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Abstract

In this paper, we present our system for statistical machine
translation that is based on weighted finite-state transducers.
We describe the construction of the transducer, the estima-
tion of the weights, acquisition of phrases (locally ordered
tokens) and the mechanism we use for global reordering. We
also present a novel approach to machine translation that uses
a maximum entropy model for parameter estimation and con-
trast its performance to the finite-state translation model on
the IWSLT Chinese-English data sets.

1. Introduction

The problem of machine translation can be viewed as con-
sisting of two subproblems: (a) lexical selection, where
appropriate target language lexical items are chosen for
each source language lexical item and (b) lexical reorder-
ing, where the chosen target language lexical items are re-
arranged to produce a meaningful target language string. In
previous work, we have proposed stochastic finite-state trans-
ducer (SFST) models for these two subproblems [1, 2] which
can then be composed into a single SFST model for Statisti-
cal Machine Translation (SMT). SFST approach to SMT has
gained momentum in recent years with several groups fol-
lowing this approach successfully [3, 4, 5, 6] for speech to
speech translation. The attractions of this approach are (a)
efficiently learnable from data (b) generally effective for de-
coding (c) associated with a calculus for composing models
which allows for straightforward integration of constraints
from various levels of language processing.

In this paper, we present the SFST model for SMT and
detail the different phases in training the model and decod-
ing using the model. We also present a novel approach to
translation using a discriminatively trained model for lexi-
cal choice and a permutation automaton for lexical reorder-
ing. This model does not rely on word-level alignments at
all which makes it an attractive approach for translating be-
tween language pairs that have significantly different word
orders (English-Japanese, for example) where the string-
based word-alignment methods perform poorly.

The outline of the paper is as follows. In Section 2, we
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Figure 1: Training phases for our system

present an overview of the system. In Section 3, we describe
in detail the different stages used to train an SFST translation
model. We illustrate the steps in the decoding of a source
input using the SFST translation in Section 4. In Section 5,
we present a discriminative model for translation which ad-
dresses the shortcomings of SFST translation.

2. System Overview

In this section, we present an overview of our system. The
details of each component of the system are explained in sub-
sequent sections of the paper.

The training of the SFST model starts with a sentence
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aligned corpus as the input as shown in Figure 1. The sen-
tence aligned corpus is used to infer a word alignment using
an alignment training process. Word alignment results in a
mapping between the words in the source language sentence
and the words in the target language sentence. Words from
either the source or target sentence may be left unmapped.
Each word aligned sentence is transformed into a bilanguage
string where the first component is a source word and the
second component is a target word. The choice of repre-
senting the bilanguage in the order of the source language
implies that the target language words would not be in the
target language order. In order to alleviate this problem, we
use local phrase reordering with a fixed window which re-
tokenizes the bilanguage string so as to align the words ap-
pearing in the window to be in the correct source and target
language order. This retokenized string is used to build a
n-gram language model. The n-gram language model ap-
proximates the joint probability model between the source
sentence and source-ordered target language sentence. The
n-gram language model is represented as a weighted finite-
state acceptor (FSA) and the arcs are interpreted as having
two components, thus resulting a weighted finite-state trans-
ducer.

In the decoding/translation phase (Figure 2), a given in-
put, a sentence or a weighted lattice from a speech recog-
nizer is represented as a weighted FSA (WFSA). The WFSA
is composed with the SFST from the training process and
the highest probability path is extracted as the output of lex-

ical selection phase. The resulting target language sentence
is expected to have segments of words that would be in the
target language word order, however the phrases may have to
be reordered globally to form a well formed target language
sentence. We use lexical reordering to transform the output
of the lexical selection phase to create a well-formed target
language sentence.

3. SFST Training

In this section, we describe each of the components of our
lexical selection system in detail.

3.1. Word Alignment

The first stage in the process of training a lexical selection
model is obtaining an alignment function that given a pair
of source (s1s2 : : : sn) and target (t1t2 : : : tm) language sen-
tences, maps source language word subsequences into target
language word subsequences, as shown below.

8i9j(f(si) = tj _ f(si) = †) (1)

For this purpose, in the past, we have used the tree align-
ment algorithm described in [7]. For the work reported in this
paper, we have used the GIZA++ tool [8] which implements
a string-alignment algorithm.

GIZA++ alignment however is asymmetric in that the
word mappings are different depending on the direction of
alignment – source-to-target or target-to-source. Hence in
addition to the functionsf as shown in Equation 1 we train
another alignment functiong as shown in Equation 2.

