
Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 256–263,
New York, June 2006.c©2006 Association for Computational Linguistics

Synchronous Binarization for Machine Translation

Hao Zhang
Computer Science Department

University of Rochester
Rochester, NY 14627

zhanghao@cs.rochester.edu

Liang Huang
Dept. of Computer & Information Science

University of Pennsylvania
Philadelphia, PA 19104

lhuang3@cis.upenn.edu

Daniel Gildea
Computer Science Department

University of Rochester
Rochester, NY 14627

gildea@cs.rochester.edu

Kevin Knight
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292
knight@isi.edu

Abstract

Systems based on synchronous grammars
and tree transducers promise to improve
the quality of statistical machine transla-
tion output, but are often very computa-
tionally intensive. The complexity is ex-
ponential in the size of individual gram-
mar rules due to arbitrary re-orderings be-
tween the two languages, and rules ex-
tracted from parallel corpora can be quite
large. We devise a linear-time algorithm
for factoring syntactic re-orderings by bi-
narizing synchronous rules when possible
and show that the resulting rule set signif-
icantly improves the speed and accuracy
of a state-of-the-art syntax-based machine
translation system.

1 Introduction

Several recent syntax-based models for machine
translation (Chiang, 2005; Galley et al., 2004) can
be seen as instances of the general framework of
synchronous grammars and tree transducers. In this
framework, both alignment (synchronous parsing)
and decoding can be thought of as parsing problems,
whose complexity is in general exponential in the
number of nonterminals on the right hand side of a
grammar rule. To alleviate this problem, we investi-
gate bilingual binarization to factor the synchronous
grammar to a smaller branching factor, although it is
not guaranteed to be successful for any synchronous
rule with arbitrary permutation. In particular:

• We develop a technique called synchronous bi-
narization and devise a fast binarization algo-
rithm such that the resulting rule set allows ef-
ficient algorithms for both synchronous parsing
and decoding with integrated n-gram language
models.

• We examine the effect of this binarization
method on end-to-end machine translation
quality, compared to a more typical baseline
method.

• We examine cases of non-binarizable rules in a
large, empirically-derived rule set, and we in-
vestigate the effect on translation quality when
excluding such rules.

Melamed (2003) discusses binarization of multi-
text grammars on a theoretical level, showing the
importance and difficulty of binarization for efficient
synchronous parsing. One way around this diffi-
culty is to stipulate that all rules must be binary
from the outset, as in inversion-transduction gram-
mar (ITG) (Wu, 1997) and the binary synchronous
context-free grammar (SCFG) employed by the Hi-
ero system (Chiang, 2005) to model the hierarchical
phrases. In contrast, the rule extraction method of
Galley et al. (2004) aims to incorporate more syn-
tactic information by providing parse trees for the
target language and extracting tree transducer rules
that apply to the parses. This approach results in
rules with many nonterminals, making good bina-
rization techniques critical.

Suppose we have the following SCFG, where su-
perscripts indicate reorderings (formal definitions of

256

S

NP

Baoweier

PP

yu
Shalong

VP

juxing le
huitan

S

NP

Powell

VP

held
a meeting

PP

with
Sharon

Figure 1: A pair of synchronous parse trees in the
SCFG (1). The dashed curves indicate pairs of syn-
chronous nonterminals (and sub trees).

SCFGs can be found in Section 2):

(1)

S→ NP(1) VP(2) PP(3), NP(1) PP(3) VP(2)

NP→ Powell, Baoweier
VP→ held a meeting, juxing le huitan
PP→ with Sharon, yu Shalong

Decoding can be cast as a (monolingual) parsing
problem since we only need to parse the source-
language side of the SCFG, as if we were construct-
ing a CFG projected on Chinese out of the SCFG.
The only extra work we need to do for decoding
is to build corresponding target-language (English)
subtrees in parallel. In other words, we build syn-
chronous trees when parsing the source-language in-
put, as shown in Figure 1.

