
NTT Statistical Machine Translation for IWSLT 2006

Taro Watanabe, Jun Suzuki, Hajime Tsukada and Hideki Isozaki

NTT Communication Science Laboratories
2-4 Hikaridai, Seika-cho, Soraku-gun,

Kyoto, Japan 619-0237
{taro, jun, tsukada, isozaki}@cslab.kecl.ntt.co.jp

Abstract

We present the NTT translation system that is experimented
for the evaluation campaign of “International Workshop on
Spoken Language Translation (IWSLT).” The system con-
sists of two primary components: a hierarchical phrase-based
statistical machine translation system and a reranking sys-
tem. The former is conceptualized as a synchronous-CFG
in which phrases are hierarchically combined using non-
terminals. The latter uses a modified voted perceptron ap-
proach with large number of features. Experiments showed
that our hierarchical phrase-based model outperformed a
conventional phrase-based model. In addition, our reranking
algorithm further boosted the performance.

1. Introduction

This paper describes the NTT statistical machine translation
system which is experimented in the evaluation campaign of
the International Workshop on Spoken Language Translation
(IWSLT) 2006.

Our system consists of two parts. A hierarchical phrase-
based translation system that generates a largen-best list.
The n-best list is further reranked using a variant of voted
perceptron algorithm with additional feature functions.

This paper is organized as follows: first, we will review
the framework of statistical machine translation followedby
our hierarchical phrase-based approach. In Section 3, an-
best reranking algorithm will be presented. The reranking
algorithm is based on a voted perceptron algorithm with a
modified training procedure. Finally, we will discuss the de-
tail of the task description and condition, followed by exper-
imental results in Section 5.

2. Hierarchical Phrase-based Translation

2.1. Statistical Machine Translation

We use a log-linear approach [1] in which a foreign language
sentencefJ

1 = f1, f2, ...fJ is translated into another lan-
guage, i.e. English,eI

1 = e1, e2, ..., eI by seeking a maxi-

mum likelihood solution:

êI
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eI

1
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J
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In this framework, the posterior probabilityPr(eI
1|f

J
1 ) is di-

rectly maximized using a log-linear combination of feature
functionshm(eI

1, f
J
1 ), such as a ngram language model or

a translation model. When decoding, the denominator is
dropped since it depends only onfJ

1 . Feature function scal-
ing factorsλm are optimized based on a maximum likelihood
approach [1] or on a direct error minimization approach [2].
This modeling allows the integration of various feature func-
tions depending on the scenario of how a translation is con-
stituted.

2.2. Hierarchical Phrase-based Approach

In the phrase-based translation approach [3], the input for-
eign sentence is segmented into phrases,f̄K

1 , mapped into
corresponding English-sidēeK

1 , then, reordered to form the
output English sentence. The approach is able to capture
phrase-wise local-reordering, or possibly neighboring phrase
reordering, but does not account for long-distance reordering
of phrases.

In the hierarchical phrase-based translation approach
[4], translation is constituted by hierarchically combining
phrases with the help of non-terminals embedded in phrases
themselves. Each non-terminal represented in each phrase
can capture reordering of phrases.

Based on the hierarchical phrase-based modeling, we
adopted the left-to-right target generation method described
in [5]. The method is able to generate translations efficiently,
first, by simplifying the grammar so that the target-side takes
a phrase-prefixed form, namely target normalized form. Our
simplified grammar drastically reduces the number of rules
extracted from a bilingual corpus empirically presented in
[5]. Second, translation is generated in a left-to-right man-
ner, similar to a phrase-based approach, using an Earley-style
top-down parsing on the source-side. Coupled with the tar-
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get normalized form, ngram language models are efficiently
integrated during the search even with a higher order.

2.3. Simplified Grammar: Target Normalized Form

In [4], each production rule is restricted to a rank-2 or bi-
narized form in which each rule contains at most two non-
terminals. Under this restriction, enormous number of rules
are still extracted from a bilingual corpus using the algorithm
described in Section 2.4.

We introduce a target normalized form in which the
target-side of the aligned right-hand side is restricted toa
Greibach Normal Form like structure:

X ←
〈

γ, b̄β,∼
〉

(3)

whereX is a non-terminal,γ is a source-side string of ar-
bitrary terminals and/or non-terminals.b̄β is a correspond-
ing target-side wherēb is a string of terminals, or a phrase,
andβ is a (possibly empty) string of non-terminals. The use
of phrasēb as a prefix keeps the strength of the phrase-base
framework. A contiguous English side coupled with a (possi-
bly) discontiguous foreign language side preserves a phrase-
bounded local word reordering. At the same time, the target-
normalized framework still combines phrases hierarchically
in a restricted manner. For instance, it can capture “ne ...
pas” and “not ...” translating from French into English, but
cannot directly handle the other direction.

