era. One of the key features
of web 2.0 applications is that they profit from
the contributions of users collaborating in content
creation. But linguistic barriers make the mas-
sive collaboration and understanding of the con-
tents very difficult. Web applications which inte-

J.A. Pérez-Ortiz, F. Sánchez-Mart́ınez, F.M. Tyers (eds.)
Proceedings of the First International Workshop on Free/Open-Source Rule-Based Machine Translation, p. 51–58
Alacant, Spain, November 2009

grate machine translation services usually attract
users speaking different languages and therefore
receive more contributions, as can be seen by the
increasing number of web applications which rely
on the Google Ajax Language API1.

However, in spite of the evident benefits, a very
reduced number of web applications using Aper-
tium exist. There is, for example, a Wordpress
plug-in2 that translates blog posts into any of the
languages supported by Apertium; the plug-in is
successfully used by some bloggers, but it can-
not be massively installed since it sends POST re-
quests to the non-scalable web form at apertium.
org. There are three main limitations behind this
lack of web applications integrating Apertium:

• There is not a clear, well-documented API,
that allows web applications to access Aper-
tium from JavaScript code loaded from dif-
ferent domains. The JSONP technique (see
Section 4) is not supported and, therefore,
there is no simple mechanism to get around
the JavaScript same origin policy3.

• Every Apertium process has to load the lin-
guistic data of the corresponding language
pair every time it is invoked. Boot time is
considerably long (see the experiments in
section 6.1). Until now, there was no way of
keeping data loaded in memory and use it to
translate different input texts, that is, work-
ing in daemon mode.

• Finally, and as a consequence of the previ-
ous item, there is not a server or cluster of
servers capable of processing massive trans-
lation requests.

3 Alternative approaches

We know of at least one other approach, apart
from ours, suggested in order to solve the afore-
mentioned Apertium limitations. The approach
by Minervini (2009) consists of rewriting Aper-
tium to keep linguistic data in memory and add
multithreading support to it. This way, the Aper-
tium daemon only loads data once, saving a lot

1http://code.google.com/apis/ajaxlanguage/
2http://xavi.infobenissa.com/utilitats/wp-apertium/
3http://en.wikipedia.org/wiki/Same origin policy

of CPU cycles, and then processes concurrent re-
quests thanks to multithreading.

Minervini’s approach has many advantages.
It introduces less overhead, because threads
are more efficient than processes (Wagner and
Towsley, 1995). It also needs less memory than
our approach when running on multiprocessor
machines since, under certain circumstances, we
launch more than one Apertium process for the
same language pair in order to use all the CPU
capacity of the machine.

We decided not to follow the multithreading
approach for one main reason: it heavily depends
on Apertium’s internal structure. Although up-
dates in the linguistic data do not affect the mul-
tithreaded version, updates in the Apertium core
libraries interface will make it difficult to main-
tain. Moreover, adding to the pipeline extra mod-
ules not included in the Apertium libraries can be
difficult. Our approach (see section 5), considers
Apertium as a black box, so modes files can still
be easily edited to add new modules whose design
does not follow any special guideline. New mod-
ules must only meet a single condition: flush their
output when they receive a null character from the
standard input.

A different alternative would be delegating
scaling to existing open-source middleware sys-
tems. This alternative is unfeasable since it re-
quires Apertium to be modified to add communi-
cation with the middleware and we want our sys-
tem not to be affected by changes in Apertium.

4 A New API for Apertium

We have designed a simple JSONP REST API
compatible with Google Ajax Language API that
simplifies the task of creating Apertium-based
web applications. Developers used to work with
Google Ajax Language API will easily adapt to
it and applications using our API will be more
scalable, since the task of getting translations
from the Apertium server will be possible for any
JavaScript client, like regular web browsers.