To efficiently decode with CKY, we need to bi-
narize the projected CFG grammar.1 Rules can be
binarized in different ways. For example, we could
binarize the first rule left to right or right to left:

S→ VNP-PP VP
VNP-PP→ NP PP or S→ NP VPP-VP

VPP-VP → PP VP

We call those intermediate symbols (e.g. VPP-VP) vir-
tual nonterminals and corresponding rules virtual
rules, whose probabilities are all set to 1.

These two binarizations are no different in the
translation-model-only decoding described above,
just as in monolingual parsing. However, in the
source-channel approach to machine translation, we
need to combine probabilities from the translation
model (an SCFG) with the language model (an n-
gram), which has been shown to be very impor-
tant for translation quality (Chiang, 2005). To do
bigram-integrated decoding, we need to augment
each chart item (X, i, j) with two target-language

1Other parsing strategies like the Earley algorithm use an
internal binary representation (e.g. dotted-rules) of the original
grammar to ensure cubic time complexity.

boundary words u and v to produce a bigram-item
like

(u ··· v
X

i j

)

, following the dynamic program-
ming algorithm of Wu (1996).

Now the two binarizations have very different ef-
fects. In the first case, we first combine NP with PP:

(

Powell ··· Powell
NP

1 2

)

: p

(

with ··· Sharon
PP

2 4

)

: q

(

Powell ··· Powell ··· with ··· Sharon
VNP-PP

1 4

)

: pq

where p and q are the scores of antecedent items.
This situation is unpleasant because in the target-

language NP and PP are not contiguous so we can-
not apply language model scoring when we build the
VNP-PP item. Instead, we have to maintain all four
boundary words (rather than two) and postpone the
language model scoring till the next step where VNP-PP

is combined with
(

held ··· meeting
VP

2 4

)

to form an S item.
We call this binarization method monolingual bina-
rization since it works only on the source-language
projection of the rule without respecting the con-
straints from the other side.

This scheme generalizes to the case where we
have n nonterminals in a SCFG rule, and the decoder
conservatively assumes nothing can be done on lan-
guage model scoring (because target-language spans
are non-contiguous in general) until the real nonter-
minal has been recognized. In other words, target-
language boundary words from each child nonter-
minal of the rule will be cached in all virtual non-
terminals derived from this rule. In the case of
m-gram integrated decoding, we have to maintain
2(m − 1) boundary words for each child nontermi-
nal, which leads to a prohibitive overall complex-
ity of O(|w|3+2n(m−1)), which is exponential in rule
size (Huang et al., 2005). Aggressive pruning must
be used to make it tractable in practice, which in
general introduces many search errors and adversely
affects translation quality.

In the second case, however:
(

with ··· Sharon
PP

2 4

)

: r

(

held ··· meeting
VP

4 7

)

: s

(

held ··· Sharon
VPP-VP

2 7

)

: rs · Pr(with | meeting)

Here since PP and VP are contiguous (but
swapped) in the target-language, we can include the

257

NP

NP

PP

VP

VP

PP
target (English)

source (Chinese)
VPP-VP

NP

PP
VP

Chinese indices

E
nglish

boundary
w

ords 1 2 4 7
Powell

Powell
held

meeting
with

Sharon
VPP-VP

Figure 2: The alignment pattern (left) and alignment
matrix (right) of the synchronous production.

language model score by adding Pr(with | meeting),
and the resulting item again has two boundary
words. Later we add Pr(held | Powell) when the
resulting item is combined with

(

Powell ··· Powell
NP

1 2

)

to
form an S item. As illustrated in Figure 2, VPP-VP has
contiguous spans on both source and target sides, so
that we can generate a binary-branching SCFG:

(2) S→ NP(1) VPP-VP
(2), NP(1) VPP-VP

(2)

VPP-VP → VP(1) PP(2), PP(2) VP(1)

In this case m-gram integrated decoding can be
done in O(|w|3+4(m−1)) time which is much lower-
order polynomial and no longer depends on rule size
(Wu, 1996), allowing the search to be much faster
and more accurate facing pruning, as is evidenced in
the Hiero system of Chiang (2005) where he restricts
the hierarchical phrases to be a binary SCFG. The
benefit of binary grammars also lies in synchronous
parsing (alignment). Wu (1997) shows that parsing
a binary SCFG is in O(|w|6) while parsing SCFG is
NP-hard in general (Satta and Peserico, 2005).

