
Learning a Stopping Criterion for Active Learning for Word Sense 
Disambiguation and Text Classification 

Jingbo Zhu   Huizhen Wang 
Natural Language Processing Lab  

Northeastern University 
Shenyang, Liaoning, P.R.China, 110004 
Zhujingbo@mail.neu.edu.cn
wanghuizhen@mail.neu.edu.cn 

Eduard Hovy 
University of Southern California 

Information Sciences Institute 
4676 Admiralty Way 

Marina del Rey, CA 90292-6695 
hovy@isi.edu

 

Abstract 

In this paper, we address the problem of 
knowing when to stop the process of active 
learning. We propose a new statistical 
learning approach, called minimum 
expected error strategy, to defining a 
stopping criterion through estimation of the 
classifier’s expected error on future 
unlabeled examples in the active learning 
process. In experiments on active learning 
for word sense disambiguation and text 
classification tasks, experimental results 
show that the new proposed stopping 
criterion can reduce approximately 50% 
human labeling costs in word sense 
disambiguation with degradation of 0.5% 
average accuracy, and approximately 90% 
costs in text classification with degradation 
of 2% average accuracy. 

1 Introduction 

Supervised learning models set their parameters 
using given labeled training data, and generally 
outperform unsupervised learning methods when 
trained on equal amount of training data. However, 
creating a large labeled training corpus is very 
expensive and time-consuming in some real-world 
cases such as word sense disambiguation (WSD).  

Active learning is a promising way to minimize 
the amount of human labeling effort by building an 
system that automatically selects the most informa-
tive unlabeled example for human annotation at 
each annotation cycle. In recent years active learn-
ing  has attracted a lot of research interest, and has 
been studied in many natural language processing 
(NLP) tasks, such as text classification (TC) 

(Lewis and Gale, 1994; McCallum and Nigam, 
1998), chunking (Ngai and Yarowsky, 2000), 
named entity recognition (NER) (Shen et al., 2004; 
Tomanek et al., 2007), part-of-speech tagging 
(Engelson and Dagan, 1999), information 
extraction (Thompson et  al., 1999), statistical 
parsing (Steedman et al., 2003), and word sense 
disambiguation (Zhu and Hovy, 2007).  

Previous studies reported that active learning 
can help in reducing human labeling effort. With 
selective sampling techniques such as uncertainty 
sampling (Lewis and Gale, 1994) and committee-
based sampling (McCallum and Nigam, 1998), the 
size of the training data can be significantly re-
duced for text classification (Lewis and Gale, 
1994; McCallum and Nigam, 1998), word sense 
disambiguation (Chen, et al. 2006; Zhu and Hovy, 
2007), and named entity recognition (Shen et al., 
2004; Tomanek et al., 2007) tasks.  

Interestingly, deciding when to stop active 
learning is an issue seldom mentioned issue in 
these studies. However, it is an important practical 
topic, since it obviously makes no sense to 
continue the active learning procedure until the 
whole corpus has been labeled. How to define an 
adequate stopping criterion remains an unsolved 
problem in active learning. In principle, this is a 
problem of estimation of classifier effectiveness 
(Lewis and Gale, 1994). However, in real-world 
applications, it is difficult to know when the 
classifier reaches its maximum effectiveness 
before all unlabeled examples have been 
annotated. And when the unlabeled data set 
becomes very large, full annotation is almost 
impossible for human annotator.  

In this paper, we address the issue of a stopping 
criterion for active learning, and propose a new 
statistical learning approach, called minimum ex-
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pected error strategy, that defines a stopping crite-
rion through estimation of the classifier’s expected 
error on future unlabeled examples. The intuition is 
that the classifier reaches maximum effectiveness 
when it results in the lowest expected error on 
remaining unlabeled examples. This proposed 
method is easy to implement, involves small 
additional computation costs, and can be applied to 
several different learners, such as Naive Bayes 
(NB), Maximum Entropy (ME), and Support 
Vector Machines (SVMs) models. Comparing with 
the confidence-based stopping criteria proposed by 
Zhu and Hovy (2007), experimental results show 
that the new proposed stopping criterion achieves 
better performance in active learning for both the 
WSD and TC tasks. 