Our API has two available operations: listing
supported language pairs, and translating. The
listing operation is different from the Google’s
API one. Google provides a JavaScript library
where the supported languages are hardcoded, but
since we have not written a JavaScript library yet,

52

a web service operation is provided to list the
available language pairs. The listing operation
returns an array of JSON objects containing the
supported language pairs. A HTTP GET or POST
request to the URL

http://ApertiumServerInstallationHost/
ApertiumServerRouter/resources/listPairs

will return the list of supported language pairs as,
for instance:

{”responseData”:[{”sourceLanguage”:”ca”,”
targetLanguage”:”oc”},{”sourceLanguage”:”en”,”
targetLanguage”:”es”}],”responseDetails”:null,”
responseStatus”:200}

The translating operation works exactly like the
Google’s API one. For example, to translate the
text “hello world” from English to Spanish we
have to make a HTTP GET or POST request to
the following URL:

http://ApertiumServerInstallationHost/
ApertiumServerRouter/resources/translate?q=hello
%20world&langpair=en%7Ces

The server will return a JSON object with the re-
sponse status and the translated text, if any:

{”responseData”:{”translatedText”:”hola Mundo”},”
responseDetails”:null,”responseStatus”:200}

The same origin policy will not allow using
XMLHttpRequest to access our web service from
third-party client-side JavaScript applications, but
there are some exceptions: one of them are
<script> elements, which can point to any do-
main. So, one way of calling the Apertium web
service from any JavaScript application is by dy-
namically adding a <script> element to the
DOM pointing to the URL of the web service.
Both operations support a parameter called call-
back. When this parameter is provided, the op-
eration returns a call to a function whose name
is the value of the callback parameter with one ar-
gument: the JSON object with the status code and
the result of the operation. This way, the callback
function is called as soon as the result is avail-
able. This method is called JSONP and is cur-
rently used by many web 2.0 applications. The
following function is an example of how to use
our API from JavaScript:

function translateJSONP(url,text,pair,callback)
{

url+=”?”;

url += ”callback=”+encodeURIComponent(callback)+
”&q=”+encodeURIComponent(text)+”&langpair
=”+encodeURIComponent(pair);

var script = document.createElement(”script”);
script.setAttribute(”src”,url);
script.setAttribute(”type”,”text/javascript”);
document.getElementsByTagName(”body”)[0].

appendChild(script);
}

5 A New Web Service Architecture for
Apertium

In this section we introduce the architecture that
allows our system to respond to massive transla-
tion requests. It consists of two open-source ap-
plications:

• ApertiumSlave runs on a machine with Aper-
tium installed and manages a set of Apertium
daemons; it performs the requested transla-
tions by sending them to the right daemon.

• ApertiumRouter (request router) runs on
a web server; it processes the transla-
tion requests and sends them to the right
ApertiumSlave instance.

Since servers usually do not have enough
memory to run an Apertium daemon for ev-
ery supported language pair, there is a place-
ment algorithm which is executed periodically on
ApertiumRouter to decide which daemons to run on
each server so that all translation requirements are
met. Additionally, it tries to minimize the number
of daemon creations and terminations, because
each time a daemon is started it loads its language
pair linguistic data. The placement algorithm is
executed by a component called placement con-
troller.

ApertiumRouter has a queue for each supported
language pair. When a translation request arrives,
it is inserted in the corresponding queue. When
a request is taken from the queue, it is sent to a
server running a daemon with the corresponding
language pair. The server is chosen trying to bal-
ance the load between the different servers. These
queues are part of a component called load bal-
ancer.

The whole system is able to scale by adding
new servers running ApertiumSlave. These servers
can be added manually, or we can let a dynamic
server manager decide when to add or remove

53

them. The servers added by the dynamic server
manager can be machines from a local network,
with SSH access enabled, or Amazon EC2 in-
stances4. This component decides when the sys-
tem needs more servers according to demand
based on the placement algorithm output. If the
algorithm detects that the total CPU demand is
higher than the CPU capacity for all the servers,
or that there is not enough free memory, then new
servers are added. The dynamic server manager
is part of ApertiumRouter.

All these components have been designed to be
as much independent as possible, to allow eas-
ier future modifications and their distribution over
different machines.

5.1 Daemonizing Apertium
As stated before, one of the reasons behind Aper-
tium’s limited scalability is the high CPU cost of
loading linguistic data, and the fact that data is
loaded every time Apertium is launched to per-
form a translation. Experiments in section 6.1
show that, in this case, translating a text, split in
many fragments, is much slower than translating
the whole text, because linguistic data has to be
repeatedly loaded in memory for every fragment.