The same reasoning applies to tree transducer
rules. Suppose we have the following tree-to-string
rules, following Galley et al. (2004):

(3)

S(x0:NP, VP(x2:VP, x1:PP))→ x0 x1 x2

NP(NNP(Powell))→ Baoweier
VP(VBD(held), NP(DT(a) NPS(meeting)))

→ juxing le huitan
PP(TO(with), NP(NNP(Sharon)))→ yu Shalong

where the reorderings of nonterminals are denoted
by variables xi.

Notice that the first rule has a multi-level left-
hand side subtree. This system can model non-
isomorphic transformations on English parse trees
to “fit” another language, for example, learning that

the (S (V O)) structure in English should be trans-
formed into a (V S O) structure in Arabic, by look-
ing at two-level tree fragments (Knight and Graehl,
2005). From a synchronous rewriting point of view,
this is more akin to synchronous tree substitution
grammar (STSG) (Eisner, 2003). This larger locality
is linguistically motivated and leads to a better pa-
rameter estimation. By imagining the left-hand-side
trees as special nonterminals, we can virtually cre-
ate an SCFG with the same generative capacity. The
technical details will be explained in Section 3.2.

In general, if we are given an arbitrary syn-
chronous rule with many nonterminals, what are the
good decompositions that lead to a binary grammar?
Figure 2 suggests that a binarization is good if ev-
ery virtual nonterminal has contiguous spans on both
sides. We formalize this idea in the next section.

2 Synchronous Binarization

A synchronous CFG (SCFG) is a context-free
rewriting system for generating string pairs. Each
rule (synchronous production) rewrites a nontermi-
nal in two dimensions subject to the constraint that
the sequence of nonterminal children on one side is
a permutation of the nonterminal sequence on the
other side. Each co-indexed child nonterminal pair
will be further rewritten as a unit.2 We define the
language L(G) produced by an SCFG G as the pairs
of terminal strings produced by rewriting exhaus-
tively from the start symbol.

As shown in Section 3.2, terminals do not play
an important role in binarization. So we now write
rules in the following notation:

X → X
(1)
1 ...X(n)

n , X
(π(1))
π(1) ...X

(π(n))
π(n)

where each Xi is a variable which ranges over non-
terminals in the grammar and π is the permutation
of the rule. We also define an SCFG rule as n-ary
if its permutation is of n and call an SCFG n-ary if
its longest rule is n-ary. Our goal is to produce an
equivalent binary SCFG for an input n-ary SCFG.

2In making one nonterminal play dual roles, we follow the
definitions in (Aho and Ullman, 1972; Chiang, 2005), origi-
nally known as Syntax Directed Translation Schema (SDTS).
An alternative definition by Satta and Peserico (2005) allows
co-indexed nonterminals taking different symbols in two di-
mensions. Formally speaking, we can construct an equivalent
SDTS by creating a cross-product of nonterminals from two
sides. See (Satta and Peserico, 2005, Sec. 4) for other details.

258

(2,3,5,4)

(2,3)

2 3

(5,4)

5 4

(2,3,5,4)

2 (3,5,4)

3 (5,4)

5 4
(a) (b) (c)

Figure 3: (a) and (b): two binarization patterns
for (2, 3, 5, 4). (c): alignment matrix for the non-
binarizable permuted sequence (2, 4, 1, 3)

However, not every SCFG can be binarized. In
fact, the binarizability of an n-ary rule is determined
by the structure of its permutation, which can some-
times be resistant to factorization (Aho and Ullman,
1972). So we now start to rigorously define the bi-
narizability of permutations.

2.1 Binarizable Permutations

A permuted sequence is a permutation of consec-
utive integers. For example, (3, 5, 4) is a permuted
sequence while (2, 5) is not. As special cases, single
numbers are permuted sequences as well.

A sequence a is said to be binarizable if it is a
permuted sequence and either

1. a is a singleton, i.e. a = (a), or

2. a can be split into two sub sequences, i.e.
a = (b; c), where b and c are both binarizable
permuted sequences. We call such a division
(b; c) a binarizable split of a.

