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Abstract
The MIT-LL/AFRL MT system is a statistical phrase-

based translation system that implements many modern SMT
training and decoding techniques. Our system was designed
with the long-term goal of dealing with corrupted ASR in-
put and limited amounts of training data for speech-to-speech
MT applications. This paper will discuss the architecture of
the MIT-LL/AFRL MT system, improvements over our 2005
system, and experiments with manual and ASR transcription
data that were run as part of the IWSLT-2006 evaluation cam-
paign.

1. Introduction
In recent years, the development of statistical methods for
machine translation has made usable MT a real possibility.
Specifically, advances in methods to:

• Extract word alignments from parallel corpora [1][2]

• Learn and model the translation of phrases [3] [4]

• Combine and optimize model parameters [5] [6] [7]

• Decode and Rescore Test data [8] [9]

These advances have helped to dramatically increase the
quality of MT output. Our 2006 IWSLT system extends these
methods and work we did in 2005 [10].

In subsequent sections, we will discuss the details of
the translation system including our alignment and language
models and methods we’ve implemented for optimization
and decoding. Specifically, we will highlight improvements
and changes made to:

1. Better utilize the larger 2006 training set

2. Coverage of Italian and Japanese

3. Enhance the coverage of extracted phrases

†This work is sponsored by the Air Force Research Laboratory under
Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclu-
sions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.
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Figure 1: Basic Statistical Translation Architecture

4. Better models and better decoding

5. Increase gains from rescoring n-best lists

As this year’s evaluation conditions have changed, our
basic translation training and decoding processes have been
adapted accordingly, as shown in Figure 1. Boxes in grey
have not changed substantially since 2005. Refer to [10] for
more detail regarding the implementation of these modules.

We submitted systems for Chinese, Japanese and Italian-
to-English language pairs. In each case, we used only the
supplied data for each language pair for training and opti-
mization. From these data, we extract word/character align-
ments. These alignments are then expanded using slightly
modified versions of standard heuristics. This process is de-
scribed in detail in Section 3. Phrases are then extracted and
counted, and the resulting phrase table is then used for de-
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Figure 2: A Factor-based Consistency-Checking Model

coding and rescoring. Language models are trained using
the English side of each language pair.

Using development bitexts separated from the training
set, we then employ a minimum error rate training process
to optimize model parameters utilizing a held-out develop-
ment set. These trained parameters and models can then be
applied to test data during decoding and rescoring phases of
the translation process.

2. Data Preprocessing
For Chinese and Japanese texts, we used the supplied UTF-
8 encodings and converted all roman characters into ASCII.
We used Latin-1 encoding for all Italian texts. Source and
target side training texts are lower-cased before training.

Because this year’s evaluation data (and devset 4) in-
cluded no source punctuation, we implemented a source-
language repunctuator to better match the training data.

3. Improved Word/Character Alignments
In this year’s system we employed multiple word and char-
acter alignment strategies, extending the method described
in [11]. For all language pairs, we combine alignments from
IBM model 5 see [1] and [12] and alignments extracted using
the competitive linking algorithm (CLA) described in [13].
We apply a simple χ2 likelihood function, though we found
only minor differences between this function and others that
have been proposed in the literature [14]. Phrases were ex-
tracted from both types of alignments and combined in one
phrase table. This was done by summing counts of phrases
extracted from alignment types before computing the relative
frequency used in the our phrase tables.

Additionally, for Chinese-to-English translation, both
word and character segmentation were for training CLA and
GIZA alignment models. Phrases were then extracted from
all four alignments and combined. Word segmented phrases
were resegmented into characters before counting.