2 Active Learning Process and Problem 
of General Stopping Criterion 

2.1 Active Learning Process 

Active learning is a two-step semi-supervised 
learning process in which a small number of la-
beled samples and a large number of unlabeled 
examples are first collected in the initialization 
stage, and a close-loop stage of query and retrain-
ing is adopted. The purpose of active learning is to 
minimize the amount of human labeling effort by 
having the system in each cycle automatically se-
lect for human annotation the most informative 
unannotated case.   
Procedure: Active Learning Process 
Input: initial small training set L, and pool of 
unlabeled data set U 
Use L to train the initial classifier C (i.e. a classi-
fier for uncertainty sampling or a set of classifiers 
for committee-based sampling) 
Repeat 
• Use the current classifier C  to label all 

unlabeled examples in U 
• Based on active learning rules R such as un-

certainty sampling or committee-based sam-
pling, present m top-ranked unlabeled ex-
amples to oracle H for labeling 

• Augment L with the m new examples, and 
remove them from U 

• Use L to retrain the current classifier C 
Until the predefined stopping criterion SC is met. 
Figure 1. Active learning process 

In this work, we are interested in selective sam-
pling for pool-based active learning, and focus on 
uncertainty sampling (Lewis and Gale, 1994). The 
key point is how to measure the uncertainty of an 
unlabeled example, in order to select a new exam-
ple with maximum uncertainty to augment the 
training data. The maximum uncertainty implies 
that the current classifier has the least confidence 
in its classification of this unlabeled example x. 
The well-known entropy is a good uncertainty 
measurement widely used in active learning: 

( ) ( | ) log ( | )
y Y

UM x P y x P y x
∈

= −∑         (1) 

where P(y|x) is the a posteriori probability. We 
denote the output class y∈Y={y1, y2, …, yk}. UM is 
the uncertainty measurement function based on the 
entropy estimation of the classifier’s posterior 
distribution. 

2.2 General Stopping Criteria 

As shown in Fig. 1, the active learning process 
repeatedly provides the most informative unlabeled 
examples to an oracle for annotation, and update 
the training set, until the predefined stopping 
criterion SC is met. In practice, it is not clear how 
much annotation is sufficient for inducing a 
classifier with maximum effectiveness (Lewis and 
Gale, 1994). This procedure can be implemented 
by defining an appropriate stopping criterion for 
active learning.  

In active learning process, a general stopping 
criterion SC can be defined as: 

1 (
0 ,AL

effectiveness C
SC

otherwise
) θ≥⎧

= ⎨
⎩

        (2) 

where θ is a user predefined constant and the func-
tion effectiveness(C) evaluates the effectiveness of 
the current classifier. The learning process ends 
only if the stopping criterion function SCAL is equal 
to 1. The value of constant θ represents a tradeoff 
between the cost of annotation and the effective-
ness of the resulting classifier. A larger θ would 
cause more unlabeled examples to be selected for 
human annotation, and the resulting classifier 
would be more robust. A smaller θ means the re-
sulting classifier would be less robust, and less 
unlabeled examples would be selected to annotate.  

In previous work (Shen et al., 2004; Chen et al., 
2006; Li and Sethi, 2006; Tomanek et al., 2007), 
there are several common ways to define the func-
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tion effectiveness(C). First, previous work always 
used a simple stopping condition, namely, when 
the training set reaches desirable size. However, it 
is almost impossible to predefine an appropriate 
size of desirable training data guaranteed to induce 
the most effective classifier. Secondly, the learning 
loop can end if no uncertain unlabeled examples 
can be found in the pool. That is, all informative 
examples have been selected for annotation. 
However, this situation seldom occurs in real-
world applications. Thirdly, the active learning 
process can stop if the targeted performance level 
is achieved. However, it is difficult to predefine an 
appropriate and achievable performance, since it 
should depend on the problem at hand and the 
users’ requirements.  