This is a recursive definition. Each binarizable
permuted sequence has at least one hierarchical bi-
narization pattern. For instance, the permuted se-
quence (2, 3, 5, 4) is binarizable (with two possible
binarization patterns) while (2, 4, 1, 3) is not (see
Figure 3).

2.2 Binarizable SCFG

An SCFG is said to be binarizable if the permu-
tation of each synchronous production is binariz-
able. We denote the class of binarizable SCFGs as
bSCFG. This set represents an important subclass
of SCFG that is easy to handle (parsable in O(|w|6))
and covers many interesting longer-than-two rules.3

3Although we factor the SCFG rules individually and de-
fine bSCFG accordingly, there are some grammars (the dashed

SCFG bSCFG SCFG-2

O(|w|6) parsable

Figure 4: Subclasses of SCFG. The thick arrow de-
notes the direction of synchronous binarization. For
clarity reasons, binary SCFG is coded as SCFG-2.

Theorem 1. For each grammar G in bSCFG, there
exists a binary SCFG G′, such that L(G′) = L(G).

Proof. Once we decompose the permutation of n

in the original rule into binary permutations, all
that remains is to decorate the skeleton binary parse
with nonterminal symbols and attach terminals to
the skeleton appropriately. We explain the technical
details in the next section.

3 Binarization Algorithms

We have reduced the problem of binarizing an SCFG
rule into the problem of binarizing its permutation.
This problem can be cast as an instance of syn-
chronous ITG parsing (Wu, 1997). Here the parallel
string pair that we are parsing is the integer sequence
(1...n) and its permutation (π(1)...π(n)). The goal
of the ITG parsing is to find a synchronous tree that
agrees with the alignment indicated by the permu-
tation. In fact, as demonstrated previously, some
permutations may have more than one binarization
patterns among which we only need one. Wu (1997,
Sec. 7) introduces a non-ambiguous ITG that prefers
left-heavy binary trees so that for each permutation
there is a unique synchronous derivation (binariza-
tion pattern).

However, this problem has more efficient solu-
tions. Shapiro and Stephens (1991, p. 277) infor-
mally present an iterative procedure where in each
pass it scans the permuted sequence from left to right
and combines two adjacent sub sequences whenever
possible. This procedure produces a left-heavy bi-
narization tree consistent with the unambiguous ITG
and runs in O(n2) time since we need n passes in the
worst case. We modify this procedure and improve
circle in Figure 4), which can be binarized only by analyzing
interactions between rules. Below is a simple example:

S→ X(1) X(2) X(3) X(4), X(2) X(4) X(1) X(3)

X→ a , a

259

iteration stack input action
1 5 3 4 2

1 5 3 4 2 shift
1 1 5 3 4 2 shift
2 1 5 3 4 2 shift
3 1 5 3 4 2 shift

1 5 3-4 2 reduce [3, 4]
1 3-5 2 reduce 〈5, [3, 4]〉

4 1 3-5 2 shift
1 2-5 reduce 〈2, 〈5, [3, 4]〉〉
1-5 reduce [1, 〈2, 〈5, [3, 4]〉〉]

Figure 5: Example of Algorithm 1 on the input
(1, 5, 3, 4, 2). The rightmost column shows the
binarization-trees generated at each reduction step.

it into a linear-time shift-reduce algorithm that only
needs one pass through the sequence.

3.1 The linear-time skeleton algorithm

The (unique) binarization tree bi(a) for a binariz-
able permuted sequence a is recursively defined as
follows:

• if a = (a), then bi(a) = a;

• otherwise let a = (b; c) to be the rightmost
binarizable split of a. then

bi(a) =

{

[bi(b), bi(c)] b1 < c1

〈bi(b), bi(c)〉 b1 > c1.

For example, the binarization tree for (2, 3, 5, 4)
is [[2, 3], 〈5, 4〉], which corresponds to the binariza-
tion pattern in Figure 3(a). We use [] and 〈〉 for
straight and inverted combinations respectively, fol-
lowing the ITG notation (Wu, 1997). The rightmost
split ensures left-heavy binary trees.