The target-normalized form can be regarded as a type of
rule in which certain non-terminals are always instantiated
with phrase translation pairs. Thus, we will be able to reduce
the number of rules induced from a bilingual corpus, which,
in turn, help reducing the decoding complexity. Note that we
do not imply arbitrary synchronous-CFGs are transformed
into the target normalized form. The form simply restricts
the grammar extracted from a bilingual corpus explained in
Section 2.4.

2.4. Training

The phrase extraction algorithm is based on those presented
by [3]. First, many-to-many word alignments are induced
by running a one-to-many word alignment model, such as
GIZA++ [6], in both directions and by combining the results
based on a heuristic [7]. Second, phrase translation pairs are
extracted from the word aligned corpus [3]. This method
exhaustively extracts phrase pairs(f j+m

j , ei+n
i ) from a sen-

tence pair(fJ
1 , eI

1) that do not violate the word alignment
constraintsa.

In the hierarchical phrase-based model, production rules
are accumulated by computing “holes” for extracted contigu-
ous phrases [4]:

1. A phrase pair(f̄ , ē) constitutes a rule:

X →
〈

f̄ , ē
〉

2. A rule X → 〈γ, α〉 and a phrase pair(f̄ , ē) s.t. γ =
γ′f̄γ′′ andα = ē′ēβ constitutes a rule:

X →
〈

γ′ Xk γ′′, ē′ Xk β
〉

where the boxed indices indicate non-terminal alignment.
One of the major differences to the algorithm presented in
[4] is the restriction of the target normalized form in the last
step.

2.5. Decoding by Top-down Parsing

Decoding is performed by parsing on the source-side and by
combining the projected target-side. A conventional method
of parsing is a CKY-based method in which ordering is gov-
erned by the span-size of the source words [4]. One of the
problem is the high computational complexity when inte-
grated with ngram language model of the target-side espe-
cially when the ngram’s order is quite high [8]. The com-
plexity lies on the possible “holes” in the target-side. Oneof
the solution is to perform a binarization so that the target-side
will not contain holes [9].

We applied an Earley-style top-down parsing approach
described in [5] that is similar to [10]. The basic idea is to
perform a top-down parsing in order so that the projected
target-side is generated in a left-to-right manner. The search
is guided with a push-down automaton which keeps track of
the span-size of uncovered source word positions. Combined
with the rest-cost estimation aggregated in a bottom-up way,
our decoder efficiently searches for the most-likely transla-
tion. Our decoding algorithm can be regarded as an instance
of Earley algorithm, but the predicted rule’s “dot” is moved
synchronized with the left-to-right ordering of the projected
target-side, not the left-to-right ordering on the source-side.

The use of target normalized form further simplify the
decodig procedure. Since the rule form does not allow any
holes for the target-side, the integration with ngram language
model is straightforward: the prefixed phrases are simply
concatenated and intersected.

Our decoder is based on an in-house developed phrase-
based decoder which uses a bit vector to represent uncov-
ered foreign word positions for each hypothesis [14]. We
basically replaced the bit vector structure to the stack struc-
ture: Almost no modification was required for the word
graph structure and the beam search strategy implemented
for a phrase-based modeling, since the target-side’s prefixed
phrases are simply concatenated. The use of a stack structure
directly models a synchronous-CFG formalism realized as a
push-down automation, while the bit vector implementation
is conceptualized as a finite state transducer.

2.6. Feature Functions

Feature functions evaluated during the decoding procedureis
summarized as count-based models, lexicon-based models,
language model, reordering models and length-based mod-
els.
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2.6.1. Count-based Models

Main feature functionshφ(fJ
1 |e

I
1,D) andhφ(eI

1|f
J
1 ,D) esti-

mate the likelihood of two sentencesfJ
1 andeI

1 over a deriva-
tion treeD. We assume that the production rules inD are
independent of each other:

hφ(fJ
1 |e

I
1,D) = log

∏

〈γ,α〉∈D

φ(γ|α) (4)

φ(γ|α) is estimated through the relative frequency on a given
bilingual corpus.

