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Abstract

Our participation in the IWSLT 2005
speech translation task is our first effort
to work on limited domain speech data.
We adapted our statistical machine trans-
lation system that performed successfully
in previous DARPA competitions on open
domain text translations. We participated
in the supplied corpora transcription track.
We achieved the highest BLEU score in 2
out of 5 language pairs and had competi-
tive results for the other language pairs.

1 Introduction

The statistical machine translation group at the Uni-
versity of Edinburgh has been focused on open do-
main text translation, so we welcomed the challenge
to work on the IWSLT 2005 limited domain speech
translation task. We participated in the transcription
translation tasks for all five language pairs, using
only the supplied corpora.

Our MT system was originally developed for
translation of European parliament texts from Ger-
man to English (Koehn et al., 2003). We extended
the system while working on the DARPA challenges
to translate Chinese and Arabic news texts into En-
glish (Koehn, 2004a; Koehn et al., 2005). Now,
we were faced with the challenge of speech data in
mostly Asian languages.

The translation of transcribed speech differs in
many ways from our traditional translation scenario:
Much less training data is available, the domain is

more limited, and the text style is very different —
short questions and statements. In some respect, the
task is easier, since smaller training corpora result in
faster training times for the system. But it also meant
that we had to re-examine various components of
our system.

In this paper we present an overview of our cur-
rent out-of-the-box system in the next section. It in-
cludes a more detailed treatment of models added
over the last year, especially a novel lexicalised re-
ordering model.

Experimental work went into the adaptation of
our system to the IWSLT’05 translation tasks. This
is described in Section 3. We used a Linux cluster of
about 50 machines, which allowed extensive optimi-
sation of key components of our system, especially
word alignment, lexicalised reordering, and reorder-
ing limits.

Finally, we report on our results in the competi-
tion and some post-evaluation analysis.

2 System Description

The system employs a phrase-based statistical ma-
chine translation model (Koehn et al., 2003) that
uses the Pharaoh decoder (Koehn, 2004b). In this
section, we will give an overview of the system.

2.1 Phrase-Based Statistical MT

In phrase-based SMT models, the input (foreign)
sentence is segmented into so-called phrases, which
may be any sequences of adjacent words that do not
have to be linguistically motivated. Each phrase is
mapped into the target language (English). Phrases
may be reordered. See Figure 1 for an illustration.



Figure 1: Phrase-based SMT: Input is segmented
into phrases, each is mapped into output phrase and
may be reordered

2.2 Log-linear Model

Mathematically, we employ a log linear approach in
our translation system. We search for the most prob-
able English sentencee given some foreign sentence
f by maximising the sum over a set of feature func-
tionshm(e, f):

ê = arg max
e

p(e|f) (1)

= arg max
e

M∑
m=1

λmhm(e, f) (2)

The log linear model provides a natural framework
to integrate many components and to weigh them ac-
cording to their performance. We are using the fol-
lowing feature functions:

• language model

• phrase translation probability (both directions)

• lexical translation probability (both directions)

• word penalty

• phrase penalty

• linear reordering penalty

• lexicalised reordering

The language model is a smoothed trigram model
trained on the target side training data.

The most important component of the system
is the phrase translation table. We are extracting
phrase pairs from the training corpus by first align-
ing the words in the corpus, extracting phrase pairs
that are consistent with the word alignment, and then
assigning probabilities (or scores) to the obtained
phrase translations.

2.3 Word Alignment

Word alignments are obtained by first using the
GIZA++ toolkit in both translation directions and
then symmetrising the two alignments. Since the

Figure 2: Obtaining a high precision, low recall
word alignment by intersecting two GIZA++ align-
ments

IBM Models implemented in GIZA++ are not able
to map one target (English) word to multiple source
(foreign) words, the method of symmetrising —
called refined method(Och and Ney, 2003) — ef-
fectively overcomes this deficiency.