2.3 Problem of Performance Estimation 

An appealing solution has the active learning 
process end when repeated cycles show no 
significant performance improvement on the test 
set. However, there are two open problems. The 
first question is how to measure the performance of 
a classifier in active learning. The second one is 
how to know when the resulting classifier reaches 
the highest or adequate performance. It seems 
feasible that a separate validation set can solve 
both problems. That is, the active learning process 
can end if there is no significant performance 
improvement on the validation set. But how many 
samples are required for the pregiven separate 
validation set is an open question. Too few 
samples may not be adequate for a reasonable 
estimation and may result in an incorrect result. 
Too many samples would cause additional high 
cost because the separate validation set is generally 
constructed manually in advance.  

3 Statistical Learning Approach 

3.1 Confidence-based Strategy 

To avoid the problem of performance estimation 
mentioned above, Zhu and Hovy (2007) proposed 
a confidence-based framework to predict the upper 
bound and the lower bound for a stopping criterion 
in active learning. The motivation is to assume that 
the current training data is sufficient to train the 
classifier with maximum effectiveness if the cur-
rent classifier already has acceptably strong confi-

dence on its classification results for all remained 
unlabeled data.  

The first method to estimate the confidence of 
the classifier is based on uncertainty measurement, 
considering whether the entropy of each selected 
unlabeled example is less than a small predefined 
threshold. Here we call it Entropy-MCS. The 
stopping criterion SC Entropy-MCS can be defined as: 

 
1 , ( )
0 ,

E
Entropy MCS

x U UM x
SC

otherwise
θ

−

∀ ∈ ≤⎧
= ⎨
⎩

    (3) 

where θE is a user predefined entropy threshold and 
the function UM(x) evaluates the uncertainty of 
each unlabeled example x.  

The second method to estimate the confidence 
of the classifier is based on feedback from the ora-
cle when the active learner asks for true labels for 
selected unlabeled examples, by considering 
whether the current trained classifier could 
correctly predict the labels or the accuracy 
performance of predictions on selected unlabeled 
examples is already larger than a predefined 
accuracy threshold. Here we call it OracleAcc-
MCS. The stopping criterion SCOracleAcc-MCS can be 
defined as: 

1 (
0 ,

) A
OracleAcc MCS

OracleAcc C
SC

otherwise
θ

−

≥⎧
= ⎨
⎩

    (4) 

where θA is a user predefined accuracy threshold 
and function OracleAcc(C) evaluates accuracy per-
formance of the classifier on these selected unla-
beled examples through feedback of the Oracle.  

3.2 Minimum Expected Error Strategy 

In fact, these above two confidence-based methods 
do not directly estimate classifier performance that 
closely reflects the classifier effectiveness, because 
they only consider entropy of each unlabeled 
example and accuracy on selected informative 
examples at each iteration step. In this section we 
therefore propose a new statistical learning ap-
proach to defining a stopping criterion through es-
timation of the classifier’s expected error on all 
future unlabeled examples, which we call minimum 
expected error strategy (MES). The motivation 
behind MES is that the classifier C (a classifier for 
uncertainty sampling or set of classifiers for com-
mittee-based sampling) with maximum effective-
ness is the one that results in the lowest expected 
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error on whole test set in the learning process. The 
stopping criterion SC MES is defined as: 

1 ( )
0 ,

err
MES

Error C
SC

otherwise
θ≤⎧

= ⎨
⎩

          (5) 

where θerr is a user predefined expected error 
threshold and the function Error(C) evaluates the 
expected error of the classifier C that closely re-
flects the classifier effectiveness. So the key point 
of defining MES-based stopping criterion SC MES is 
how to calculate the function Error(C) that denotes 
the expected error of the classifier C.  