4. Improved Translation Models
Following the 2006 JHU summer workshop we conducted
a number of experiments with factored translation models
using our training/decoding paradigm. To this end we in-
tegrated the moses decoder into minimum error rate train-
ing decoding processes. This allowed us to try two differ-
ent factor-based approaches to the IWSLT Chinese-English
translation task.
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Figure 3: A Parallel Word Class/Surface Translation Model

Factored translation models extend standard phrase-
based statistical models by representing words as vectors
of factors. This representation can be used to decompose
words into constituent parts (e.g. lemma + affix) for the
purpose of modeling them separately, or as generalizing
words into larger linguistic “classes” (e.g. part-of-speech).
From a factored representation, it is possible to train stan-
dard statistical models that are then combined using stan-
dard log-linear assumptions in which feature functions of the
form hFACTORk

(e1...i, f1...j) represent translation likeli-
hoods that are specific to factor k and special generation fea-
tures hgen(FACTORk(ei), FACTORl(ei)) that represent
the likelihood of generating FACTORk from FACTORl.

Because we did not have access to analysis tools in Chi-
nese during the IWSLT evaluation, we chose to create mod-
els using automatically derived word classes (as generated by
mkcls). In our experiments words are represented both by
their surface form and by their associated word classes.

Using this representation we trained two different mod-
els:

• Consistency-Checking Model – Translate source sur-
face forms to target, generate word classes for each
target, then apply a class-based LM.

• A Parallel Translation Model – Translate both source
surface forms and word-classes to target word/class
pairs, then apply a class-based LM.

These models are shown schematically in Figure 2 and Fig-
ure 3, respectively. We note that the parallel approach is quite
similar to the alignment template model proposed in [15]
with an additional surface-to-surface form translation model.
These models were not applied in time for official submission
to the 2006 evaluation, but in post-evaluation experiments we
found these models to be quite helpful.

5. Improved Decoding
For the 2006 evaluation we used a combination of two de-
coders: our in-house decoder mtdecoder and the moses
decoder developed as part of the 2006 JHU summer work-
shop. For most experiments, both decoders performed on
par with each other (though we generally used our own
decoder for minimum error rate training, because of it’s
speed). For factored experiments, we used moses. With
both decoders we found it advantageous to use 4-gram and
5-gram language models in decoding. Our official submis-
sions for Chinese, Japanese and Italian use 4-gram Interpo-
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Better Decoding
Reordering Constraints

• Revisit Reordering Constraints [Zens 03]
– IBM Constraints: Must cover first K uncovered positions

– ITG Constraints [Wu 95, 97]
 Disallow ‘inside-outside’ movements

• Faster, some BLEU improvement in Japanese
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Figure 4: An example of a disallowed reordering using IBM
constraints
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Figure 5: An example of a disallowed reordering using ITG
constraints

lated Knesser-Ney models trained using the SRI Language
Modeling Toolkit [16] [17] [18].

Using our decoder we implemented three types of re-
ordering constraints, revisiting work done in [19] with the
IWSLT-2006 data. We explored both ITG [20] and IBM con-
straints, and the results shown in Section 7 indicate that dif-
ferent reordering constraints don’t decrease the BLEU score
significantly in most language pairs while reducing decod-
ing time by 20-50%. Both constraints disallow certain reord-
ing configurations. Figures 5 and 4 offer examples of these
configurations. Details of these experiments are described
in [21].

6. Rescoring N-best Lists
As in 2005, we employ minimum error rate training to opti-
mize model scaling factors for both decoding and rescoring
features. In this year’s evaluation, we added 5-gram rescor-
ing language models and 6-gram class-based rescoring lan-
guage models after decoding. After the evaluation we added
sentence length posterior features for rescoring. A full list of
the feature functions used in our system is shown in Table 1.
We approximate sentence length posteriors from the n-best

list as:

P (L|f1...J) ≈
∑

{e | |e|=L}

P (e1...L|f1...J) (1)

Similarly IBM model 1 scores can be computed for each n-
best list entry:

Pibm1 ≈ 1
(I + 1)J

J∏
j=1

I∑
i=1

p(fj |ei) (2)

7. Development Experiments
In preparation for the arrival of the official evaluation data,
we conducted experiments with our system using dev4 in

1features added after the official submission

Decoding Features
P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion
P̂ (e) – 4-gram language model

Rescoring Features

P̂ (e) – 5-gram LM
P̂ (e) – 6-gram class-based LM

PModel1(f |e) – IBM model 1 translation probabilities
Sentence-length posterior1

Table 1: Feature functions used in the translation model

each of the language pairs. For these experiments we set
aside dev1 for minimum error rate training.