Figure 2 shows the first step in the symmetrisation
process: The intersection of the two GIZA++ align-
ments is taken. Only word alignment points that oc-
cur in both alignments are preserved. This is the
intersectionalignment.

In a second step, additional alignment points are
added. Only alignment points that are in either of the
two GIZA++ alignments (or, in the union of these
alignments) are considered. In the growing step, po-
tential alignment points that connect currently un-
aligned words and that neighbour established align-
ment points are added. Neighbouring can be either
defined as directly to the left, right, top, or bottom
(resulting in thegrow alignment), or also include di-
agonally neighbourhood (resulting in thegrow-diag
alignment).

In a final step, alignment points that do not neigh-
bour established alignment points are added. In
a method calledgrow(-diag)-final this is done for
alignment points between words, of which at least
one is currently unaligned. In thegrow(-diag)-final-
and method, only alignment points between two un-
aligned words are added.

See Figure 3 for an illustration. The grey points in
the matrix are potential alignment points that occur
in the union, but not in the intersection of the two



Figure 3: Adding additional alignment points. Po-
tential points are points in the union of the two
GIZA++ alignments (grey). In the growing step,
neighbouring points are added, when they connect
at least one unaligned word. In a final step outlying
points may be added (see Section 2.3).

GROW-DIAG-FINAL(e2f,f2e):
neighbouring = ((-1,0),(0,-1),(1,0),(0,1),

(-1,-1),(-1,1),(1,-1),(1,1))
alignment = intersect(e2f,f2e);
GROW-DIAG(); FINAL(e2f); FINAL(f2e);

GROW-DIAG():
iterate until no new points added

for english word e = 0 ... en
for foreign word f = 0 ... fn

if ( e aligned with f )
for each neighbouring point ( e-new, f-new ):

if ( ( e-new not aligned and f-new not aligned ) and
( e-new, f-new ) in union( e2f, f2e ) )

add alignment point ( e-new, f-new )
FINAL(a):

for english word e-new = 0 ... en
for foreign word f-new = 0 ... fn

if ( ( e-new not aligned or f-new not aligned ) and
( e-new, f-new ) in alignment a )

add alignment point ( e-new, f-new )

Figure 4: Pseudo-code of thegrow-diag-final
method to symmetrise word alignments. See Sec-
tion 2.3 for variations of this method.

GIZA++ alignments. Three neighbouring points are
added. The alignment point betweendid and a is
added in the grow(-diag)-final method, but not in the
grow(-diag)-final-and, since the Spanish worda is
unaligned, but not the English worddid. Figure 4
presents the symmetrisation method in pseudo code.

2.4 Phrase Extraction

We now extract phrase pairs for the phrase transla-
tion table. Any phrase pair that is consistent with the
word alignment is collected. We defineconsistent
as: The words in the phrase pair have to be aligned
to each other and not to any words outside.

Figure 5: Definition of consistent word alignments:
Words of an extracted phrase pair have to be aligned
to each other and nothing else

See Figure 5 for an illustration. Note that un-
aligned words may be included within and at the
border of extracted phrase pairs (third example in
Figure 5). Each phrase pair, however, must include
at least one alignment point.

Using word-level alignments to induce phrase-
based translation models is common practise in the
statistical machine translation community. It has
been adopted by most groups participating in the
NIST MT Evaluation (Lee and Przybocki, 2005).

In contrast to this, Marcu and Wong (2002) have
defined a method for directly estimating phrasal
translation models from parallel corpora, rather than
using heuristic methods to induce phrase align-
ments from word alignments. Their joint probability
phrase-based model is computationally demanding,
and as such has not been applied to large data sets.
Our group has been implementing a scalable version
of the joint probability model (Mayne, 2005), and
we hope to submit it as a contrastive system in next
year’s IWSLT.