8j9i(g(tj) = si _ g(tj) = †) (2)

English: I need to make a collect call
Japanese:ÏH �Ã�� ��Âk $*d »^%�cW2
Alignment: 1 5 0 3 0 2 4

Figure 3: Example bilingual texts with alignment informa-
tion

I:ÏH need:»^%�cW2 to:† make:��Âk
a:† collect�Ã�� call $*d

Figure 4: Bilanguage strings resulting from alignments
shown in Figure 1.

3.2. Bilanguage Representation

From the alignment information in Figure 3, we construct a
bilanguage representation of each sentence in the bilingual
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corpus. The bilanguage string consists of source-target sym-
bol pair sequences as shown in Equation 3. Note that the
tokens of a bilanguage could be either ordered according to
the word order of the source language or ordered according
to the word order of the target language.

Bf = bf
1 bf
2 : : : bf

m (3)

bf
i = (si¡1; si; f(si)) if f(si¡1) = †

= (si; f(si¡1); f(si)) if si¡1 = †

= (si; f(si)) otherwise

Figure 4 shows an example alignment and the source-
word-ordered bilanguage strings corresponding to the align-
ment shown in Figure 3.

We also construct a bilanguage using the alignment func-
tion g similar to the bilanguage using the alignment function
f as shown in Equation 3.

Thus, the bilanguage corpus obtained by combining the
two alignment functions isB = Bf [ Bg.

3.3. Bilingual Phrase Acquisition and Local Reordering

While word-to-word translation is only approximating the
lexical selection process, phrase-to-phrase mapping can
greatly improve the translation of collocations, recurrent
strings, etc. Also, the use of phrases allows for reordering
of words in the phrase to be in correct target language order,
thus solving part of the lexical reordering problem. More-
over, SFSTs can take advantage of the phrasal correlation to
improve the computation of the probabilityP (WS ; WT ) [1].

The bilanguage representation could result in multiple
words of the source sentence to be mapped to multiple words
of the target sentence as a consequence of some words being
aligned to†. In addition to these phrases, we compute subse-
quences of a given lengthk on the bilanguage string and for
each subsequence we reorder the target words of the subse-
quence to be in the same order as they are in the target lan-
guage sentence corresponding to that bilanguage string. This
results in a retokenization of the bilanguage where some to-
kens are source-target word pairs and others are source-target
phrase pairs.

3.4. SFST Representation

From the bilanguage corpusB, we train an-gram language
model using language modeling tools [9, 10]. The resulting
language model is represented as a weighted finite-state au-
tomaton (S£T ! [0; 1]). The symbols on the arcs of this au-
tomaton (si ti) are interpreted as having the source and target
symbols (si:ti), making it into a weighted finite-state trans-
ducer (S ! T £ [0; 1]) that provides a weighted string-to-
string transduction fromS into T (as shown in Equation 4).

T ⁄ = argmax
T

P (si; tijsi¡1; ti¡1 : : : si¡n¡1; ti¡n¡1) (4)

4. Decoding

In this section, we describe the decoding process and the
global reordering process in detail. Since we represent the
translation model as a weighted finite state transducer, the
decoding process of translating a new source input (sentence
or weighted lattice) amounts to a transducer composition and
selection of the best probability path resulting from the com-
position.

T ⁄ = …1(BestP ath(Is – T ransF ST )) (5)

However, we have noticed that on the development cor-
pus, the resulting target sentence is typically shorter than the
intended target sentence. This mismatch may be due to the
incorrect estimation of the back-off events and their proba-
bilities in the training phase of the transducer. In order to
alleviate this mismatch, we introduce a negative word inser-
tion penalty model as a mechanism to produce more words
in the target sentence.

4.1. Word Insertion Model

The word insertion model is also encoded as a weighted
finite-state automaton and is included in the decoding se-
quence as shown in Equation 6. The word insertion FST has
one state andj P

T j number of arcs each weighted with a‚
weight representing the word insertion cost. The word in-
sertion model penalizes or rewards paths which have more
words depending on whether‚ is positive or negative value.

T ⁄ = …1(BestP ath(Is – T ransF ST – WIP )) (6)

4.2. Global Reordering

Local reordering as described in Section 3.3 is restricted by
the window size and accounts only for different word order
within phrases. During decoding we apply global reordering
by permuting the words of the best translation and weighting
the result by an n-gram language model (see also Figure 2):

T ⁄ = BestP ath(perm(T 0) – LMt) (7)

Unfortunately, even the size of the minimal permutation
automaton grows exponentially with the length of the input
sequence. While decoding by composition simply resembles
the principle of memoization (i.e. in this case: all state hy-
potheses necessary to decode a sentence are kept in memory),
it is necessary to either use heuristic forward pruning or limit
the window of the allowed permutations. Similar to the way
described in [11] the latter was used here.