The skeleton binarization algorithm is an instance
of the widely used left-to-right shift-reduce algo-
rithm. It maintains a stack for contiguous subse-
quences discovered so far, like 2-5, 1. In each it-
eration, it shifts the next number from the input and
repeatedly tries to reduce the top two elements on
the stack if they are consecutive. See Algorithm 1
for details and Figure 5 for an example.
Theorem 2. Algorithm 1 succeeds if and only if the
input permuted sequence a is binarizable, and in
case of success, the binarization pattern recovered
is the binarization tree of a.

Proof. →: it is obvious that if the algorithm suc-
ceeds then a is binarizable using the binarization
pattern recovered.
←: by a complete induction on n, the length of a.
Base case: n = 1, trivial.
Assume it holds for all n′ < n.
If a is binarizable, then let a = (b; c) be its right-

most binarizable split. By the induction hypothesis,
the algorithm succeeds on the partial input b, reduc-
ing it to the single element s[0] on the stack and re-
covering its binarization tree bi(b).

Let c = (c1; c2). If c1 is binarizable and trig-
gers our binarizer to make a straight combination
of (b; c1), based on the property of permutations, it
must be true that (c1; c2) is a valid straight concate-
nation. We claim that c2 must be binarizable in this
situation. So, (b, c1; c2) is a binarizable split to the
right of the rightmost binarizable split (b; c), which
is a contradiction. A similar contradiction will arise
if b and c1 can make an inverted concatenation.

Therefore, the algorithm will scan through the
whole c as if from the empty stack. By the in-
duction hypothesis again, it will reduce c into s[1]
on the stack and recover its binarization tree bi(c).
Since b and c are combinable, the algorithm re-
duces s[0] and s[1] in the last step, forming the bi-
narization tree for a, which is either [bi(b), bi(c)] or
〈bi(b), bi(c)〉.

The running time of Algorithm 1 is linear in n, the
length of the input sequence. This is because there
are exactly n shifts and at most n−1 reductions, and
each shift or reduction takes O(1) time.

3.2 Binarizing tree-to-string transducers

Without loss of generality, we have discussed how
to binarize synchronous productions involving only
nonterminals through binarizing the corresponding
skeleton permutations. We still need to tackle a few
technical problems in the actual system.

First, we are dealing with tree-to-string trans-
ducer rules. We view each left-hand side subtree
as a monolithic nonterminal symbol and factor each
transducer rule into two SCFG rules: one from
the root nonterminal to the subtree, and the other
from the subtree to the leaves. In this way we can
uniquely reconstruct the tree-to-string derivation us-
ing the two-step SCFG derivation. For example,

260

Algorithm 1 The Linear-time Binarization Algorithm
1: function BINARIZABLE(a)
2: top← 0 . stack top pointer
3: PUSH(a1, a1) . initial shift
4: for i← 2 to |a| do . for each remaining element
5: PUSH(ai, ai) . shift
6: while top > 1 and CONSECUTIVE(s[top], s[top− 1]) do . keep reducing if possible
7: (p, q)← COMBINE(s[top], s[top− 1])
8: top← top− 2
9: PUSH(p, q)

10: return (top = 1) . if reduced to a single element then the input is binarizable, otherwise not
11: function CONSECUTIVE((a, b), (c, d))
12: return (b = c− 1) or (d = a− 1) . either straight or inverted
13: function COMBINE((a, b), (c, d))
14: return (min(a, c), max(b, d))

consider the following tree-to-string rule:

ADJP

x0:RB JJ

responsible

PP

IN

for

NP-C

NPB

DT

the

x2:NN

x1:PP

→ x0 fuze x1 de x2

We create a specific nonterminal, say, T859, which
is a unique identifier for the left-hand side subtree
and generate the following two SCFG rules:

ADJP → T859
(1), T859

(1)

T859 →
RB(1) resp. for the NN(2) PP(3),
RB(1) fuze PP(3) de NN(2)

Second, besides synchronous nonterminals, ter-
minals in the two languages can also be present, as
in the above example. It turns out we can attach the
terminals to the skeleton parse for the synchronous
nonterminal strings quite freely as long as we can
uniquely reconstruct the original rule from its binary
parse tree. In order to do so we need to keep track of
sub-alignments including both aligned nonterminals
and neighboring terminals.