2.5 Phrase Scoring

The phrase translation probability is defined as

p(f̄ |ē) =
count(f̄ , ē)∑
f̄ count(f̄ , ē)

(3)

wherecount(f̄ , ē) gives the total number of times
the phrasēf is aligned with the phrasēe in the par-
allel corpus.

Phrase translation probabilities are lexically
weighted as in (Koehn et al., 2003):

plw(f̄ |ē,a) =
n∏

i=1

1
|{i|(i, j) ∈ a}|

∑
∀(i,j)∈a

p(fj |ei)

(4)



Figure 6: Possible orientations of phrases: mono-
tone (m), swap (s), or discontinuous (d)

wheren is the length of̄e, anda is the word-level
alignment between phrasēe and f̄ . Since a phrase
alignment< f̄, ē > may have multiple possible
word-level alignments, we retain a set of alignments
and take the most frequent.

Word and phrase penalty add a constant factor (ω
andπ) for each word or phrase generated.

2.6 Reordering

Our original reordering model only considers the
distance of movements. The reordering penalty adds
a factorδn for movements overn words. The move-
ment distance is measured on the foreign side.

Our current system includes a lexicalised reorder-
ing model. For each phrase pair, we learn, how
likely it directly follows a previous phrase (mono-
tone), is swapped with a previous phrase (swap), or
is not connected to the previous phrase at all (dis-
continuous). See Figure 6 for an illustration.

When collecting phrase pairs, can classify them
into these three categories based on:

• monotone: a word alignment point to the top
left exists

• swap: an alignment point to the top right exists

• discontinuous: no alignment points to the top
left or top right

Given these counts, we can learn probability dis-
tributions of the form:

pr(orientation|ē, f̄) (5)

For the estimation of the probability distribution, we
smooth the collected counts.

This lexicalised reordering model is motivated by
similar work by Tillmann (2004).

2.7 Discriminative Training

Recall that the components of our machine transla-
tion system are combined in a log-linear way. The
weight of the feature functions, or model compo-
nents, is set by minimum error rate training. We
reimplemented a method suggested by Och (2003).

In short, we optimise the value of the parameter
weightsλm by iteratively: (a) running the decoder
with a currently best weight setting, (b) extracting
an n-best list of possible translations, and (c) finding
a better weight setting that re-ranks the n-best-list,
so that a better translation score is obtained.

To score translation quality, we employ the BLEU
score (Papineni et al., 2002). The search for the best
weight setting is a line search for eachλm, which is
repeated until no improvement can be achieved.

We thank David Chiang of the University of
Maryland for providing us with a faster version of
our implementation.

3 Adaptations to IWSLT’05 Task

In a period of one month, we optimised our system
to the IWSLT’05 task. We chose to only partici-
pate in the transcription task using the supplied data,
since we did not have adequate additional resources
or tools for these language pairs, and also had not
enough time to investigate these.

The advantage of limiting ourselves to this track,
meant that we could quickly train our system. Train-
ing the entire system (from corpus preparation over
word alignment to building models) took only 15
minutes CPU time instead of about a week for the
large-scale Arabic–English DARPA/NIST transla-
tion challenge. Hence, we were able to run many
experiment to optimise performance.

We decided to use the 2003 test set as tuning set
for minimum error rate training, and the 2004 test
set as test set for development. All performance
numbers reported in this section are %BLEU scores
computed with our own evaluation script. This script
takes as reference length the closest reference sen-
tence length, as in the official evaluation, but does
not eliminate punctuation, as done there.

In our experiments, we tried to find
• the best word alignment method

• the best lexicalised reordering method

• the best reordering distance limit



final (default) final-and grow-diag grow intersect
English words 187,843 187,843 187,843 187,843 187,843
Alignment points 282,110 234,027 220,318 185,714 79,200
Distinct phrase pairs 61,168 270,654 447,550 854,680 2,561,715

Table 1: Different word alignment methods and the effect of the phrase table: Since alignment points restrict
possible phrase pairs, fewer alignment points lead to larger phrase tables.

