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Abstract

This paper describes ATR’s hybrid approach to spoken lan-
guage translation and it’s application to the IWSLT 2005
translation task. Multiple corpus-based translation engines
are used to translate the same input, whereby the best trans-
lation among the element MT outputs is selected according
to statistical models.

The evaluation results of the Japanese-to-English and
Chinese-to-English translation tasks for different training
data conditions showed the potential of the proposed hybrid
approach and revealed new directions in how to improve the
current system performance.

1. Introduction

Corpus-based approaches to machine translation (MT) have
achieved much progress over the last decades. There are two
main strategies used in corpus-based translation:

1. Example-Based Machine Translation (EBMT) [1]:
EBMT uses the corpus directly. EBMT retrieves the
translation examples that are best matched to an input
expression and then adjusts the examples to obtain the
translation.

2. Statistical Machine Translation (SMT) [2]:
SMT learns statistical models for translation from cor-
pora and dictionaries and then searches for the best
translation at run-time according to the statistical mod-
els for language and translation.

Despite a high performance on average, these approaches can
often produce translations with severe errors. However, dif-
ferent MT engines not always do the same error. Due to the
particular output characteristics of each MT engine, quite dif-
ferent translation hypotheses are produced. Thus, combining
multiple MT systems can boost the system performance by
exploiting the strengths of each MT engine.

We propose a corpus-based approach that uses multiple
translation engines in parallel. All engines translate the same
input, whereby the best translation among the multiple MT
outputs is selected according to multiple statistical language
and translation models. The outline of our hybrid approach
is given in Section 2.

The proposed system was applied to two translation
directions (Japanese-to-English, Chinese-to-English) and
three data tracks (Supplied Data Track, Supplied+Tools Data
Track, C-STAR Track). The evaluation of the obtained results
is given in Section 3.

2. System Description

We use an architecture in which multiple EBMT and SMT
engines work in parallel and their outputs are passed to a
post-process that selects the best candidate according to SMT
models (cf. Figure 1).

This section is structured as follows: (1) eight corpus-
based MT engines are introduced in Section 2.1; (2) the
SMT-based approach to select the best translation out of mul-
tiple hypotheses is explained in Section 2.2; (3) the resources
utilized for the IWSLT 2005 translation task are described in
Section 2.3; and (4) a summary of the data tracks we partici-
pated in and an overview on which MT engines were utilized
for the respective tracks is given in Section 2.4.

2.1. MT Engines

We employed the following four SMT and four EBMT sys-
tems: An SMT engine that uses an example-based decod-
ing method [SAT] (cf. Section 2.1.1), an SMT engine that
uses a phrase-based HMM translation model [PBHMTM] (cf.
Section 2.1.2), a morpho-syntactically enriched phrase-based
SMT engine [MSEP] (cf. Section 2.1.3), an SMT engine
based on syntactic transfer [HPATR2] (cf. Section 2.1.4),
an EBMT engine that incorporates word-level SMT meth-
ods [HPATR] (cf. Section 2.1.5), an EBMT engine based on
hierarchical phrase alignments [HPAT] (cf. Section 2.1.6), an
DP-match-driven EBMT engine [D3] (cf. Section 2.1.7), and
a translation memory system [EM] (cf. Section 2.1.8).

The translation knowledge of the eight MT systems is
automatically acquired from a parallel corpus. The charac-
teristics of the element MTs are summarized in Table 1.

2.1.1. SAT

SAT is an SMT system [3]. The decoder searches for an opti-
mal translation by using SMT models starting from a decoder
seed, i.e., the source language input paired with an initial
translation hypothesis. In SAT, the search is initiated from
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Figure 1: System outline

Table 1: Features of element MT engines

SMT EBMT

SAT PBHMTM MSEP HPATR2 HPATR HPAT D3 EM

Unit sentence&word phrase phrase phrase phrase phrase sentence sentence
Coverage wide wide wide wide wide wide narrow narrow
Quality excellent good good good good good excellent excellent
Speed modest slow slow modest modest fast fast fast

Resources corpus corpus corpus, corpus, corpus, corpus, corpus, corpus
chunker parser parser parser, thesaurus,

thesaurus bilingual
dictionary

similar translation examples retrieved from a parallel corpus.
The similarity measure used here is a combination of an edit-
distance and tf/idf criteria as seen in the information retrieval
framework [4]. The retrieved translations are modified by
using a greedy search approach to find better translations [5].