When binarizing the second rule above, we first
run the skeleton algorithm to binarize the under-
lying permutation (1, 3, 2) to its binarization tree
[1, 〈3, 2〉]. Then we do a post-order traversal to the
skeleton tree, combining Chinese terminals (one at

a time) at the leaf nodes and merging English termi-
nals greedily at internal nodes:

[1, 〈3, 2〉]

1 〈3, 2〉

3 2

⇒

T859 [1,〈3,2〉]

V[RB, fuze]1

RB fuze

V〈V[PP, de], resp. for the NN〉〈3,2〉

V[PP, de]3

PP de

NN2

A pre-order traversal of the decorated binarization
tree gives us the following binary SCFG rules:

T859 → V1
(1) V2

(2), V1
(1) V2

(2)

V1 → RB(1), RB(1) fuze

V2 → resp. for the NN(1) V(2)
3 , V(2)

3 NN(1)

V3 → PP(1), PP(1) de

where the virtual nonterminals are:
V1: V[RB, fuze]
V2: V〈V[PP, de], resp. for the NN〉
V3: V[PP, de]

Analogous to the “dotted rules” in Earley pars-
ing for monolingual CFGs, the names we create
for the virtual nonterminals reflect the underlying
sub-alignments, ensuring intermediate states can be
shared across different tree-to-string rules without
causing ambiguity.

The whole binarization algorithm still runs in time
linear in the number of symbols in the rule (includ-
ing both terminals and nonterminals).

4 Experiments

In this section, we answer two empirical questions.

261

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 0 5 10 15 20 25 30 35 40
 0
 20
 40
 60
 80
 100

of

 r
ul

es

pe
rc

en
ta

ge
 (

%
)

length

Figure 6: The solid-line curve represents the distribution of all rules against permutation lengths. The
dashed-line stairs indicate the percentage of non-binarizable rules in our initial rule set while the dotted-line
denotes that percentage among all permutations.

4.1 How many rules are binarizable?

It has been shown by Shapiro and Stephens (1991)
and Wu (1997, Sec. 4) that the percentage of binariz-
able cases over all permutations of length n quickly
approaches 0 as n grows (see Figure 6). However,
for machine translation, it is more meaningful to
compute the ratio of binarizable rules extracted from
real text. Our rule set is obtained by first doing word
alignment using GIZA++ on a Chinese-English par-
allel corpus containing 50 million words in English,
then parsing the English sentences using a variant
of Collins parser, and finally extracting rules using
the graph-theoretic algorithm of Galley et al. (2004).
We did a “spectrum analysis” on the resulting rule
set with 50,879,242 rules. Figure 6 shows how the
rules are distributed against their lengths (number
of nonterminals). We can see that the percentage
of non-binarizable rules in each bucket of the same
length does not exceed 25%. Overall, 99.7% of
the rules are binarizable. Even for the 0.3% non-
binarizable rules, human evaluations show that the
majority of them are due to alignment errors. It is
also interesting to know that 86.8% of the rules have
monotonic permutations, i.e. either taking identical
or totally inverted order.

4.2 Does synchronous binarizer help decoding?

We did experiments on our CKY-based decoder with
two binarization methods. It is the responsibility of
the binarizer to instruct the decoder how to compute
the language model scores from children nontermi-
nals in each rule. The baseline method is mono-
lingual left-to-right binarization. As shown in Sec-
tion 1, decoding complexity with this method is ex-
ponential in the size of the longest rule and since we
postpone all the language model scorings, pruning
in this case is also biased.

system bleu
monolingual binarization 36.25
synchronous binarization 38.44
alignment-template system 37.00

Table 1: Syntax-based systems vs. ATS

To move on to synchronous binarization, we first
did an experiment using the above baseline system
without the 0.3% non-binarizable rules and did not
observe any difference in BLEU scores. So we
safely move a step further, focusing on the binariz-
able rules only.