Language Pair final (default) final-and grow-diag grow intersect
Arabic-English 48.8 48.5 49.9 39.9 47.5
Japanese-English 40.4 39.9 39.0 39.1 45.1
Korean-English 33.9 35.7 27.7 13.5 35.4
Chinese-English 28.9 32.4 31.7 32.8 34.6
English-Chinese 15.4 9.6 8.1 15.4 15.2

Table 2: BLEU scores for systems trained using different alignment methods

We also carried out experiments to optimise
GIZA++ parameters, but this did not yield any sig-
nificant improvements. We would like to re-visit
these experiments at some future time, since we did
not have sufficient time for a thorough treatment at
this time.

We also tried to deal with language-specific
problems, as previously done for German–English
(Collins et al., 2005). We created hand-written rules
that move the Japanese verb from the end of the sen-
tence to the beginning. However, we could not con-
sistently achieve improvements using these rules.
Since we did not have a part-of-speech tagger for
Japanese, we had to rely on the assumption that the
last word of a Japanese sentence is the verb. We did
not apply these rules in our official submission.

3.1 Optimising Word Alignment

Our experience with GIZA++ alignments has been
that IBM Model training performs poorly for source
words that occur only once in the training corpus.
These words are often incorrectly aligned to many
target words. This effect creates problems with
phrase extraction, since alignment points effectively
limit possible phrase pairs. If one word is aligned to
many words that are spread throughout the sentence,
many reasonable phrase pairs can not be extracted
because of the consistency constraints of our phrase
extraction algorithm.

Since we deal with much smaller data sets than

we are used to, we expected to have more prob-
lems with singleton words and their adverse effect
on phrase extraction. Hence, we explored a num-
ber of alignment methods, ranging from our default
method (grow-diag-final), which establishes many
word alignment points to the most sparse method of
just allowing alignment points that occur in the in-
tersection of the bidirectional alignments (intersect).

The effect of alignment method on the number
of alignment points and the number of extracted
phrase pairs is exemplified in Table 1 on the case
of the Japanese–English training data. Note the dif-
ferences between the default method and the inter-
section methods: The intersection only establishes a
third of the number of alignment points (79,200 vs.
282,110), causing the number of extracted distinct
phrase pairs to explode by a factor of about 40.

However, having a phrase table of 2.6 million dis-
tinct phrase pairs is not a computational problem for
our system. In fact, for Arabic–English translation,
we often work with phrase tables of up to 100 mil-
lion distinct phrase pairs.

We carried out experiments using five different
alignment methods for the different language pairs.
For each alignment method and language pair, we
trained a system and optimised it using minimum er-
ror rate training. Table 2 displays resulting %BLEU
scores on the IWSLT’04 test set (using our BLEU
scoring script described at the beginning of this sec-
tion).



Language Pair Best Lexicalised Reordering Word Alignment Baseline Improved
Arabic-English orientation-bidirectional-fe final-and 49.9 50.9
Japanese-English orientation-fe intersect 45.1 47.6
Korean-English orientation-fe intersect 35.7 42.3
Chinese-English monotonicity-fe intersect 34.6 38.6
English-Chinese monotonicity-bidirectional-fe grow-diag 15.2 16.6

Table 3: Best lexicalised reordering methods, compared against the baseline (using only distance-based
reordering penalty): Improvements for all language pairs

The evaluation of the effect of the different
alignment methods on translation quality presents
a mixed picture: While for all language pairs,
the default method does not result in higher per-
formance than the sparser methods, not a single
alignment method emerges as the optimal method
for all language pairs. For two language pairs,
Japanese–English and Chinese–English, the inter-
section method comes out ahead.

3.2 Optimising Lexicalised Reordering

Since we just implemented lexicalised reordering in
our system, we used the IWSLT’05 translation task
as a testbed to investigate its best configuration. We
consider the following choices in the lexicalised re-
ordering model:

• Do we distinguish between monotone, swap,
and discontinuous ordering (orientation), or
just test for monotone ordering (monotonicity)?