The idea behind our daemon implementation
is very simple. Apertium can be considered as
a standard UNIX process that reads from stan-
dard input and writes to standard output, and as
long as its standard input is not closed, the pro-
cess will never end. Therefore, we have built
an Apertium daemon by queueing translation re-
quests, sequentially writing source texts from the
requests to the process standard input, and not
closing it when there are not requests in the queue.
The different translations are separated in Aper-
tium’s standard output flow by superblanks (text
fragments that are not translated by Apertium)
that encapsulate a unique number identifying each
translation. For avoiding that finished transla-
tions remain temporarily stored in the buffers of
the pipeline modules, we send a null character af-
ter the text of each translation requests. The dif-
ferent modules flush their output when this null
character is read. Some modules of the Apertium
pipeline were slightly modified to meet the previ-
ous requirements.

4http://aws.amazon.com/ec2/

5.2 Measuring and Predicting Load

The placement algorithm takes as input the total
CPU and memory capacity of each server (Ωs and
Γs, respectively), the maximum load that can be
assigned to a single daemon on each server (Ω′s),
the amount of CPU cycles (load) needed by each
language pair (ωp), the memory needed by a dae-
mon of each language pair (γp), a matrix repre-
senting which daemons can run on each server
(R), and another matrix representing which dae-
mons are currently running on each server (It−1).

Memory is measured in megabytes. In the
Linux operating system Γs can be obtained by
looking at the information in /proc/meminfo, and γp

by starting the daemon and measuring the mem-
ory consumption of all the pipeline processes with
the command top-b.

CPU capacities and demands are expressed as
number of translated characters per second. We
calculate Ω′s by translating a long text from Span-
ish to Catalan with a single daemon on server s
and dividing its number of characters by the trans-
lation total execution time. Ωs is calculated by
following a similar process but with several dae-
mons and texts. Parameter ωp for a pair p is pre-
dicted by adding up the computational cost of all
the requests of that pair in the last period (note
that the placement algorithm is executed periodi-
cally), and dividing the result by the period dura-
tion. The computational cost of a request depends
on its number of characters and on the language
pair.

5.3 Load Balancing and Scheduling

One of the most important tasks of the request
router, apart from executing the placement al-
gorithm, is sending each translation request to a
server that runs a daemon for the involved lan-
guage pair and balancing the load between all the
servers.

The request router manages one queue for each
language pair. When a request arrives, it is put
on the queue corresponding to its language pair.
For each queue, there is a dispatcher thread that
consumes requests from it independently from the
other queues, and sends them to the most suitable
server. Each request in the queue has an associ-
ated CPU cost. The dispatcher thread keeps track
of the sum of the CPU costs of the requests that

54

have been sent to each server, but have not been
completed yet. This parameter is called server
load. Dispatching works as follows:

1. The dispatcher thread checks whether the
lowest load in the set of servers running a
daemon with the dispatcher’s associated pair
is lower than a particular threshold. If this
condition is not held, it waits a short time
and executes this step again.

2. It takes the first request from the queue,
sends it to the server with the lowest load,
and returns to step 1. Obviously, server’s
load measure is updated accordingly.

This way, although queues are independent,
load is balanced globally. If a server is processing
many requests for a language pair A, requests for
language pair B will take a long time to be pro-
cessed because both need to share CPU. If there is
another server that is not processingA requests, it
will translateB requests faster and, consequently,
receive more B requests because it will be more
often the server with less load.

5.4 Application Placement
As we stated before, the most important element
of this highly scalable architecture is the place-
ment algorithm. It is based on the solution pro-
posed by Tang et al. (2007), but with some minor
modifications that allow it to run more than one
instance of the same daemon (application) on a
server.