Decoding ASR output in combination with global re-
ordering uses eithern-best lists or extractsn-best lists from
lattices first. Decoding using global reordering is performed
for each entry of then-best list separately and the best de-
coded target sentence is picked from the union of then inter-
mediate results.
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5. Discriminant Models for Translation

The approach presented in the previous section is a genera-
tive model for statistical machine translation. However, dis-
criminant modeling techniques have become the dominant
method for resolving ambiguity in speech and natural lan-
guage processing tasks outperforming generative models for
the same task. Discriminative training has been used only for
translation model combination [8] but not directly to train
the parameters of a model. In recent work [12], we have
started to work on discriminatively trained models for lexi-
cal selection, which we detail in this section. We expect these
models to outperform generative models as well as provide a
framework for incorporating rich morpho-syntactic informa-
tion which result in sparseness for generative models.

Statistical machine translation can be formulated as a
search for the best target sequence that maximizesP (T jS),
whereS is the source sentence andT is the target sentence.
Ideally, P (T jS) should be estimated directly to maximize
the conditional likelihood on the training data (discriminant
model). However,T corresponds to a sequence with a expo-
nentially large combination of possible labels, and traditional
classification approaches cannot be used directly. Although,
Conditional Random Fields (CRF) [13] train an exponential
model at the sequence level, in translation tasks such as ours
the computational requirements of training such models is
prohibitively expensive.

5.1. Maximum Entropy-based Sequential Lexical Choice
Model

We approximate the string level global classification prob-
lem, using independence assumptions, to a product of local
classification problems as shown in Equations 8.

P (T jS) =
NY

i

P (tijΦ(S; i)) (8)

whereΦ(S; i) is a set of features extracted from the source
stringS (shortened asΦ in the rest of the section).

A very general technique to obtain the conditional distri-
bution P (tijΦ(S; i)) is to choose the distribution with least
assumptions (with Maxent) that properly estimates the aver-
age of each feature over the training data [14]. This gives
us the Gibbs distribution parameterized with the weights‚t

wheret ranges over the label set andV is the total number of
target language vocabulary.

P (tijΦ) = e‚ti
¢Φ

PV
t=1 e‚t¢Φ (9)

The weights are chosen so as to maximize the conditional
likelihoodL =

P
i L(si; ti) with

L(S; T ) =
X

i

logP (tijΦ) =
X

i

log
e‚ti

¢Φ
PV

t=1 e‚t¢Φ (10)

The procedures used to find the global maximum of this
concave function include two major families of methods: It-
erative Scaling (IS) and gradient descent procedures, in par-
ticular L-BFGS methods [15], which have been reported to
be the fastest. We obtained faster convergence with a new Se-
quential L1-Regularized Maxent algorithm (SL1-Max) [16],
compared to L-BFGS1. We have adapted SL1-Max to condi-
tional distributions for our purposes. Another advantage of
the SL1-Max algorithm is that it provides L1-regularization
as well as efficient heuristics to estimate the regularization
meta-parameters. The computational requirements areO(V )
and as all the classes need to be trained simultaneously, mem-
ory requirements are alsoO(V ). Given that the actual num-
ber of non-zero weights is much lower than the total number
of features, we use a sparse feature representation which re-
sults in a feasible runtime system.

5.1.1. Frame level discriminant model: Binary Maxent

For the machine translation tasks, even allocatingO(V ¢ F )
memory (whereF denotes the number of features) during
training exceeds the memory capacity of current computers.
To make learning more manageable we factorize the word-
level multi-class classification problem into binary classifica-
tion sub-problems. This also allows for parallelization during
training the parameters. We use hereV one-vs-other binary
classifiers at each word. Each output labelt is projected into
a bit string, with componentsbj(t). The probability of each
component is estimated independently:

P (bj(t)jΦ) = 1¡ P (b̄j(t)jΦ) = 1

1 + e¡(‚j¡‚„j)¢Φ (11)

where‚j̄ is the parameter vector forb̄j(y). Assuming the bit
vector components to be independent, we haveP (tijΦ) =Q

j P (bj(ti)jΦ). Therefore, we can decouple the likelihood
and train the classifiers independently. In this paper, we use
the simplest and most commonly studied code, consisting of
V one-vs-others binary components. The independence as-
sumption states that the output labels or classes are indepen-
dent.