7.1. Segmentation and Alignment

For different language pairs we employ different segmenta-
tion techniques. We use basic word segmentation for Italian,
combining phrases extracted from IBM model 5 alignments
with CLA alignments. For Japanese, we found it optimal to
use word segmentation with character segmentation backoff
with CLA alignments. In this configuration, words that were
unseen in training (OOV) are broken into constituent charac-
ters then translated using character phrases. In the Chinese
case, we use both word and character segmentation. From
both, we compute both CLA and IBM model 5 alignments
and extract phrases that are then normalized to character seg-
mentation when aggregating counts.

Tables 2, 3 and 4 show a summary of results for various
configurations of segmentation and alignment.

Configuration BLEU
Character Segmented 21.24

Word Segmented 21.01
Char+Word Segmented 21.21

Char+Word Segmented + CLA 22.18

Table 2: Segmentation/alignment results for Chinese (dev4)

7.2. Rescoring

In addition to standard features that we use during decoding,
we introduce a number of additional features for rescoring
n-best lists generated by our decoder (or moses). For the
2006 evaluation we tried a number of new features, includ-
ing longer context LMs (text and class-based), IBM model
1, unigram posteriors and sentence length posteriors. Empir-
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Configuration BLEU
Word Segmented 23.63

Word Segmented + Character Backoff 23.82
Word Segmented + CLA 23.34

Word Segmented + Character Backoff + CLA 24.28

Table 3: Segmentation/alignment results for Japanese
(dev4)

Configuration BLEU
Word Segmented 35.13

Word Segmented + CLA 37.40

Table 4: Segmentation/alignment results for Italian (dev4)

ically, we found that all features with the exception of uni-
gram posteriors were beneficial. As shown in Table 5 rescor-
ing is helpful when testing on dev4 for all language pairs,
though it varies widely (from 3.32% to 10.76% relative im-
provement).

BLEU
Configuration Chinese Japanese Italian
Baseline 4-gram Decode 21.39 21.92 36.92

w/5-gram rescore LM 21.55 – –
w/6-gram class-based LM 21.52 – –
w/Model 1 21.86 – –
w/Sent. Length Posterior 22.10 – –

ALL Features 22.10 24.28 37.40

Table 5: Rescoring results for all languages (dev4)

7.3. Pre/Post-Processing

During the evaluation, we explored different pre and post-
processing options to optimize this year’s official evaluation
criterion (mixed-case, with punctuation, no source punctua-
tion provided). We tried two different methods of producing
target punctuation: 1) training asymmetric models by remov-
ing source punctuation from train and development corpora,
and 2) repunctuating source sentence in the supplied devel-
opment and test corpora.

To produce mixed-case output, we applied implemented
an HMM-based truecasing model as proposed in [22]:

w∗1...j = arg max
w1...j

P (w1...j |s1...j) (3)

= arg max
w1...j

P (s1...j |w1...j) (4)

∗P (w1...j) (5)

where a standard, interpolated language model approxima-

BLEU
Configuration Chinese Japanese Italian
Remove Source Punctuation

w/4-gram TrueCase LM 21.86 23.14 36.64
Repunctuate Source

w/3-gram TrueCase LM 21.93 – –
w/4-gram TrueCase LM 22.10 24.28 37.40
w/5-gram TrueCase LM 22.10 – –

Table 6: Effects of different pre/post-processing methods
(dev4)
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tion is used as in:

P̂ (w1...j) ≈
j∏

k=1

P (wk|wk−1 . . . wk−n+1) (6)

and an approximate table of conditonal emission probabili-
ties is represented by:

P̂ (s1...j |w1...j) ≈
j∏

k=1

P (sk|wk) (7)

Where w∗1...k is the maximum likelihood TrueCased
output sequence and s1...j is the corresponding lower-case
input. As shown in Table 6, automatic repunctuation of the
input source is beneficial in performance terms. Similarly,
small gains can be had by choosing the appropriate language
model order for TrueCasing.