Suppose given a training set L and an input 
sample x, we can write the expected error of the 
classifier C as follows: 

( ) ( ( ) | ) ( )Error C R C x x P x dx= ∫           (6) 

where P(x) represents the known marginal distribu-
tion of x. C(x) represents the classifier’s decision 
that is one of k classes: y∈Y={y1, y2, …, yk}. R(yi|x) 
denotes a conditional loss for classifying the input 
sample x into a class yi that can be defined as 

1
( | ) [ , ] ( | )

k

i j
j

R y x i j P y xλ
=

=∑             (7) 

where P(yj|x) is the a posteriori probability pro-
duced by the classifier C. λ[i,j] represents a zero-
one loss function for every class pair {i,j} that as-
signs no loss to a correct classification, and assigns 
a unit loss to any error. 

In this paper, we focus on pool-based active 
learning in which a large unlabeled data pool U is 
available, as described Fig. 1. In active learning 
process, our interest is to estimate the classifier’s 
expected error on future unlabeled examples in the 
pool U. That is, we can stop the active learning 
process when the active learner results in the low-
est expected error over the unlabeled examples in 
U. The pool U can provide an estimate of P(x). So 
for minimum error rate classification (Duda and 
Hart. 1973) on unlabeled examples, the expected 
error of the classifier C can be rewritten as 

1( ) (1 max ( | ))
y Yx U

Error C P y x
U ∈∈

= −∑        (8) 

Assuming N unlabeled examples in the pool U, 
the total time is O(N) for automatically determin-
ing whether the proposed stopping criterion SCMES 
is satisfied in the active learning.  

If the pool U is very large (e.g. more than 
100000 examples), it would still cause high com-

putation cost at each iteration of active learning. A 
good approximation is to estimate the expected 
error of the classifier using a subset of the pool, not 
using all unlabeled examples in U. In practice, a 
good estimation of expected error can be formed 
with few thousand examples. 

4 Evaluation 

In this section, we evaluate the effectiveness of 
three stopping criteria for active learning for word 
sense disambiguation and text classification as 
follows: 
• Entropy-MCS ─ stopping active learning 

process when the stopping criterion function 
SCEntropy-MCS defined in (3) is equal to 1, where 
θE=0.01, 0.001,  0.0001.  

• OracleAcc-MCS ─ stopping active learning 
process when the stopping criterion function 
SCOracleAcc-MCS defined in (4) is equal to 1, 
where θA=0.9, 1.0.  

• MES ─ stopping active learning process when 
the stopping criterion function SCMES defined 
in (5) is equal to 1, where θerr=0.01, 0.001, 
0.0001.  

The purpose of defining stopping criterion of 
active learning is to study how much annotation is 
sufficient for a specific task. To comparatively 
analyze the effectiveness of each stopping criterion, 
a baseline stopping criterion is predefined as when 
all unlabeled examples in the pool U are learned. 
Comparing with the baseline stopping criterion, a 
better stopping criterion not only achieves almost 
the same performance, but also has needed to learn 
fewer unlabeled examples when the active learning 
process is ended. In other words, for a stopping 
criterion of active learning, the fewer unlabeled 
examples that have been leaned when it is met, the 
bigger reduction in human labeling cost is made. 

In the following active learning experiments, a 
10 by 10-fold cross-validation was performed. All 
results reported are the average of 10 trials in each 
active learning process.  

4.1 Word Sense Disambiguation 

The first comparison experiment is active learning 
for word sense disambiguation. We utilize a 
maximum entropy (ME) model (Berger et al., 
1996) to design the basic classifier used in active 
learning for WSD. The advantage of the ME model 
is the ability to freely incorporate features from 
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diverse sources into a single, well-grounded statis-
tical model. A publicly available ME toolkit 
(Zhang et. al., 2004) was used in our experiments. 
In order to extract the linguistic features necessary 
for the ME model in WSD tasks, all sentences con-
taining the target word are automatically part-of-
speech (POS) tagged using the Brill POS tagger 
(Brill, 1992). Three knowledge sources are used to 
capture contextual information: unordered single 
words in topical context, POS of neighboring 
words with position information, and local colloca-
tions. These are same as the knowledge sources 
used in (Lee and Ng, 2002) for supervised auto-
mated WSD tasks.  