The original algorithm takes as input Ωs, Γs,
ωp, γp, R and It−1, as described in 5.2. It
tries to maximize the amount of satisfied load,
and outputs a matrix indicating which daemons
should run on each server (It), and the load sat-
isfied by that placement (L). It repeatedly and
incrementally optimizes the placement solution
in multiple rounds. In each round, it first com-
putes the maximum total application demand that
can be satisfied by the current placement solu-
tion. The algorithm quits if all the application
demands can be already satisfied. Otherwise, it
shifts load across machines (without placement
changes), and then considers stopping unproduc-
tive application instances and starting more useful
ones in order to increase the total satisfied appli-
cation demand. The load shifting step before the

placement changing step is critical as it dramat-
ically simplifies subsequent placement changes.
Note that, in the algorithm description, placement
change, application start/stop, and load shifting
are all hypothetical. The real placement changes
are executed after the placement algorithm termi-
nates.

The load shifting step involves solving the
maximum flow and the minimum cost–maximum
flow problems on a graph. In our preliminary
implementation, we have solved these problems
with algorithms that are easy to implement, but
which are not the fastest ones. We have chosen
two special variations of the Ford–Fulkerson al-
gorithm (Ford and Fulkerson, 1962). Maximum
flow problem has been solved with Edmonds–
Karp algorithm (Edmonds and Karp, 1972). Min-
imum cost–maximum flow problem has been
solved with another variation optimized specifi-
cally for the structure of our graph.

The algorithm proposed by Tang et al. (2007)
assumes that no more than one instance of each
daemon can run on the same server. But, on
servers with many CPUs, it may happen that a
single daemon does not consume all the server’s
capacity. So, if only one language pair is assigned
to this kind of servers, more than one daemon
for that pair will be needed to satisfy the required
load. We deal with this problem by adding an ad-
ditional parameter to the server’s information: the
capacity of a single daemon (Ω′s). We have modi-
fied two steps of the algorithm to include the new
parameter:

• When building the flow graph, the edges be-
tween application nodes and server nodes
change their capacities. According to the
original algorithm, an edge from application
nodeNai to server nodeNsj must have infin-
ity capacity if an instance of application i is
running on server j, and zero capacity other-
wise. In our modification, if the capacity of
a single daemon of server j is Csj and there
are Nij daemons of application i running on
server j, the capacity of the edge from Nai

to Nsj must be Csj ∗Nij .

• In the placement changing inner loop, when
taking an application from the residual app
tree and starting an instance on server j, no

55

Full Split Slave Router
Time (s) 73 2002.39 219 321

Ratio 1 27.43 3 4.40

Table 1: Execution times (s) for different web service im-
plementations.

more than Csj can be assigned to it. If the
application still has some residual demand,
it is put again in the residual app tree.

6 Experiments and Results

6.1 Comparing with standard Apertium
implementation

One interesting way of evaluating the usefulness
and efficiency of our system is by comparing the
scalable architecture to a standard Apertium setup
by measuring the time needed for translating a set
of input texts.

Table 1 shows the time needed to translate a
text version of Miguel de Cervantes’ Don Qui-
jote5, (383 184 words) from Spanish to Catalan
with different configurations. The first column
shows the time needed to translate it by launch-
ing the standard Apertium process and sending a
file with the whole text to it. The second column
shows the time needed to translate sequentially
the same text split in 1 858 fragments by launch-
ing the standard Apertium process for each frag-
ment. The third one shows the time needed to
translate sequentially those fragments by sending
them directly to an instance of ApertiumSlave with
a Spanish-Catalan daemon already loaded. And
the fourth one shows the time needed to trans-
late sequentially the 1 858 fragments by sending
them to ApertiumRouter with only an associated in-
stance of ApertiumSlave running on the same ma-
chine. The second row represents the ratio be-
tween each implementation and the first one. All
the tests have been made on the same machine6.

As we can see in the table, the ratio obtained by
sending the translation requests to ApertiumSlave
is much lower than the one obtained launching
a different Apertium instance to perform each
translation. However, it is higher than 1 because
of the time spent by the requests waiting in differ-
ent queues. When the fragments are sent sequen-

5http://www.gutenberg.org/dirs/etext99/2donq10.txt
6A desktop PC with a Pentium IV 3.0 GHz

tially to ApertiumRouter the ratio is a bit higher
than the previous one, but still much lower than
the one shown in the second column, which indi-
cates that ApertiumRouter is not introducing a big
overhead and our system accomplishes its objec-
tives.