φ(γ|α) =
count(γ, α)

∑

γ count(γ, α)
(5)

where count(·) represents the cooccurrence frequency of
rulesγ andα.

2.6.2. Lexicon-based Models

We define lexically weighted feature functionshw(fJ
1 |e

I
1,D)

andhw(eI
1|f

J
1 ,D) by applying the independence assumption

of production rules as in Equation 4.

hw(fJ
1 |e

I
1,D) = log

∏

〈γ,α〉∈D

pw(γ|α) (6)

The lexical weightpw(γ|α) is computed from word align-
mentsa insideγ andα [3]:

pw(γ|α, a) =

|α|
∏

i=1

1

|{j|(i, j) ∈ a}|

∑

∀(i,j)∈a

t(γj |αi) (7)

wheret(·) is a lexicon model trained from the word align-
ment annotated bilingual corpus discussed in Section 2.4.
The alignmenta also includes non-terminal correspondence
with t(Xk |Xk ) = 1. If we observed multiple alignment
instances forγ and α, then, we take the maximum of the
weights.

pw(γ|α) = max
a

pw(γ|α, a) (8)

A deletion model penalizes missed foreign words that do
not constitute a translation:

hdel(e
I
1, f

J
1 ) =

J
∑

j=1

[

max
0≤i≤I

t(fj |ei) < τdel

]

(9)

The deletion model simply counts the number of words
whose lexicon model probability is lower than a threshold
τdel. Likewise, an insertion model is integrated that penal-
izes the inserted English words that do not account for any
foreign words in an input:

hins(e
I
1, f

J
1 ) =

I
∑

i=1

[

max
0≤j≤J

t(ei|fj) < τins

]

(10)

2.6.3. Language Model

We used mixed-cased 5-gram language model estimated with
modified Kneser-Ney smoothing [11]:

hlm(eI
1) = log

∏

i

pn(ei|ei−4ei−3ei−2ei−1) (11)

2.6.4. Reordering Models

In order to limit the reorderings, two feature functions are
employed:

hheight(e
I
1, f

J
1 ,D) =

∑

Di∈back(D)

height(Di) (12)

hwidth(eI
1, f

J
1 ,D) =

∑

Di∈back(D)

width(Di) (13)

whereback(D) is a set of subtrees backtracked during the
derivation ofD, andheight(Di) andwidth(Di) refer to the
height and width of subtreeDi, respectively. The basic idea
is similar to a skip-based penalty usually applied in a phrase-
based model [3], but differ in that the penalties are associated
with the tree structure.

2.6.5. Length-based Models

Two trivial length-based feature functions are included that
count the number of target words and the number of produc-
tion rules that constitute a translation.

hl(e
I
1) = I (14)

hr(D) = rule(D) (15)

3. Reranking by Voted Perceptron

This section explains our discriminative reranking method
which further improves the quality of baseline MT system.

Our reranking method basically follows the parse rerank-
ing method explained in [12]. We first generate an-best list
of candidate outputs (translations) from a baseline MT sys-
tem, the hierarchical phrase-based translation describedin
Section 2. Then, a reranking model is trained by a ranking
voted perceptron on a development set. Finally, in the pro-
cess of decoding, we re-rank then-best list of test data fed
from the baseline MT using the trained reranking model. We
adopted the above method, [12], with a BLEU-score-based
weight update scheme. The reranking setting of MT is an
ordinal regression procedure in each output pairs, similarto
the parse reranking task, which can be generally reduced to
a classification setting in each sample.

3.1. Features

The feature functions described in Section 2.6 are locally de-
cidable and are devised mainly for the efficiency of a DP-
based search procedure presented in Section 2.5. One advan-
tage of discriminative reranking is that a wide variety of fea-
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en: Please write down your address here

ja: Jyuusho wo koko ni kai tekudasai

< X1, Please X1 >
< X1 kai tekudasai, write X1 >
<X1 wo X2, down X1 X2>
<jyuusyo, your address>

<koko ni, here>

(a) IBM-model1 alignments

(b) Hierarchical Phrase Pairs (Rules)

Figure 1: Example of IBM-model1 alignments and hierar-
chical phrase pairs

tures can be integrated, including sentence-wise global fea-
tures.