5.2. Maximum Entropy-based Bag-of-Words Lexical
Choice Model

The sequential lexical choice model described in the pre-
vious section treats the selection of a lexical choice for a
source word in the local lexical context as a classification
task. The data for training such models is derived from the
word alignment corpus obtained from alignment algorithms
such as GIZA++. The decoded target lexical items have to
be further reordered, but for closely related languages the re-
ordering could be incorporated into correctly ordered target
phrases as discussed previously.

For pairs of languages with radically different word order
(e.g. English-Japanese), there needs to be a global reorder-

1http://homepages.inf.ed.ac.uk/s0450736/maxenttoolkit.html
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Training Dev 2005 Dev 2006
Chinese English Chinese English Chinese English

Sentences 46,311 506 489
Running Words 351,060 376,615 3,826 3,897 5,214 6,362⁄

Vocabulary 11,178 11,232 931 898 1,136 1,134⁄

Singletons 4,348 4,866 600 538 619 574⁄

OOVs [%] - - 0.6 0.3 0.9 1.0
ASR WER [%] - - - - 25.2 -

Table 1: Statistics about the training and development data 05 and 06.⁄ = first of multiple reference translations only.

Dev 2005 Dev 2006
Text Text ASR 1-best

FST 51.8 19.5 16.5
SeqMaxEnt 53.5 19.4 16.3

BOWMaxEnt 59.9 19.3 16.6

Table 2: Results (mBLEU) scores for the three different models on the transcriptions for development set 2005 and 2006 and
ASR 1-best for development set 2006.

ing of words similar to the case in the SFST-based translation
system. Also, for such differing language pairs, the align-
ment algorithms such as GIZA++ perform poorly.

These observations prompted us to formulate the lexical
choice problemwithout the need for word alignment infor-
mation. We require a sentence aligned corpus as before, but
we treat the target sentence as a bag-of-words or BOW as-
signed to the source sentence. The goal is, given a source
sentence, to estimate the probability that we find a given
word in the target sentence. This is why, instead of producing
a target sentence, what we initially obtain is a target bag of
words. Each word in the target vocabulary is detected inde-
pendently, so we have here a very simple use of binary static
classifiers. Training sentence pairs are considered as positive
examples when the word appears in the target, and negative
otherwise. Thus, the number of training examples equals the
number of sentence pairs, in contrast to the sequential lexical
choice model which has one training example for each to-
ken in the bilingual training corpus. The classifier is trained
with n-gram features (BOgrams(S)) from the source sen-
tence. During decoding the words with conditional probabil-
ity greater than a thresholdµ are considered as the result of
lexical choice decoding.

BOW ⁄
T = ftjP (tjBOgrams(S) > µg (12)

In oder to reconstruct the proper order of words in the
target sentence we consider all permutations of words in
BOW ⁄

T and weight them by a target language model. This
step is similar to the one described in Section 4.2 and we
indeed use the same implementation here.

The bag-of-words approach can also be modified to allow
for length adjustments of target sentences, if we add optional

deletions in the final step of permutation decoding. The pa-
rameterµ and an additional word deletion penalty can then
be used to adjust the length of translated outputs.

6. Data and Experiments

We have performed experiments on the IWSLT06 Chinese-
English training and development sets from 2005 and 2006.
The data are traveler task expressions such as seeking direc-
tions, expressions in restaurants and travel reservations. Ta-
ble 1 presents some statistics on the data sets. It must be
noted that while the 2005 development set matches closely
with the training data, the 2006 development set has been col-
lected separately and shows slightly different statistics for av-
erage sentence length, vocabulary size and out-of-vocabulary
words. Also the 2006 development set contains no punctua-
tion marks in Chinese, but the corresponding English transla-
tions have punctuation marks. We also evaluated our models
on the speech recognition output and we report results on the
1-best output of the speech recognizer. The 1-best Chinese
speech recognition word error rate is 25.2%.

For the experiments, we tokenized the Chinese sentence
into character strings and trained the models discussed in the
previous sections. Also, we trained a punctuation predic-
tion model using maxent framework on the Chinese char-
acter strings in order to insert punctuation marks into the
2006 development data set. The resulting character string
with punctuation marks is used as input to the translation de-
coder. For the 2005 development set, punctuation insertion
was not needed since the Chinese sentences already had the
true punctuation marks.