The data used for comparison experiments was 
developed as part of the OntoNotes project (Hovy 
et al., 2006), which uses the WSJ part of the Penn 
Treebank (Marcus et al., 1993). The senses of 
noun words occurring in OntoNotes are linked to 
the Omega ontology (philpot et al., 2005). In 
OntoNotes, at least two human annotators 
manually annotate the coarse-grained senses of 
selected nouns and verbs in their natural sentence 
context. In this experiment, we used several tens of 
thousands of annotated OntoNotes examples, 
covering in total 421 nouns with an inter-annotator 
agreement rate of at least 90%. We find that 302 
out of 421 nouns occurring in OntoNotes are 
ambiguous, and thus are used in the following 
WSD experiments. For these 302 ambiguous 
nouns, there are 3.2 senses per noun, and 172 
instances per noun.  

The active learning algorithms start with a 
randomly chosen initial training set of 10 labeled 
samples for each noun, and make 10 queries after 
each learning iteration. Table 1 shows the 
effectiveness of each stopping criterion tested on 
active learning for WSD on these ambiguous 
nouns’ WSD tasks. We analyze average accuracy 
performance of the classifier and average 
percentage of unlabeled examples learned when 
each stopping criterion is satisfied in active 
learning for WSD tasks. All accuracies and 
percentages reported in Table 1 are macro-
averages over these 302 ambiguous nouns. 

 
 
 
 
 
 

Stopping Criterion Average 
accuracy 

Average 
percentage 

all unlabeled examples learned 87.3% 100% 
Entropy-MCS method (0.0001) 86.8% 81.8% 
Entropy-MCS method (0.001) 86.8% 75.8% 
Entropy-MCS method (0.01) 86.8% 68.6% 
OracleAcc-MCS method (0.9) 86.8% 56.5% 
OracleAcc-MCS method (1.0) 86.8% 62.4% 
MES method (0.0001) 86.8% 67.1% 
MES method (0.001) 86.8% 58.8% 
MES method (0.01) 86.8% 52.7% 
Table 1. Effectiveness of each stopping criterion of 
active learning for WSD on OnteNotes. 

 
Table 1 shows that these stopping criteria 

achieve the same accuracy of 86.8% which is 
within 0.5% of the accuracy of the baseline method 
(all unlabeled examples are labeled). It is obvious 
that these stopping criteria can help reduce the hu-
man labeling costs, comparing with the baseline 
method. The best criterion is MES method 
(θerr=0.01), following by OracleAcc-MCS method 
(θA=0.9). MES method (θerr=0.01) and OracleAcc-
MCS method (θA=0.9) can make 47.3% and 44.5% 
reductions in labeling costs, respectively. Entropy-
MCS method is apparently worse than MES and 
OracleAcc-MCS methods. The best of the 
Entropy-MCS method is the one with θE=0.01 
which makes approximately 1/3 reduction in 
labeling costs. We also can see from Table 1 that 
for Entropy-MCS and MES methods, reduction 
rate becomes smaller as the θ becomes smaller. 

4.2 Text Classification 

The second data set is for active learning for text 
classification using the WebKB corpus 1  
(McCallum et al., 1998). The WebKB dataset was 
formed by web pages gathered from various uni-
versity computer science departments. In the fol-
lowing active learning experiment, we use four 
most populous categories: student, faculty, course 
and project, altogether containing 4,199 web pages. 
Following previous studies (McCallum et al., 
1998), we only remove those words that occur 
merely once without using stemming or stop-list. 
The resulting vocabulary has 23,803 words. In the 
design of the text classifier, the maximum entropy 
model is also utilized, and no feature selection 
technique is used. 

                                                 
1 See http://www.cs.cmu.edu/~textlearning 
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The algorithm is initially given 20 labeled ex-
amples, 5 from each class. Table 2 shows the 
effectiveness of each stopping criterion of active 
learning for text classification on WebKB corpus. 
All results reported are the average of 10 trials. 
Stopping Criterion Average 

accuracy 
Average 

percentage 
all unlabeled examples learned 93.5% 100% 
Entropy-MCS method (0.0001) 92.5% 23.8% 
Entropy-MCS method (0.001) 92.4% 22.3% 
Entropy-MCS method (0.01) 92.5% 21.8% 
OracleAcc-MCS method (0.9) 91.5% 13.1% 
OracleAcc-MCS method (1.0) 92.5% 24.5% 
MES method (0.0001) 92.1% 17.9% 
MES method (0.001) 92.0% 15.6% 
MES method (0.01) 91.5% 10.9% 
Table 2. Effectiveness of each stopping criterion of 
active learning for TC on WebKB corpus. 
 