6.2 Placement algorithm execution time

One of the facts that can limit the system’s scal-
ability is the execution time of the placement al-
gorithm. This algorithm should be executed fre-
quently to adapt the number and type of running
daemons to the changing load requirements. An
experiment was carried out in order to measure
the execution time of the placement algorithm for
different number of servers in a realistic environ-
ment. To do so, we executed it with all the sta-
ble language pairs available for Apertium. For
each number of servers, we executed the algo-
rithm 10 times. The first time, the CPU demand
for each language pair was chosen randomly and
there were not running daemons. The following
times the running daemons were the result of the
previous step, and the CPU demand of each lan-
guage pair was calculated by multiplying the pre-
vious one by a factor f = 1 + rand(−0.5, 0.5).
The experiment is conditioned by the parameter
Lcpu, which is the factor between the total CPU
demand on the first time the algorithm is executed
and the total CPU capacity. The randomly chosen
CPU demands are normalized to fit this factor.

Server CPU capacities are chosen randomly
from the set {40 000, 27 000, 30 000}, server
memory capacities are chosen randomly from
{1 000, 500, 800, 1 400} and language pairs
memory demands from {64, 124, 69, 28, 97}.
The plot in figure 1 shows the average execution
time with different values of Lcpu.

In the worst case (Lcpu = 1) the algorithm
needs about 30 seconds to finish with 1 500
servers. It is important to have a small interval
of time between placement executions to be able
to react to sudden changes on load demands. And
it is also important to keep placement algorithm
execution time lower than its execution period. If
not, the placement changes to satisfy the demands
will be made after the demands have changed.
Defining which is the maximum acceptable ex-
ecution time will need a deeper research. For

56

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 200 400 600 800 1000 1200 1400 1600

pl
ac

em
en

t a
lg

or
ith

m
 e

xe
cu

tio
n

tim
e

(m
s)

number of servers

Lcpu=0.5

Lcpu=0.8

Lcpu=1

Figure 1: Average execution time (ms) with different values
of Lcpu.

instance, if we decide to execute the placement
algorithm every minute, 20 seconds could be a
reasonable execution time. Figure 1 shows that
the algorithm would need 20 seconds with around
1 200 servers; therefore, in that case our system
could manage around 1 200 servers.

Tang et al. (2007) state that their algorithm can
run with about 7 000 servers and 17 000 appli-
cations in 30 seconds. Their implementation is
much more faster than ours, specially if we take
into account that our experiments have been made
with only 40 applications.

6.3 Is the router a bottleneck?

One of the biggest shortcomings of our architec-
ture is that all the translation requests are pro-
cessed by a single instance of ApertiumRouter.
Although processing a request does not have a
high CPU cost, there is a limit on the number
of requests per second it can process, and, con-
sequently, if this limit is reached adding more
servers will not improve system’s capacity. With
the following experiment we tried to determine
the maximum amount of servers that an instance
of ApertiumRouter can manage.

In our experiment, we deployed the router on
Apache Tomcat7 running on an Amazon EC2
small server instance, and added small servers
running ApertiumSlave sequentially. For each
number of them, we calculated the number of
requests per minute the system could process

7http://tomcat.apache.org/

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0 2 4 6 8 10 12 14 16 18 20

th
ro

ug
hp

ut
 (

re
qu

es
ts

 p
er

 m
in

ut
e)

number of servers

56 characters
1903 characters

Figure 2: Throughput obtained making requests with two
texts of 1 903 and 56 characters.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

C
P

U
 u

sa
ge

 (
%

)

number of servers

56 characters
1903 characters

Figure 3: CPU usage of the machine running
ApertiumRouter making requests with two texts of
1 903 and 56 characters.

(throughput) using Apache JMeter8. We also
measured CPU usage of the machine running
ApertiumRouter with htop. Due to limitations of
our testing environment, we could only launch
19 servers running ApertiumSlave. The language
pair of all the requests was Spanish-Catalan, and
the experiments were repeated with different in-
put text lengths. Figures 2 and 3 show the results.

