Evaluation in Human Language Technology

Maghi King
ISSCO/TIM/ETI
University of Geneva

Two traditions

- Different viewpoints
- Different aims
- Different focus
- Different problems

But sharing

- Common interests
- Common problems
- At least one common dilemma

Different viewpoints

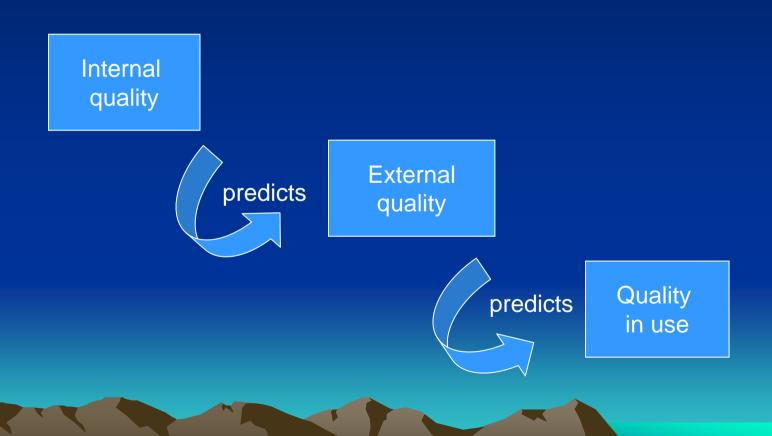
- Define what the software ought to be able to do
 - investigate how closely it gets to being able to do it

the research tradition typified by evaluation campaigns

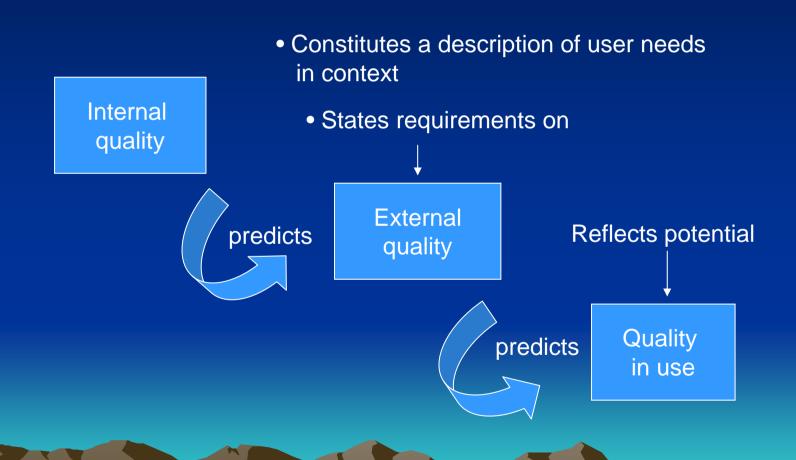
Different viewpoints

- Describe a task which a human wants to achieve
 - investigate to what extent the software actually helps him in accomplishing the task

the industrial tradition typified by ISO 9126 and 14598, EAGLES


Different aims

- The research tradition
 - Advancing the core technology
- The industrial tradition
 - Quality assurance during production
 - Minimizing investment risk
 - Maximizing return on investment


Different focus

- The research tradition
 - Concentrate on functionality, and within that on accuracy
 - (do the results meet the specifications)
- The industrial tradition
 - Concentrate on describing software quality
 - (what does 'a good software' mean?)

Good software: the quality chain

A quality model

Different problems

- The research tradition
 - Comparing apples and pears: finding acceptable metrics
- The industrial tradition
 - Generalizing away from a mass of specific and particular contexts: avoiding unacceptable expense

In slogan form

The research tradition seeks to advance technology

 The industrial tradition seeks to minimize risk and maximize profit in using technology

So are they poles apart?

Common interests

Shared problems

Common interests

- The ISO quality characteristics
 - Functionality
 - Reliability
 - Usability
 - Efficiency
 - Maintainability
 - Portability

Relevant to research evaluation

- The ISO quality characteristics
 - Functionality
 - Reliability
 - Usability ?
 - Efficiency
 - Maintainability
 - Portability ?

However:

- Reliability, efficiency are pre-requisites:
 - Only tested indirectly
- Maintainability

(analysability, changeability, stability, testability)

Tested directly, but between evaluations

So the difference is a task to be done?

- Can't be true!
 - Choice of what to evaluate in the research tradition depends on what is assumed to contribute to achieving a generically useful task
 - Industrial tradition starts from a specifically useful task

So the difference is including the user?

Can't be true!

- A task generic or specific implies a user
 - The research tradition makes assumptions about the user
 - The industrial tradition uses knowledge about specific users

So, is there any real difference?

Only that:

 The research tradition (rightly) works on the level of what would be useful at a very general level

 The industrial tradition works on the level of what would be useful in a particular situation

So, is there any real difference?

- And that:
 - The research tradition directly tests functionality (accuracy)
 - Evaluation campaigns typically allow for improvement cycles, so
 - other quality characteristics are tested indirectly
 - The industrial tradition thinks in terms of oneoff evaluations taking account of a particular context
 - All relevant quality characteristics have to be tested for explicitly

And just one fundamental difference

 Questions of suitability (sub-characteristic of functionality) are not pertinent in the research tradition

And therein lie the roots of a shared dilemma

The roots of the dilemma: metrics

Both traditions rely critically on being able to find good metrics

Good metrics

- Valid
- Reliable
- Objective
- Economical
- Informative

Comfortable cases

- The task is (relatively) simple, accuracy and suitability co-incide, e.g.
 - Word error rate in a dictation system
 - Modulo vocabulary known to the system
 - Precision/recall in a document retrieval system
 - Modulo a manageable pool of documents
 - Modulo agreement on relevance judgements

Increasing discomfort

- Suitability begins to outweigh accuracy, e.g.
 - Word error rate in dialogue systems
 - Lexical/terminology coverage in translation systems
 - String extraction in term extraction systems
 - (not all words are equal)

Increasing discomfort

- Metrics become heavily resource dependent, e.g.
 - Creating relevance judgements for document retrieval systems working over a large document collection
 - Creating templates for fact extraction systems
 - Making gold standards is expensive
 - Expense prevents change of focus (research tradition)
 - Evaluation becomes unacceptably expensive (industrial tradition)

Common problems

Objectivity becomes suspect, e.g.

Relevance judgements obtained by pooling results of several systems

And yet more common problems

Validity becomes suspect, e.g.

 Gold standard material does not match intended real application (BLEU, NIST ...)

 Metric is executed over a finite and stable data collection when real application works over much larger and unstable data collection (using a 'snapshot' of the web ...)

More validity problems

- Humans get involved
 - In defining the gold standard (e.g. reference translations)
 - In executing the metric (e.g. information retrieval through web searching)

The shared dilemma: extreme discomfort

- Systems where
 - system performance and human performance cannot be separated out
 - the application by definition works over vast amounts of data which no human could master or analyse
 - the data is by definition constantly shifting

Symbiotic systems: some examples

- Document retrieval on the web
- Information retrieval on the web
- Data mining systems
- Text mining systems

– i.e. most of the emerging human language technologies!

Summary

- We have learnt a great deal
- We have a much better understanding of what we want
- We are faced with new and difficult challenges

A question for this workshop:

- How can we build on what we have learnt in order to
 - deploy effectively knowledge and experience gained
 - share experience and insights as they develop
 - build bridges to other evaluation communities
 - meet new challenges