We employed three feature types for our reranking:

1. SC: Scores of feature functions used in the base-
line system with additional feature functions, namely,
sentence-wise IBM-model1 alignment scores of both
source-target and target-source alignments, andn-
gram scores of target sentences wheren equals 1 to
4,

2. AL: word pairs obtained by IBM-model1 alignment,

3. RU: hierarchical phrase pairs and shapes of rules.

Figure 1 shows an example of IBM model1 alignment.
From the example in Figure 1, eight word pairs, [Jyuusho
- address], [wo-down], [koko-here], [ni-here], [kai-write],
[tekudasai-write], [NULL-Please], and [NULL-your] are ex-
tracted as AL features.

As shown in Figure 1, five hierarchical phrase pairs,
namely,〈X1, PleaseX1〉, 〈X1 kai tekudasai, writeX1〉, 〈X1

wo X2, downX1 X2〉, 〈 Juusyo, your address〉, and〈 koko
ni, here〉 are obtained as RU features. In addition, we also
handle the rule patterns for RU features. We abstract all con-
secutive words in one special symbol ‘W ’. For example,
〈X1, PleaseX1〉 and〈X1 kai tekudasai, writeX1〉 become
〈X1, W X1〉 and〈X1 W , W X1〉, respectively. Therefore,
〈X1, W X1〉, 〈X1 W , W X1〉, 〈X1 W X2, W X1 X2〉,
and〈W , W 〉 are also obtained as RU features. Note that AL
and RU are sets of sparse features which generally amount to
more than ten thousand features.

3.2. Reranking Algorithm

Algorithm in Figure 2 shows a ranking voted perceptron algo-
rithm extended for BLEU-score based weight updates. Our
extension updates the weight for candidate pairsxm

i andxm
j

wherei < j if they are not ordered correctly in the current
rankingXm in terms of BLEU-score (line 6-12 in Figure 2).

Algorithm extended ranking voted perceptron: training
D = {D1, ..., DM}: Development set
Cm = {cm

1 , ..., cm
N}: the originalN -best list ofDm

cm
n : n-th candidate inCm

Xm = {xm
1 , ...xm

N}: (reordered)N -best list ofDm

xm
i : i-th candidate in the (reordered)N -best listXm

Ranking(W, Cm): returnsN -best list ofCm reordered
based on the score,sm

n =< W, φ(cm
n ) >

φ(xm
n ): the feature vector ofxm

n

W : weight vector
V = {V1, ...VT }: set of weight vectors
T : Number of pre-defined iteration

1: For t = 1, . . . , T

2: For m = 1, . . . , M ;; for each sample in dev-set
3: Xm ← Ranking(W, Cm)
4: For i = 1, . . . , |Xm|
5: For j = i + 1, . . . , |Xm|
6: If (BLEU(xm

j ) > BLEU(xm
i )

7: & WER(xm
j ) <= WER(xm

i ))
8: s = (BLEU(xm

j )−BLEU(xm
i ))

9: W = W + s ∗ (φ(xm
j )− φ(xm

i ))
10: End If
11: End For
12: End For
13: Vt = W

14: End For
15: End For
16: Return V

Figure 2: Reranking Algorithm for training

The decoding scheme for our voting reranking model is pre-
sented in Figure 3.

3.3. Correct Ranking Score

Our reranking algorithm involves online supervised learn-
ing as shown in Figure 2. Under this situation, calculating
BLEU-score is rather costly since it requires a document-
wise computation, not a sample-wise computation. This
means that we have to re-calculate BLEU-score for every
iteration inside the second for-loop (line 6 in Figure 2).
To reduce the calculation cost, we employed approximated
BLEU-score for a ranking score.

Let Om
n be an output set, whereOm

n =
{c1

1, · · · , c
m−1
1 , cm

n , cm+1
1 , · · · , cM

1 }. Om
n contains all

1-best outputs of the baseline MT system except a sample
Dm, whose output is then-th candidates from the baseline
MT system. We calculate BLEU-score using output set
Om

n as the approximated BLEU-score forcm
n . As a result,

approximated BLEU-score is independent for the first loop;
We are only required to calculate BLEU-score once for
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Algorithm decoding algorithm for reranking model
G = {G1, . . . , GK}: Test set
Em = {em

1 , . . . , em
N}: the originalN -best list ofGk

I = {I1, . . . , IN}: votes forith candidate

1: For k = 1, . . . , K

2: I = 0

3: For t = 1, . . . , T

4: i = arg maxi < V t, φ(ek
i ) >

5: Ii = Ii + 1
6: End For
7: Output ek

i wherei = arg maxi Ii

8: End For

Figure 3: Decoding algorithm for reranking model

all candidates in development set during pre-processing.
Alternatively, we may use a segment-wise BLEU score for
an approximation. However, our internal studies indicated
that the segment-wise BLEU-score resulted in a wrong
objective as an approximation for document BLEU score.