• Do we condition on the identity of the foreign
phrase (f), or on both the foreign and English
phrase (fe)?

• Do we model reordering in respect to the pre-
vious translated phrase, or also in respect to the
following translated phrase (bidirectional)?

These three different options lead to eight pos-
sible configurations for the lexicalised reordering
model. We build translation systems for all possi-
ble configurations for all five language pairs. For all
the language pairs, no single lexicalised reordering
method emerged as significantly better than the oth-
ers. However, any lexicalised reordering method is
better than no lexicalised reordering.

In Table 3, you can see which alignment method
scored best for each language pair. Again, a very

mixed picture emerged. The only consistent result is
that conditioning on the identity of both the foreign
and English phrase is superior. Any of the remaining
four possible configurations comes out ahead for at
least one of the language pairs.

Since we optimised word alignment method and
lexicalised reordering method in a integrated fash-
ion, what is the best word alignment method
changed for Arabic–English, Korean–English and
Chinese–English.

We would like to stress again at this point that
the differences are mostly not sufficiently signifi-
cant to make a strong point here about which word
alignment method or which lexicalised reordering
method works best. However, we can clearly state
that lexicalised reordering is beneficial for all lan-
guage pairs.

3.3 Optimising Reordering Distance Limit

After settling on a word alignment and lexicalised
reordering method for each language pair in pre-
vious experiments, we concluded our adaptation
experiments by optimising the reordering distance
limit.

Ideally, we would allow reordering of any dis-
tance, since movements over long distance do occur
when translating. One example is the movement of
the Japanese verb from the end of the sentence to
the position at the beginning just after the subject in
English.

However, our previous experience has shown that
the reordering model is not strong enough to cor-
rectly guide long distance movements. In fact, when
we completely prohibit movements over more than
four words, we achieved better translation results
than when allowing more distant reordering.

While our novel lexicalised reordering model has



keeping unknown words dropping unknown words
Reordering Limit 3 4 5 6 7 8 3 4 5 6 7 8

Arabic-English 50.3 50.4 50.1 50.6 50.0 50.1 56.3 56.2 56.7 56.5 55.9 56.2
Japanese-English 46.4 48.3 48.8 49.1 49.0 49.9 46.4 49.1 50.4 50.2 51.1 51.0
Korean-English 37.8 41.8 42.0 44.1 44.1 45.2 39.0 42.2 43.2 44.9 42.5 44.1
Chinese-English 36.8 36.7 37.2 37.5 36.9 37.2 39.3 40.0 40.2 39.8 39.6 39.8
English-Chinese 16.6 16.8 16.0 16.4 17.2 17.1 15.8 16.9 17.3 16.7 17.8 17.4

Table 4: Optimising the reordering limit (maximum word distance for phrase movement). The table also
shows the effect of dropping unknown words instead of passing them to the output.

shown to be beneficial, it is still a very local model.
Decisions are made for a particular phrase based on
its empirical reordering behaviour with respect to
directly neighbouring phrases. For instance, for a
Japanese verb to be translated into English, we will
learn that it is typically reordered, but not how far.

Nevertheless, we wanted to carry out experiments
with larger reordering limits. Recall that reorder-
ing distance is measured in respect to movements of
foreign phrases. If we first translate the first foreign
word, and then continue with the fifth word, we mea-
sure this as a movement over three words (the three
foreign words 2, 3, and 4 are skipped).

Table 4 displays the translation performance for
systems with different reordering limits. Note that
we did not have to retrain the models for these exper-
iments, but we did have to optimise model weights
using minimum error rate training.

The results suggest that more permissive reorder-
ing limits than a maximum movement distance of 4
words are beneficial. While being aware of the lim-
ited statistical significance of these results, we are
inclined to cautiously state that for translations in-
volving Asian languages, the maximum reordering
limit of 8 (or even higher) seems to be better than
the traditional 4.