The decoder now works on the binary translation
rules supplied by an external synchronous binarizer.
As shown in Section 1, this results in a simplified de-
coder with a polynomial time complexity, allowing
less aggressive and more effective pruning based on
both translation model and language model scores.

We compare the two binarization schemes in
terms of translation quality with various pruning
thresholds. The rule set is that of the previous sec-
tion. The test set has 116 Chinese sentences of no
longer than 15 words. Both systems use trigram as
the integrated language model. Figure 7 demon-
strates that decoding accuracy is significantly im-
proved after synchronous binarization. The number
of edges proposed during decoding is used as a mea-
sure of the size of search space, or time efficiency.
Our system is consistently faster and more accurate
than the baseline system.

We also compare the top result of our syn-
chronous binarization system with the state-of-the-
art alignment-template approach (ATS) (Och and
Ney, 2004). The results are shown in Table 1. Our
system has a promising improvement over the ATS

262

 33.5

 34.5

 35.5

 36.5

 37.5

 38.5

 3e+09 4e+09 5e+09 6e+09 7e+09

bl
eu

 s
co

re
s

of edges proposed during decoding

synchronous binarization
monolingual binarization

Figure 7: Comparing the two binarization methods
in terms of translation quality against search effort.

system which is trained on a larger data-set but tuned
independently.

5 Conclusion

Modeling reorderings between languages has been a
major challenge for machine translation. This work
shows that the majority of syntactic reorderings, at
least between languages like English and Chinese,
can be efficiently decomposed into hierarchical bi-
nary reorderings. From a modeling perspective, on
the other hand, it is beneficial to start with a richer
representation that has more transformational power
than ITG or binary SCFG. Our work shows how to
convert it back to a computationally friendly form
without harming much of its expressiveness. As a
result, decoding with n-gram models can be fast and
accurate, making it possible for our syntax-based
system to overtake a comparable phrase-based sys-
tem in BLEU score. We believe that extensions of
our technique to more powerful models such as syn-
chronous tree-adjoining grammar (Shieber and Sch-
abes, 1990) is an interesting area for further work.

Acknowledgments Much of this work was done
when H. Zhang and L. Huang were visiting
USC/ISI. The authors wish to thank Wei Wang,
Jonathan Graehl and Steven DeNeefe for help with
the experiments. We are also grateful to Daniel
Marcu, Giorgio Satta, and Aravind Joshi for discus-
sions. This work was partially supported by NSF
ITR IIS-09325646 and NSF ITR IIS-0428020.

References

Albert V. Aho and Jeffery D. Ullman. 1972. The The-
ory of Parsing, Translation, and Compiling, volume 1.
Prentice-Hall, Englewood Cliffs, NJ.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL-05, pages 263–270, Ann Arbor, Michigan.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In Proceedings of ACL-
03, companion volume, Sapporo, Japan.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Pro-
ceedings of HLT/NAACL-04.

Liang Huang, Hao Zhang, and Daniel Gildea. 2005. Ma-
chine translation as lexicalized parsing with hooks. In
Proceedings of IWPT-05, Vancouver, BC.

Kevin Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In Conference on Intelligent Text Process-
ing and Computational Linguistics (CICLing). LNCS.

I. Dan Melamed. 2003. Multitext grammars and syn-
chronous parsers. In Proceedings of NAACL-03, Ed-
monton.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30(4).

Giorgio Satta and Enoch Peserico. 2005. Some computa-
tional complexity results for synchronous context-free
grammars. In Proceedings of HLT/EMNLP-05, pages
803–810, Vancouver, Canada, October.

L. Shapiro and A. B. Stephens. 1991. Bootstrap percola-
tion, the Schröder numbers, and the n-kings problem.
SIAM Journal on Discrete Mathematics, 4(2):275–
280.

Stuart Shieber and Yves Schabes. 1990. Synchronous
tree-adjoining grammars. In COLING-90, volume III,
pages 253–258.

Dekai Wu. 1996. A polynomial-time algorithm for sta-
tistical machine translation. In 34th Annual Meeting
of the Association for Computational Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

263