From results shown in Table 2, we can see that 
MES method (θerr=0.01) already achieves 91.5% 
accuracy in 10.9% unlabeled examples learned. 
The accuracy of all unlabeled examples learned is 
93.5%. This situation means the approximately 
90% remaining unlabeled examples only make 
only 2% performance improvement. Like the 
results of WSD shown in Table 1, for Entropy-
MCS and MES methods used in active learning for 
text classification tasks, the corresponding 
reduction rate becomes smaller as the value of θ 
becomes smaller. MES method (θerr=0.01) can 
make approximately 90% reduction in human la-
beling costs and results in 2% accuracy perform-
ance degradation. The Entropy-MCS method 
(θE=0.01) can make approximate 80% reduction in 
costs and results in 1% accuracy performance 
degradation. Unlike the results of WSD shown in 
Table 1, the OracleAcc-MCS method (θA=1.0) 
makes the smallest reduction rate of 75.5%. 
Actually in real-world applications, the selection of 
a stopping criterion is a tradeoff issue between 
labeling cost and effectiveness of the classifier.  

5 Discussion 

It is interesting to investigate the impact of per-
formance change on defining a stopping criterion, 
so we show an example of active learning for 
WSD task in Fig. 2.  
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Figure 2. An example of active learning for WSD 
on noun “rate” in OntoNotes. 

 
Fig. 2 shows that the accuracy performance gen-

erally increases, but apparently degrades at the it-
erations “20”, “80”, “170”, “190”, and “200”, and 
does not change anymore during the iterations 
[“130”-“150”] or [“200”-“220”] in the active learn-
ing process. Actually the first time of the highest 
performance of 95% achieved is at “450”, which is 
not shown in Fig. 2. In other words, although the 
accuracy performance curve shows an increasing 
trend, it is not monotonously increasing. From Fig. 
2 we can see that it is not easy to automatically 
determine the point of no significant performance 
improvement on the validation set, because points 
such as “20” or “80” would mislead final judgment. 
However, we do believe that the change of per-
formance is a good signal to stop active learning 
process. So it is worth studying further how to 
combine the factor of performance change with our 
proposed stopping criteria of active learning.  

The OracleAcc-MCS method would not work if 
only one or too few informative examples are 
queried at the each iteration step in the active 
learning. There is an open issue how many selected 
unlabeled examples at each iteration are adequate 
for the batch-based sample selection.  

For these stopping crieria, there is no general 
method to automatically determine the best 
threshold for any given task. It may therefore be 
necessary to use a dynamic threshold change tech-
nique in which the predefined threshold can be 
automatically modified if the performance is still 
significantly improving when the stopping crite-
rion is met during active learning process.  
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6 Conclusion and Future Work 

In this paper, we address the stopping criterion is-
sue of active learning, and analyze the problems 
faced by some common ways to stop the active 
learning process. In essence, defining a stopping 
criterion of active learning is a problem of estimat-
ing classifier effectiveness. The purpose of defin-
ing stopping criterion of active learning is to know 
how much annotation is sufficient for a special task. 
To determine this, this paper proposes a new statis-
tical learning approach, called minimum expected 
error strategy, for defining a stopping criterion 
through estimation of the classifier’s expected er-
ror on future unlabeled examples during the active 
learning process. Experimental results on word 
sense disambiguation and text classification tasks 
show that new proposed minimum expected error 
strategy outperforms the confidence-based strategy, 
and achieves promising results. The interesting 
future work is to study how to combine the best of 
both strategies, and how to consider performance 
change to define an appropriate stopping criterion 
for active learning.  
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