2.1.2. PBHMTM

PBHMTM is a statistical MT system that is based on a
phrase-based HMM translation model [6]. The model di-
rectly structures the phrase-based SMT approach in a Hid-
den Markov structure. The probability P (f |e) of translating
a foreign source sentence f into a target language sentence e

using noisy channel modeling is approximated by introduc-
ing two new hidden variables, f̄ and ē, to explicitly capture
the phrase translation relationship:

P (f |e) =
∑

f̄ ,ē

P(f |̄f , ē, e)P(f̄ |ē, e)P(ē|e) (1)

The first term represents the probability that a phrase-
segmented source language sentence f̄ can be reordered
and generated as the source text of f (Phrase Segmentation
Model). The second term indicates the translation probabil-
ity of the two phrase sequences of ē and f̄ (Phrase Transla-
tion Model). The last term is the likelihood that the phrase-
segmented target language sentence ē is generated from e

(Phrase Ngram Model).
If the phrase segmented sentences ē and f̄ are expanded

into corresponding lattice structures Ē and F̄, then the ap-
proximation of the proposed models can be regarded as a
Hidden Markov Model in which each source phrase in the

lattice F̄ is treated as an observation emitted from a state, a
target phrase, in the lattice Ē.

The decoder is a word-graph-based decoder [7], which
allows the multi-pass decoding strategies to incorporate com-
plicated submodel structures. The first pass of the decoding
procedure generates the word-graph, or the lattice, of trans-
lations for an input sentence by using a beam search. On the
first pass, the submodels of all phrase-based HMM transla-
tion models were integrated with the word-based trigram lan-
guage model and the class 5-gram model. The second pass
uses the A* strategy to search for the best path for translation
on the generated word-graph.

2.1.3. MSEP

MSEP is a phrase-based SMT system that utilizes morpho-
syntactic information such as part-of-speech and chunk in-
formation [8]. It exploits a phrase translation lexicon that
is created using word-alignment results and chunk boundary
information in a target language sentence. Reliable bilingual
phrase pairs are identified using the statistical χ2-test at a
significance level α=0.05 over a given frequency threshold.

For selecting the most probable translation of a given
source sentece, a log-linear model is used:
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1 ) is the m-th feature and λm is the
weight of the feature.



In addition to the IBM model 4 features (word-based n-
gram language model Pr(eI

1), lexicon model t(f |e), fertility
model n(φ|e), distortion probability d, and NULL translation
model p1), we incorporate the following features into the log-
linear translation model:

• Class-based n-gram model:
Pr(eI

1) =
∏

i Pr(ei|ci)Pr(ci|c
i−1

1
)

• Length model: Pr(l|eI
1, f

J
1 ), whereby l is the length

(number of words) of a translated target sentence.

• Phrase matching score: The translated target sentence
is matched with phrase translation examples that are
extracted from a parallel corpus based on bidirectional
word alignment of phrase translation pairs. A score is
derived based on the number of matches.

2.1.4. HPATR2

HPATR2 is a statistical MT system based on syntactic trans-
fer [9]. The translation model of HPATR2 is defined as an
inside probability of two parse trees, which is used to create
probabilistic context-free grammar rules.

The system searches for the best translation that maxi-
mizes the product of the following probabilities, where F , E
are a source and a target parse trees, and θ, π are context-free
grammar rules of the source and the target language, respec-
tively.

• Probability of Source Tree Model

P (F) =
∏

θ:θ∈F

P (θ) (3)

• Probability of Target Tree Model

P (E) =
∏

π:π∈E

P (π) (4)

• Probability of Tree-mapping Model

P (F|E)P (E|F) =
∏

θ:θ∈F,

π:π∈E

P (θ|π)P (π|θ) (5)

A characteristic of HPATR2 is that not only word transla-
tions but also the translation of multi-word sequences is car-
ried out by the syntactic transfer. Parsing hypotheses, which
are multi-word sequences connected by context-free gram-
mar rules, are created. The best hypothesis (parse tree and
translation) is selected based on the above models.