The results show that the CPU usage of
ApertiumRouter depends on the request rate
(throughput). For the same server capacity, the
request rate is higher with shorter texts, because
each request needs less CPU cycles to be pro-
cessed. When the number of servers is near 20, if
we translate texts of 56 characters the CPU usage
is over 90% and throughput does not grow lin-

8http://jakarta.apache.org/jmeter/

57

early with the number of servers. That means that
the limit has almost been reached. With longer
texts, the request rate is lower, so the CPU usage
is lower too and the limit is not reached with 20
servers. It can be concluded that ApertiumRouter
acts as the bottleneck of our system because it
cannot work with the number of servers allowed
by the placement algorithm.

7 Future Work

As we demonstrated in section 6.3, ApertiumRouter
acts as a bottleneck. Consequently, increasing the
number of requests it can process would improve
scalability. A possible solution would be having
more than one running instance of ApertiumRouter.
We should study how to balance the load between
them and how to share the placement information.

In 6.2 we stated that our implementation of the
placement algorithm was much slower than the
one by Tang et al. (2007). One of the causes of
the efficiency gap is that we have used different
implementations of the flow algorithms. Imple-
menting the highest-label preflow-push algorithm
and the enhanced capacity scaling algorithm pro-
posed by Ahuja et al. (1993) would probably im-
prove its efficiency.

Although we have shown in 6.3 that a single
instance of ApertiumRouter can manage around 20
servers, this number can decrease when the in-
put load for a language pair rises abruptly. Under
this situation, the threads created to process in-
coming requests have to wait until the placement
controller launches new daemons, and the thread
limit of the web server could be reached.

Finally, our system could be easily adapted to
work with other machine translation engines.

8 Conclusions

This paper describes a scalable system that
makes Apertium-based machine translators avail-
able over a well defined web service API. The
presented JSON API is compatible with Google
Ajax Language API and scalability is provided by
an open-source architecture and a placement algo-
rithm based on the proposal by Tang et al. (2007).
Our implementation is not as scalable as the one
by Tang et al. (2007) because it only supports
around 20 translation servers and its capacity is

reduced when running many different language
pairs. However, it can fit the needs of small and
medium organizations. For instance, the transla-
tion services on apertium.org or softcatala.cat could
take advantage of this new architecture. We plan
to deploy it as a public service in a few months.

The source code of this project can be
downloaded from http://apertium.svn.sourceforge.
net/svnroot/apertium/branches/gsoc2009/vitaka/.

9 Acknowledgements

This work has been partially funded by Google
through the Google Summer of Code program
and by Spanish Ministerio de Ciencia e Inno-
vación through project TIN2009-14009-C02-01.

References

Ahuja, R., Magnanti, T., and Orlin, J. (1993). Net-
work flows: theory, algorithms, and applica-
tions. Prentice Hall.

Armentano-Oller, C. et al. (2005). An open-
source shallow-transfer machine translation
toolbox: consequences of its release and avail-
ability. In OSMaTran: Open-Source Machine
Translation, A Workshop at Machine Transla-
tion Summit X, pages 23–30.

Edmonds, J. and Karp, R. M. (1972). Theoreti-
cal improvements in algorithmic efficiency for
network flow problems. Journal of the ACM,
19(2):248–264.

Ford, L. and Fulkerson, D. (1962). Flow in net-
works. Princeton University Press.

Minervini, P. (2009). Apertium goes SOA: an ef-
ficient and scalable service based on the Aper-
tium rule-based machine translation platform.
In Proceedings of the First International Work-
shop on Free/Open-Source Rule-Based Ma-
chine Translation.

Tang, C., Steinder, M., Spreitzer, M., and Pacifici,
G. (2007). A scalable application placement
controller for enterprise data centers. In Pro-
ceedings of the 16th international conference
on the World Wide Web, pages 331–340.

Wagner, T. and Towsley, D. (1995). Getting
started with posix threads. Technical Report,
Department of Computer Science, University
of Massachusetts.

58