7.4. Factored Models

After the official evaluation deadline, we ran a number of ex-
periments to explore the performance of the factored models
described in Section 4. Our experiments focus on a baseline
Chinese-to-English system trained using only word segmen-
tation and optimized as described above. Due to time con-
straints, we did not perform the rescoring described in Sec-
tion 7.2. With this configuration, our baseline system achieve
a BLEU score of 19.60 on dev4 with the official evaluation
criteria.

We ran experiments with both Consistency Checking
models using a class-based language model, and Parallel
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Translation models using both class-based translation and
language models. As shown in Figure 6, both factored ap-
proaches achieve substantial gains, though the Consistency
Checking model (shown as Class-LM) is consistently bet-
ter than both the baseline and the Parallel Translation model
(shown as Class Trans+LM). This approach equals the per-
formance of our best rescoring model on dev4 despite start-
ing from a worse baseline.

We have seen that limitations in the current implementa-
tion of moses may cause search errors in our parallel trans-
lation models. Despite current limitations, our parallel mod-
els offer some advantage.

7.5. Decoder Reordering Constraints

BLEU/Time (secs)
Configuration Chinese Japanese Italian
free 20.32/3509.5 22.35/3309.7 35.85/90.6
IBM 19.85/2961.0 21.46/2969.3 35.52/36.2
ITG 19.85/2961.0 21.37/1868.7 35.52/36.2

Table 7: Performance of different reordering constraints
(dev4)

Although we did not use ITG or IBM reordering con-
straints in our official submissions, some development exper-
iments with these constraints did yield gains. Unfortunately,
these gains were not consistent across dev sets. Table 7
shows the performance of different reordering constraints in
constrast to our baseline configuration, free reordering, in
which all possible reorderings are allowed within a fixed win-
dow (in our default configuration this is set to 10).

Gains in processing time are quite apparent. 20-60% im-
provement in speed can be had with minimal BLEU score
impact using these reordering constraints. More detailed ex-
periments with these constraint can be found in [21].

8. Evaluation Results and Analysis

Text Input BLEU
Configuration Chinese Japanese Italian
Opt. (dev4) 21.57 20.99 35.74
Opt. (dev1) 20.66 20.24 34.40
Opt. (dev4) – No Rescoring 21.27 – –

Table 8: Overall performance of submitted systems with text
input (test-2006)

Tables 8 and 9 show our official submissions to the
2006 IWSLT evaluation. Official primary submissions are
shown in bold. Each primary system performed well, rank-
ing 3rd/4th in ASR BLEU scores and 2nd/4th in text BLEU
scores among submitted systems. Note that our primary sys-
tem was not always best (e.g. Italian ASR condition). Our

ASR Input BLEU
Configuration Ch (Read) Ch (Spon.) Jp It
1-best, Opt (dev4) 18.61 16.57 18.91 27.98
10-best, Opt (dev4) 17.42 16.57 – 28.81
1-best, Opt (dev1) 18.46 – 18.43 27.64

Table 9: Overall performance of submitted systems with ASR
input (test-2006)

primary submissions were optimized using dev4. These
submissions processed 1-best ASR input and reference tran-
scription. Our secondary submissions decoded 10-best from
the ASR lattice, merging MT n-best lists and rescoring with
ASR features as described in [10].

Reruning our system using the 2005 train/dev/test
paradigm, we found that our system gained over 4 BLEU
points (8.7% relative improvement) with respect to our pre-
vious best.

Our next steps include further development of our in-
house decoder and experiments with factored models using
better baselines and better search methods.
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