Therefore, HPATR2 is an MT system that contains fea-
tures of phrase-based SMT as well as syntax-based SMT.

2.1.5. HPATR

HPATR is an extension of the example-based HPAT system
(cf. Section 2.1.6) that incorporates a word-based statistical
MT system [10]. Similar to HPAT, an EBMT module based
on syntactic transfer is used to generate translation candi-
dates that have minimum semantic distances. However, word

selection is not performed during transfer, but all possible
word translation candidates are generated.

In a second step, an SMT module using a lexicon model
and an n-gram language model is exploited to search for the
best translation that maximizes the product of the probabil-
ities. Therefore, HPATR selects the best translation among
the output of example-based MT using models of statistical
MT from the viewpoints of adequacy of word translation and
fluency of the target sentence.

2.1.6. HPAT

HPAT is an example-based MT system based on syntactic
transfer [11]. The most important knowledge in HPAT are
transfer rules, which define the correspondences between
source and target patterns. The transfer rules can be regarded
as synchronized context-free grammar rules.

When the system translates an input sentence, the sen-
tence is first parsed by using the source side of the transfer
rules. Next, a tree structure of the target language is gener-
ated by mapping the source grammar rules to the correspond-
ing target rules. When non-terminal symbols remain in the
target tree, target words are inserted by referring to a transla-
tion dictionary.

Ambiguities, which occur during parsing or mapping, are
resolved by selecting the rules that minimize the semantic
distance between the input words and source examples of
the transfer rules. In general, the automatic acquisition pro-
cess generates many redundant rules. To avoid this problem,
HPAT optimizes the transfer rules by removing redundant
rules (feedback cleaning, [12]) in order to increase an au-
tomatic evaluation score.

2.1.7. D3

D3 (DP-match Driven transDucer) is an EBMT system that
exploits DP-matching between word sequences [13]. In the
translation process, D3 retrieves the most similar source sen-
tence from a parallel corpus for an input sentence.

The similarity is calculated based on the counts of in-
sertion, deletion, and substitution operations, where the to-
tal is normalized by the sum of the lengths of the word se-
quences. Substitution considers the semantic distance be-
tween two substituted words and is defined as the division of
K, the level of the least common abstraction in the thesaurus
of two words, by N, the height of the thesaurus [14].

According to the difference between the input sentence
and the retrieved source sentence, the translation of the re-
trieved source sentence is modified by using dictionaries.

2.1.8. EM

EM is a translation memory system that matches a given
source sentence against the source language parts of trans-
lation examples extracted from a parallel corpus. In case an
exact match can be achieved, the corresponding target lan-
guage sentence will be used. Otherwise, the system fails to
output a translation.



2.2. Selection of the Best MT Engine Output

We use an SMT-based method of automatically selecting the
best translation among outputs generated by multiple MT
systems [15]. This approach scores MT outputs by using
multiple language (LM) and translation model (TM) pairs
trained on different subsets of the training data. It uses a sta-
tistical test to check whether the average TM·LM score of
one MT output is significantly higher than those of another
MT output. The SELECTOR algorithm is summarized in
Figure 2.

(1) proc SELECTOR( Input, Corpus, n, MT 1, . . . , MT m ) ;
(2) begin
(3) (∗ initalize statistical models ∗)
(4) for each i in {1, . . . , n} do
(5) Corpusi ← subset(Corpus) ;
(6) TMi ← translation-model(Corpusi) ;
(7) LMi ← language-model(Corpusi) ;
(8) od ;
(9) (∗ score MT outputs using multiple TM·LM pairs ∗)
(10) HypScores← {} ;
(11) for each MT in {MT 1, . . . , MT m} do
(12) Scores← {} ;
(13) Hypothesis← translate(Input, MT ) ;
(14) if Hypothesis then
(15) (∗ assign multiple TM·LM scores to each hypothesis ∗)
(16) for each i in {1, . . . , n} do
(17) Scores← Scores ∪ {TMi · LMi(Hypothesis)} ;
(18) od ;
(19) HypScores← HypScores ∪ {Hypothesis, Scores} ;
(20) fi ;
(21) od ;
(22) (∗ multiple comparison test based on Kruskal-Wallis test ∗)
(23) isel ← 1 ;
(24) for each i in {2, . . . , m} do
(25) ibetter ← test(HypScores(isel), HypScores(i)) ;
(26) if ibetter then
(27) isel ← ibetter ;
(28) fi ;
(29) od ;
(30) return( HypScores(isel) ) ;
(31) end ;