Additionally, we used word error rate (WER) as a weak
constraint of updating weight to reduce over-fitting BLEU
score on development set (line 7 in Figure 2).

4. Tasks

The experiments were carried out on the Basic Travel Ex-
pression Corpus (BTEC) task [13]. BTEC is a multilingual
corpus in traveling domain which was collected from phrase
books for tourists. In the IWSLT 2006 open data track,
the subsets of BTEC consists of training set and three de-
velopment sets (Dev1 through Dev3) indicated in Table 1.
Another development set (Dev4) and the final test set were
provided in this track1. The translation pairs set up for the
task are: Arabic-to-English, Italian-to-English, Japanese-to-
English and Chinese-to-English.

The task description for the IWSLT 2006 evaluation cam-
paign can be summarized as follows:

1. Spoken language, instead of written texts, are used as
inputs to our translation system.

2. The last development set (Dev4) and test set are not
part of BTEC, but collected from “simple conversa-
tions in travel domain”2.

3. Since ASR output is used for translation source, the
source language side is lower-cased and without punc-
tuations.

4. However, translation is evaluated case-sensitive with
punctuation mark.

1We used 1-best ASR output for those sets.
2The details will be available fromhttp://www.slc.atr.jp/

IWSLT2006/archives/2005/11/evaluation camp.html

Although the spoken language translation specific prob-
lem, i.e. illformed input, is still unresolved, we mainly inves-
tigated the last two task-specific problems.

4.1. Preprocessing

Since Dev4 and the final test set were drawn from a differ-
ently created corpus, we used the whole corpora from BTEC
(Train through Dev3) as a training set, and the parameter tun-
ing was performed on Dev4.

All the corpora were preprocessed according to the stan-
dard defined within the IWSLT 2006 evaluation campaign:
English-side of the parallel corpora were simply punctuation
isolated, but the casing were preserved. The punctuations
were removed from the source-sides, and lower-cased. Nu-
meral characters were isolated for Japanese and Chinese.

4.2. Rule Extraction from Multiple Alignments

After a simple in-house experiment, we found that the above
simple approach resulted in many errors in word alignments.
This is due to the punctuation mismatch between the source-
side and English-side. Therefore, we follow the idea of [14]
when extracting rules from a word alignment annotated cor-
pus.

First, three kinds of corpora are prepared to differentiate
punctuation removal strategies:nopunct-with-nopunct where
punctuation marks are removed in both languages,punct-
with-punct where punctuations are kept, andnopunct-with-
punct in which punctuations are removed in the source-side
but remained for the target-side. Those three corpora are
merged into one large corpus.

Second, the merged corpus is preprocessed with three
different strategies: lower-cased, stemmed and prefix4 where
only the prefix of 4-letter are preserved. Word alignment is
obtained for each differently preprocessed corpus by running
GIZA++ in both directions, and by refining word alignment
with a heuristic.

Third, from three distinctly preprocessed corpora, rules
are extracted using the algorithm presented in 2.4. In this
step, preprocessed corpora are recovered into their original
form. When recovered, punctuation marks on the source-side
were removed together with corresponding word alignments.

The idea is to induce better word alignments by consid-
ering non-punctuation corpus, together with punctuation pre-
served corpus.

5. Results

5.1. Official Results

Our official results for the IWSLT 2006 Open Data Track are
summarized in Table 2. The primary system submitted for
the track is the combination of the hierarchical phrase-based
translation and the reranking algorithm presented in Sec-
tion 3 with ‘SC’ and ‘AL’ features, excluding ‘RU’ features.
Translation results on the spoken input are slightly lower
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Table 1: Corpus statistics for IWSLT 2006 evaluation campaign (open track)
Arabic English Italian English Japanese English Chinese English

Train sentences 19,972 19,972 39,953 39,953
words 130,643 184,789 144,281 184,789 353,630 369,540 303,801 369,540

Dev1 sentences 506 8,096 506 8,096 506 8,096 506 8,096
words 2,555 66,130 2,871 66,130 3,586 66,130 2,910 66,130

Dev2 sentences 500 8,000 500 8,000 500 8,000 500 8,000
words 2,659 65,568 2,759 65,568 3,588 65,568 2,996 65,568

Dev3 sentences 506 8,096 506 8,096 506 8,096 506 8,096
words 2,566 66,686 2,846 66,686 3,632 66,686 3,292 66,686
vocabulary 17,864 9,308 10,864 9,308 12,293 11,690 11,099 11,690

Dev4 sentences 489 3,423 489 3,423 489 3,423 489 3,423
Test sentences 500 500 500 500

spoken for read speech/text for correct recognition results.