In Table 2 we present the results of the three different
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translation models – FST, Sequential Maxent and Bag-of-
words Maxent – on the data described above. There are a
few interesting observations that can be made based on these
results. First, on the 2005 development set, the sequential
maxent model outperforms the FST model, even though the
two models were trained starting from the same GIZA++
alignment. The difference, however, is due to the fact that
maxent models can cope with increased lexical context2 and
the parameters of the model are discriminatively trained. The
more surprising result is that the bag-of-words maxent model
significantly outperforms the sequence maxent model. The
reason is that the sequence maxent model relies on the word
alignment, which if erroneous, results in incorrect prediction
by the sequential maxent model. The bag-of-words model,
on the other hand does not rely on the word-level alignment
and can be interpreted as a discriminatively trained model of
dictionary lookup for a target word in the context of a source
sentence.

The second set of observations relate to the difference in
performance between 2005 development set and 2006 devel-
opment set. As indicated in the data release document, the
2006 set was collected in a very different manner compared
to the 2005 set. As a consequence, the mismatch between
the training set and 2006 development set in terms of lexical
and syntactic difference can be seen precipitating the lower
performance. Due to this mismatch, the performance of the
maxent models are not very different from the FST model;
indicating the lack of good generalization across different
genres. We however believe that the maxent framework al-
lows for incorporation of linguistic features that could poten-
tially help in generalization across genres. For translation of
ASR 1-best, we see a systematic degradation of about 3% in
mBLEU score compared to translating the transcription.

The bag-of-words approach is very promising because it
performs reasonably well despite considerable and easy to
identify losses of information between the source and the tar-
get. The first and most obvious loss is about word position.
The only information we use right now to restore the target
word position is the global language model, the information
about the position in the source sentence is completely lost.
We are currently working toward incorporating syntactic in-
formation on the target words so as to be able to recover some
of the position information lost in the classification process.

A less obvious loss is the number of times a word or con-
cept appears in the target sentence.Function wordslike ”the”
and ”of” can appear many times in an English sentence. We
are currently exploring several solutions to handle these mul-
tiple function words.Synonymsare target words which trans-
late the same source word. Suppose that in the training data,
target wordst1 andt2 are, with equal probability, translations
of the same source word. Then, in the presence of this source
word, the probability to detect the corresponding target word,
which is normally 0.8 (we assume some noise), will be, be-

2We use 6 words to the left and right of a source word for sequential
maxent, but only 2 preceding source and target words for FST approach.

cause of discriminant learning, split equally betweent1 and
t2, that is 0.4 and 0.4. Because of this synonym problem, we
immediately see that the threshold has to be set lower than
0.5, which is observed experimentally. However, if we set
the threshold to 0.3, botht1 and t2 will be detected in the
target sentence, and we found this to be a major source of
undesirable insertions.

7. Conclusions

We view machine translation as consisting of lexical selec-
tion and lexical reordering steps. These two steps need not
necessarily be sequential and could be tightly integrated. We
have presented the weighted finite-state transducer model
of machine translation where lexical choice and a limited
amount of lexical reordering are tightly integrated into a sin-
gle transduction. We have also presented a novel approach
to translation where these two steps are loosely coupled and
the parameters of the lexical choice model are discrimina-
tively trained using a maximum entropy model. The lexical
reordering model in this approach is achieved using a permu-
tation automaton. We have evaluated these two approaches
on the 2005 and 2006 IWSLT development sets.

8. References

[1] S. Bangalore and G. Riccardi, “Stochastic finite-state
models for spoken language machine translation,” in
Proceedings of the Workshop on Embedded Machine
Translation Systems, 2000, pp. 52–59.

[2] S. Bangalore and G. Riccardi, “A Finite-State Ap-
proach to Machine Translation,” inNAACL, Pittsburgh,
2001.

[3] S. Kanthak and H. Ney, “FSA: An Efficient and
Flexible C++ Toolkit for Finite State Automata Using
On-Demand Computation,” inACL 2004, Barcelona,
Spain, 2004, pp. 510–517.

[4] B. Zhou, S. Chen, and Y. Gao, “Constrained phrase-
based translation using weighted finite-state tranducer,”
in ICASSP 2005, Philadelphia, 2005.

[5] S. Kumar, Y. Deng, and W. Byrne, “A weighted finite
state transducer translation template model for statisti-
cal machine translation,”Natural Language Engineer-
ing, vol. 12, no. 1, pp. 35–75, 2006.
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