Figure 2: SELECTOR algorithm

In order to detect a significant difference, the proposed
method first prepares multiple subsets of the full parallel text
corpus according to n-fold1 cross validation [16] and trains
pairs of language and translation models on the resepective
subsets.

The algorithm assumes a priority order in the given MT
engines, i.e., the indices i of MTi should indicate an increas-
ing level (i=1 - high, . . ., i=n - low) of translation quality
of the utilized MT systems. Such a priority order can be ob-
tained by evaluating the respective system performance using
a separate development set2.

Given an input sentence, m translation hypotheses are
produced by the element MT engines, whereby n different

1For this years’ workshop, we randomly divided the training corpus
into three subsets (Corpusi; 1≤i≤3) and trained three different transla-
tion and language model pairs on all pairwise combinations of the subsets
(Corpus1 ∪ Corpus2, Corpus1 ∪ Corpus3, Corpus2 ∪ Corpus3).

2We used a development set of the supplied corpus and sorted the MT
engines according to an automatic evaluation score (WER, cf. Section 3).

statistical scores (TM·LMi) are assigned to each hypothesis.
In order to check whether the highest score is significantly
different from the others, a multiple comparison test based
on the Kruskal-Wallis test [17] is used. If the MT output is
significantly better, this output is selected. Otherwise, the
output of the best performing MT engine according to the
given priority order is selected.

The performance of the selection method depends on the
predefined priority order of the MT engines. For the experi-
ments described in Section 3, the respective priority order for
each data track were determined as follows:

1. The highest priority was given to the EM engine.

2. The rest of the MT engines were sorted according to
the WER scores obtained for the development set.

3. For each subset {MT1,. . .,MTj} (1≤j≤n-1) of top-
scoring j MT engines, all order combinations were
used to translate the development set. The combina-
tion achieving the lowest WER score was chosen for
the translation of the official test set.

2.3. Resources

The participants were supplied with 20,000 sentence pairs
for each translation direction that are subsets of the BTEC
corpus introduced in Section 2.3.1. For the Japanese and
Chinese parts, word segmentations were provided based on
the output of the speech recognition engine utilized in this
years’ workshop. In addition, two development sets of ad-
ditional 506 and 500 sentences, respectively, including up to
16 reference translations, were provided to the participants.

2.3.1. Basic Travel Expressions Corpus

The Basic Travel Expressions Corpus (BTEC) is a collec-
tion of sentences that bilingual travel experts consider use-
ful for people going to or coming from another country and
cover utterances for every potential subject in travel situa-
tions [18]. The original Japanese-English corpus has been
translated into several languages by members of the Consor-
tium for Speech Translation Advanced Research (C-STAR)3

resulting in a multilingual spoken language corpus consisting
of 172K sentences/language.

Moreover, we used additional training data from the same
domain for the Japanese-to-English translation task. In total,
541K of aligned sentence pairs were available for training
purposes. Besides the data sets of the Supplied Data Track
(cf. Section 2.4), all training data were preprocessed using
in-house morphological analysis tools. Details of the utilized
corpus are given in Table 2, where word token refers to the
number of words in the corpus and word type refers to the
vocabulary size.

2.3.2. NLP Tools and Dictionaries

Besides the parallel text corpus, we also used in-house NLP
tools (tagger, chunker, parser) for the preprocessing of the

3http://www.c-star.org/



Table 2: Training corpus statistics

data lang sentence count avg. word word
track uage total unique length tokens types

Japanese 541,665 382,446 9.6 5,564,159 40,064
C Chinese 172,170 87,845 6.7 1,158,039 17,570

English 541,665 343,764 8.3 4,520,340 21,737

Japanese 20,000 19,078 9.8 196,513 8,376
T Chinese 20,000 18,668 8.1 162,808 9,040

English 20,000 19,914 9.2 183,995 5,464

Japanese 20,000 18,906 8.6 171,259 9,251
S Chinese 20,000 19,267 8.8 176,174 8,683

English 20,000 19,902 7.7 154,483 6,937

training data and additional knowledge resources like bilin-
gual dictionaries and a thesaurus [19] as summarized in Ta-
ble 1.