Table 2: Official results for IWSLT 2006 open data track
BLEU NIST METEOR mWER mPER

Arabic-English spoken 20.71 (5th) 4.84 43.97 64.67 56.65
text 22.65 (5th) 5.33 47.76 62.79 54.15

Italian-English spoken 27.69 (7th) 6.70 56.07 57.00 48.13
text 34.49 (5th) 7.83 64.31 50.79 41.57

Japanese-English spoken 19.84 (2nd) 5.48 45.00 71.08 55.12
text 22.03 (2nd) 5.91 48.77 69.02 52.17

Chinese-English spontaneous15.59 (6th) 4.18 39.46 70.20 59.72
spoken 18.34 (5th) 4.53 42.15 68.44 57.71
text 21.35 (5th) 5.13 47.43 65.47 53.70

when compared against correct recognition inputs. The sys-
tem performed around average for most of the language
pairs, but performed quite well for the Japanese-English
task. Since Japanese-to-English translation requires longer
reordering of phrases, our hierarchically combined phrases
can capture those reorderings.

5.2. Results on Hierarchical Phrase-based Translation

We first compared our baseline hierarchical phrase-based
translation against an in-house developed phrase-based trans-
lation that performed quite well for the shared task of “Work-
shop on Statistical Machine Translation” [14]. Table 3 shows
the number of phrases and rules extracted from each task.
The grammar size for our hierarchical phrase-based system
is almost twice as large as the size of the phrase table for our
phrase-based system. The phrase-based system employs a
lexicalized reordering model to capture phrase-wise reorder-
ing [15]. For the hierarchical phrase-based system, span-
size for each non-terminal was constrained to 7 for all tasks.
Window-size constraints were set to 7 in the phrase-based
system. As indicated in Table 4, our hierarchical phrase-
based system outperforms the phrase-based system in all
tasks.

5.3. Results on Reranking

Table 5 shows the reranking results for IWSLT2006. The
rows of ‘1-best’ in Table 5 show the performance of our base-
line MT system, hierarchical phrase-based system (contrast-
1 system). Then, the rows of ‘SC’ display the performance
using only SC features for reranking (primary system). Fi-
nally, the rows of ‘ALL’ show the reranking performance
with three feature types, SC, AL and RU (contrast-2 results).
All results are obtained byn = 1000 of n-best list size.

As Table 5 indicates, we obtained large improvements
over all tasks, except for the Japanese-English task. The
Japanese-English task already achieved good performance
even with our baseline MT system. Since we did not employ
tree structure-based features in reranking, the improvement
were subtle.

Note that our primal system for IWSLT2006 submission
is reranking with only SC features because of the limited time
of the evaluation schedule. We would like to emphasize that
these results indicate that sparse features, such as AL and
RU, can further improve the overall translation quality.

6. Conclusions

We experimented with the NTT statistical machine trans-
lation system for the evaluation campaign of IWSLT 2006
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Table 3: Phrase/rule size for each task
Arabic-English Italian-English Japanese-English Chinese-English

Phrase 35,006,211 17,836,633 92,593,962 43,718,878
Rule 60,232,573 40,522,884 168,068,599 83,268,205

Table 4: Comparison of the phrase-based and hierarchical phrase-based system (BLEU [%])
Arabic-English Italian-English Japanese-English Chinese-English
spoken text spoken text spoken text spontaneous spoken text

Phrase-based 19.37 22.63 25.33 31.62 18.33 20.77 13.87 15.88 19.24
Hierarchical phrase 20.67 22.96 27.71 34.95 19.83 22.62 16.21 18.48 21.36

Open Data Track. Our system consisted of a baseline MT
system of hierarchical phrase-based translation with a left-to-
right target generation decoding method. Then-best list gen-
erated from our baseline system is reranked by a voted per-
ceptron algorithm with a sparse feature functions trained with
an approximated BLEU criterion. The experiments indicated
that our hierarchical phrase-based system is far better than a
conventional phrase-based system. In addition, the rerank-
ing algorithm can successfully improve the performance by
incorporating diverse feature functions. As our future work,
we are in the process of investigating more feature functions,
especially useful for our hierarchical modeling.
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