4 Results

For the translation of the test data of the IWSLT’05
translation task, we used the optimised configuration
and parameter settings, as obtained by our adapta-
tion experiments.

The results are displayed in Table 5. Compared
to the performance of the other participants, we are
very satisfied with the results. We scored 1st place
in two of the five tracks, and had very respectable

showings for the other tracks.
A closer look at the numbers, however, will reveal

one striking oddity: For almost all language pairs,
we incur a heavy length penalty, which has a dev-
astating effect on the NIST score. Obviously our
output is almost always too short.

The culprit for this is our minimum error rate
training, which optimises the BLEU score. It uses
theshortestof the reference sentences as the basis to
compute the length penalty. This inherently causes
a optimisation to very short output. However, the
official evaluation uses theclosestreference length.

In a post-evaluation experiment, we altered our
minimum error rate training to optimise toaverage
reference sentence length. The effect on test scores
is displayed in Table 6.

Due to the more lenient length penalty, our NIST
score improve dramatically. In the case of Japanese–
English, it more than doubles from 4.0784 to 8.1209.
The effect on the BLEU scores is less pronounced:
For four out of five language pairs, we achieved
slightly higher BLEU scores, for Chinese–English,
the BLEU score drops.

5 Conclusions

Our participation at the IWSLT’05 Evaluation Cam-
paign seems to confirm one of the selling points of
statistical machine translation: the ability to quickly
build machine translation systems for new language
pairs. While we had no prior experience with build-
ing systems for Korean and Japanese, and only very
limited knowledge about any of the non-English lan-
guages, we were able to build competitive systems
for all the language-pairs.

Our adaptation experiments revealed that transla-
tion tasks of speech transcriptions in limited domain,



Language Pair BLEU NIST WER PER METEOR GTM Rank
Arabic-English 0.5105 (0.93) 7.6382 (0.70) 0.3902 0.3462 0.6893 0.6521 5th of 8
Japanese-English0.3778 (0.81) 4.0784 (0.41) 0.5488 0.4861 0.5167 0.4748 4th of 7
Korean-English 0.3672 (0.88) 5.6172 (0.60) 0.5570 0.4797 0.5585 0.4843 1st of 4
Chinese-English 0.4650 (0.90) 6.4922 (0.62) 0.4535 0.3983 0.6320 0.5988 3rd of 10
English-Chinese 0.2127 (0.94) 5.1807 (0.98) 0.6197 0.5286 0.0955 0.5584 1st of 2

Table 5: Official Results: The scores for our official submission to the IWSLT’05 Evaluation Campaign
(length penalty in parenthesis), and rank among participants according to the BLEU score.

Language Pair BLEU NIST WER PER METEOR GTM
Arabic-English 0.5180 (0.98) 9.7749 (0.94) 0.3860 0.3323 0.7270 0.6613
Japanese-English0.3941 (0.95) 8.1209 (0.91) 0.5489 0.4599 0.5971 0.4890
Korean-English 0.3859 (1.00) 8.4455 (0.99) 0.5617 0.4559 0.6221 0.4980
Chinese-English 0.4364 (1.00) 9.0834 (0.99) 0.5043 0.4089 0.6841 0.5914
English-Chinese 0.2230 (0.91) 5.2391 (0.97) 0.6037 0.5149 0.0955 0.5657

Table 6: Optimisation to average reference sentence length instead of shortest reference length (length
penalty in parenthesis): Note the improved length penalties and vastly improved NIST scores. 4 out of 5
BLEU scores are higher as well (exception is Chinese-English).

using small training corpus sizes, do require differ-
ent settings of our translation system than we tradi-
tionally used for open domain text translation with
much larger training corpora.

We also were able to verify the benefits of our
novel lexicalised reordering model, which consis-
tently led to significant perform gains.
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