2.4. Track Participation

We took part in the following translation tasks using the man-
ual transcriptions as the input of the MT engines.

Translation Direction: (JE) Japanese-to-English
(CE) Chinese-to-English

Data Track: (C) C-STAR Track
(T) Supplied+Tool Data Track
(S) Supplied Data Track

Each MT engine was trained on the resources permitted for
the respective data track. In the case of the Supplied Data
Track, the training data was limited to the supplied corpus
only, i.e., preprocessing tools like tagger, chunker, parser and
external dictionaries were not allowed. Therefore, only three
element MT engines (PBHMTM, SAT, EM) were used for
the Supplied Data Track. Moreover, the HPAT engine for CE
could not be prepared in time for the workshop.

In addition, the SELECTOR engine was tuned to ob-
tain the best WER performance as described in Section 2.2.
Therefore, not all MT engines were used for the official run
submissions. Table 3 gives an overview of the used MT en-
gines for each data track, whereby the respective priority or-
ders are given in Table 4.

3. Evaluation

For the automatic evaluation of the MT outputs, we used
the online evaluation server4, whereby the following scoring
metrics were used:

• BLEU: the geometric mean of n-gram precision for the
translation results found in reference translations.

• NIST: a variety of BLEU using the arithmetic mean of
weighted n-gram precision.

• METEOR which scores unigram matches using differ-
ent criteria (exact matching, stemmed matching, and
synonym matching).

4http://penance.is.cs.cmu.edu/iwslt2005/eval servers.html

Table 3: MT engines used for official run submissions

MT JE CE
engine C T S C T S

SAT © © © © © ©

PBHMTM © © © © © ©

MSEP × © N/A © © N/A

HPATR2 © © N/A © © N/A

HPAT × © N/A N/A N/A N/A

HPATR × × N/A © © N/A

D3 © © N/A © © N/A

EM © © © © © ©

Σ 5 7 3 7 7 3

© = used × = not used for official runs N/A = output not available

Table 4: Priority order of MT engines

lang data priority
uage track order

C EM>D3>HPATR2>SAT>PBHMTM

JE T EM>D3>HPAT>HPATR2>PBHMTM>SAT>MSEP

S EM>PBHMTM>SAT

C EM>D3>HPATR2>HPATR>MSEP>PBHMTM>SAT

CE T EM>MSEP>D3>HPATR>PBHMTM>HPATR2>SAT

S EM>PBHMTM>SAT

• Word Error Rate (WER) which penalizes edit opera-
tions for the translation output against reference trans-
lations.

• Position independent WER (PER) which penalizes
without considering positional disfluencies.

• GTM which measures the similarity between texts by
using a unigram-based F-measure.

In contrast to WER/PER, higher BLEU/NIST/METEOR/
GTM scores indicate better translations. Besides for GTM
(one reference translation), up to 16 human reference trans-
lations were used for the automatic scoring.

In addition, the translation quality was judged by an En-
glish native speaker based on the fluency and adequacy crite-
ria, whereby fluency refers to the degree to which the trans-
lation is well-formed according to the grammar of the tar-
get language and adequacy refers to the degree to which the
translation communicates the information present in the ref-
erence output. The evaluator assigns a fluency score in the
range from 5 (=flawless) to 1 (=incomprehensible) and an
adequacy score in the range from 5 (=all information) to 1
(=none of it) to each translation. The system scores for flu-
ency and adequacy are obtained as the average of all sentence
scores.

3.1. Official Run Submissions

The evaluation results of the official run submissions for the
IWSLT 2005 translation task are summarized in Table 5. The



Table 5: Evaluation results of offical run submissions

lang data Automatic Evaluation Subjective Evaluation†

uage track BLEU NIST METEOR WER PER GTM Fluency Adequacy
C 0.6873 10.7375 0.8102 0.2768 0.2286 0.6934 4.52 4.27

JE T 0.4774 8.1720 0.6658 0.4349 0.3742 0.5520 3.68 3.33
S 0.3744 7.7368 0.6008 0.5568 0.4570 0.4822 3.23 2.68
C 0.5031 8.6875 0.6845 0.4389 0.3727 0.5898 4.14 3.26

CE T 0.3804 6.7540 0.5819 0.5439 0.4624 0.4950 3.61 2.57
S 0.3938 8.0004 0.6291 0.5235 0.4276 0.5533 3.54 2.73

† This subjective evaluation is carried-out in-house according to the evaluation specifications of IWSLT.

best performing system for each of the translation directions
is marked with bold-face.

3.2. Effects of Training Data Size

At submission time, 541K sentence pairs of the same domain
as the supplied corpus were available for JE, but only 172K
sentence pairs for CE. These were used for the official run
submissions of the C-STAR track (cf. Table 5). Afterwards
the CE corpus was extended to 541K and additional runs for
CE using 541K sentence pairs and JE using 172K sentence
pairs were evaluated using the online evaluation server. Fig-
ure 3 illustrates how the system performance improves for
larger amounts of training data.

JE
CE

20K 172K 541K

Training Data

0.2
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Figure 3: Effects of variable amounts of training data

In order to illustrate the similarity between the training
data used for the respective data tracks and the test data, the
language perplexity5 (PPL) of the source language input and
target language translations is summarized in Table 6. In ad-
dition, the average sentence length in words, the total word
counts and the percentage of out-of-vocabulary (OOV) words
of our official run submissions are given.

The results show different tendencies for CE and JE. An
analysis of the data sets revealed, that the increase in lan-
guage perplexity for the CE data tracks is due to Chinese text
style differences between the utilized training corpus and the
IWSLT05 test set.

5We used the SRI Language Modeling Toolkit (version 1.4.4), which is
available at http://www.speech.sri.com/projects/srilm/download.html.

Table 6: Run Submission Statistics

lang data source target
uage track PPL OOV PPL OOV words length

C 13.2 0.3 14.3 0.1 3006 5.9
JE T 19.5 1.7 23.0 0.3 2925 5.7

S 40.6 7.1 50.7 15.8 3139 6.2
C 165.4 1.8 17.8 0.1 3050 6.0

CE T 80.5 3.8 16.6 0.4 2979 5.8
S 52.8 3.8 39.5 15.6 3141 6.2

3.3. Effects of NLP tools

For JE, a large difference in system performance can be seen
for the Supplied Data Track and the Supplied+Tools Data
Track. This gain is partially due to the usage of morpho-
logical analyzing tools that normalize variations of surface
words, e.g., usage of hiragana or kanji in Japanese. In order
to investigate the effects of prepocessing tools, we compared
the Supplied Data Track submission (selection of three ele-
ment MT outputs) with the SELECTOR output when applied
to the respective three MT engines (3MT = SAT, PBHMTM,
EM) of the Supplied+Tool Data Track. The evaluation re-
sults summarized in Table 7 show that a medium improve-
ment of 3.5% in WER is achieved for JE. However, word
segmentation differences and the lower coverage of our in-
house Chinese tagging tool resulted in a degradation in per-
formance for the CE task.

Table 7: Effects of tagging tools

language data track WER
JE T (3MT) 0.5221

S 0.5568
CE T (3MT) 0.5913

S 0.5235

The effects of other NLP tools, like chunker and parser,
cannot be compared directly to the results obtained for the
Supplied Data Track. However, they are important in our
hybrid approach, because they cover morpho-syntactic infor-
mation that cannot be obtained from plain text and thus lead
to the generation of translation hypotheses with quite differ-
ent characteristics.



Table 8: Evaluation of element MT engines (WER)

MT JE CE
engine C T S C T S

SAT 0.3404 0.5541 0.5664 0.5186 0.6590 0.5690
PBHMTM 0.3268 0.5310 0.5589 0.5180 0.6071 0.5366
MSEP 0.3956 0.5384 N/A 0.4785 0.5645 N/A

HPATR2 0.3457 0.5478 N/A 0.5685 0.6436 N/A

HPAT 0.4526 0.5427 N/A N/A N/A N/A

HPATR 0.4137 0.5507 N/A 0.7148 0.6890 N/A

D3 0.3971 0.5650 N/A 0.6179 0.7137 N/A

EM 0.5995 0.8949 0.9426 0.9413 0.9775 0.9659

N/A = output not available

Table 9: Element MT engines of selected hypotheses (%)

MT JE CE
engine C T S C T S

SAT 9.9 3.0 5.9 5.3 1.8 19.2
PBHMTM 16.4 23.3 84.4 8.9 13.7 76.1
MSEP × 10.9 N/A 39.1 68.8 N/A

HPATR2 17.2 12.0 N/A 23.3 3.3 N/A

HPAT × 17.4 N/A N/A N/A N/A

HPATR × × N/A 4.7 6.1 N/A

D3 12.1 19.4 N/A 11.1 2.8 N/A

EM 44.4 14.0 9.7 7.6 3.5 4.7

× = not used for official runs N/A = output not available

3.4. Effects of Multi-Engine Approach

In order to investigate the effects of our hybrid approch, we
compared the SELECTOR output towards the system perfor-
mance of each element MT engine (cf. Table 8).

The results of the element MT engines show large vari-
ations in the WER scores, whereby the SMT engines per-
formed best. However, this does not mean that translation
hypotheses produced by EBMT engines are not useful at
all. Table 9 gives the percentage of translation hypotheses
of each MT engine selected for the official run submissions.

Comparing the results of the best performing MT engines
(marked in bold-face in Table 8) for all data tracks towards
the respective SELECTOR outputs reveales that the selection
algorithm outperforms all element MT engines (cf. Table 10)
gaining 4-5% in WER for the C-STAR Track submissions and
even up to 10% in WER for the Supplied+Tools Data Track.

In order to investigate in an upper boundary for the pro-
posed selection algorithm, we performed and “oracle” trans-
lation experiment. Each input sentence was translated by
all element MT engines and the translation hypothesis with
the lowest WER (compared to the reference translations) was
output as the translation, i.e., the ORACLE system simulates
an optimal selection method for the given element MT en-
gines based on the WER criterion.

The comparison of the achieved gains6 of the SELEC-

6The WER figures in parantheses represent the gain of the respective

Table 10: Effects of SELECTOR approach (WER)

lang data best SELECTOR ORACLE
uage track MT (gain) (gain)

C 0.3268 0.2768 (– 0.0500) 0.1696 (– 0.1572)
JE T 0.5310 0.4349 (– 0.0961) 0.3006 (– 0.2304)

S 0.5589 0.5568 (– 0.0021) 0.4600 (– 0.0989)
C 0.4785 0.4389 (– 0.0396) 0.3246 (– 0.1539)

CE T 0.5645 0.5439 (– 0.0206) 0.3996 (– 0.1649)
S 0.5366 0.5235 (– 0.0103) 0.4526 (– 0.0840)

TOR and the ORACLE method given in Table 10 reveals
that despite a significant improvement in the overall system
performance, the proposed SMT-based selection method still
underachieved its task.

4. Conclusion

In this paper, a hybrid corpus-based approach to spoken lan-
guage translation was evaluated on the IWSLT 2005 trans-
lation task for Japanese-to-English and Chinese-to-English.
Each input sentence was translated using up to eight MT en-
gines, whereby the best translation was selected based on sta-
tistical models. High performances were achieved for both
translation directions. The analysis of the evaluation results
revealed, that:

• an increase in training data leads to improved results

• the preprocessing of the training data is important to
achieve high translation quality

• the translation quality of the element MT engines
ranged from medium to high.

• the proposed selection method outperformed all ele-
ment MT engines gaining 4-5% in WER towards the
best performing MT engine.

• despite a significant improvement in the overall system
performance, the SMT-based selection method under-
achieved its task. An offline evaluation of the transla-
tion results showed that an improvement of up to 16%
in WER towards the best performing MT engine could
be possible for the IWSLT 2005 translation task.

Future research will have to incorporate additional fea-
tures besides statistical model scores in the selection process
in order to tap the full potential of the element MT engines.
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