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Abstract
This paper describes the NiCT-ATR statistical machine trans-
lation (SMT) system used for the IWSLT 2006 evaluation
compaign. We participated in all four language pair trans-
lation tasks (CE, JE, AE and IE) and all two tracks (OPEN
and CSTAR). We used a phrase-based SMT in the OPEN
track and a hybrid multiple translation engine in the CSTAR
track. We also equipped our system with some of new pre-
processing and post-processing techniques for Chinese word
segmentation, named entity translation, punctuation and cap-
italization, sentence splitting, and language model adapta-
tion. Our experiments show these features significantly im-
proved our system.

1. Introduction
Phrase-based statistical machine translation (SMT) has pro-
gressed over the years and is the primary approach for SMT
research. This approach is used by 80% of the systems par-
ticipating in the NIST 2006 machine translation evaluation.
Our main translation engine for this year’s IWSLT evalua-
tion, TATR, is also a phrase-based SMT.

The hybrid multiple engine approach, that was used last
year [1], was used again this year. But we replaced the 2005
SMTs (PBHMTM and SAT) with TATR, partly for simplifi-
cation reasons. In addition to TATR, two other engines are
included in this year’s hybrid system: HPATR3, a SMT based
on syntactic transfer; and EM, the translation memory based
on exact match.

We employed new approaches for pre-processing, post-
processing, and language modeling. We used subword-based
Chinese word segmentation [2]. This word segmentation
achieved the highest F-score rate for the second Sighan test
data, and can recognize numerical expressions and foreign
names. We built a conversion model to implement capitaliza-
tion and punctuation by using the maximum entropy princi-
ple and the conditional random field (CRF) approach, which
can integrate long-range features to enhance performance.
We applied sentence-splitting techniques to all languages.
This approach significantly improved CE and JE translation.

For language modeling, we used a new language model adap-
tation approach that can divide training data by topic. For
each topic, a topic-dependent language model was built and
applied to input belonging to this topic at the time of transla-
tion. We found this approach also improved translations.

In this year’s evaluation, we participated in all four lan-
guage pair translation tasks and two tracks: OPEN and CSTAR
track. A list of all tests is shown in Table 1, where “

√
” indi-

cates we participated in the test and “×” means we did not.
We participated in 14 out of all the 18 tests.

Our translation system flow chart is illustrated in Fig. 1.
Before the input is translated by the MT engines, it is pre-
processed with a series of preprocessing methods: word seg-
mentation and sentence-splitting. We used three translation
engines, TATR, HPATR3 and EM, and used Selector for the
CSTAR track. But we used only one translation engine, TATR,
for the OPEN track. The final output is generated after the
post-processing module for the punctuation and capitaliza-
tion.

In the following sections, section 2 describes our word
segmentation methods. Section 3 describes our language
model adaptation. Section 4 describes the subword-based
name entity translation for Chinese. Section 5 describes the
translation engines, TATR and Selector. Section 6 describes
our CRF-based punctuation and capitalization. Section 7
presents our evaluation results. Section 8 provides our con-
clusions and comments.

2. Preprocessing
2.1. Arabic segmentation

Of the released data, we threw away all end-of-utterance mark-
ers. However, we kept any sentence markers that were in the
middle of an utterance, but standardized them to the same
unique marker. This punctuation preprocessing was performed
on the Arabic data as well as on the English data.

The morphological analysis of Arabic was performed us-
ing the BAMA as released by the LDC consortium [3]. This
implied that we had first to convert the encoding from UTF-8
into the Windows-1256 encoding.
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Table 1: List of IWSLT 2006 tests that we have participated in
language CE JE AE IE

track spontaneous read correct read correct read correct read correct
OPEN

√ √ √ √ √ √ √ √ √
CSTAR

√ √ √ √ √ × × × ×

TATR

HPATR3

Selector

output(OPEN track)

output(CSTAR track)
input

train n multiple pairs of TM and LM

TM n LM nTM 1 LM 1
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Figure 1: Overview of our translation system

The Arabic writing system composes the base of a word
with a set of proclitics and enclitics: conjunctions, particles,
the article and pronouns, etc. Such agglutinated forms are
highly ambiguous, and one such inflected form yields on av-
erage about 7 different readings.

As the size of the supplied data is small, we followed the
conclusions of [4] and opted for a morphological analysis
of Arabic. The output of the BAMA is a list of readings of
agglutinated forms in their transcribed form. In contrast, our
approach differs from the technique used in [5] where the
MADA tool is used to select the best hypothesis among the
candidate parses, we did not perform any disambiguation but
chose to select, in a consistent way, the first hypothesis of the
BAMA output. The input to the machine translation system
was the Buckwalter transcribed Arabic.

2.2. Chinese subword-based word segmentation

We used a Chinese subword-based word segmentation [2]
that is illustrated in Figure 2. This word segmentation is
composed of three steps. The first is a dictionary-based word
segmentation, similiar to the default word segmentation pro-
vided by LDC. The second is a subword-based IOB tagging
implemented by a CRF tagging model. The subword-based
IOB tagging achieves a better segmentation than character-
based IOB tagging. The third step is confidence dependent
disambiguation to combine the previous two results.

The subword-based word segmentation was evaluated in

Table 2: Comparison of different Chinese word segmenta-
tions for the NIST 2005 test data

BLEU NIST WER PER METEOR
LDC default 0.226 7.62 0.895 0.642 0.528

OURs 0.237 7.93 0.867 0.614 0.525

both the Sighan Bakeoff and the NIST machine translation.
In the second Sighan Bakeoff, the segmentation gave a higher
F-score than the best published results. We also evaluated
this in SMT using the NIST evaluation 2005 data, its BLEU
score was 1.1% higher than that using the LDC provided de-
fault word segmentation. The results are shown in Table 2.2.

2.3. Japanese and Italian word segmentation

A Ngram-based (word trigrams + POS trigrams) word seg-
mentation was used for Japanese processing. No Italian word
segmentation was required.

2.4. Sentence splitting

Sentence splitting is a new technique we applied to this eval-
uation. We used sentence splitting to cut long sentences into
short segments. We did so by automatically adding punctu-
ation to the ASR output without punctuation, and splitting
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Figure 2: Subword-based Chinese word segmentation

the output in the place of the added punctuation. Each seg-
ment was passed to translation engines. The final transla-
tion of the original ASR output was linearized by all the
segments’ translation. From the statistics, there were 1.28
segments for each sentence on average. Sentence splitting
was implemented by adding punctuation using the SRI tool,
“hidden-ngram.”

3. Topic-dependent language model
adaptation

A language model plays an important role for SMT. The ef-
fectiveness of a language model is significant if the test data
happen to have the characteristics of the training data for the
language models. However, this coincidence is rare in prac-
tice. To avoid this performance reduction, a topic adaptation
technique is often used. We applied this adaptation technique
to machine translation.

For this purpose, a “topic” is defined as clusters of bilin-
gual sentence pairs. For bilingual sentence pair clustering,
the following process is used:

1. The number of topic is the number of fixed clusters.

2. All of the sentence pairs are randomly assigned to one
cluster.

3. For each cluster, language models for e and f are cre-
ated using the sentence pairs that belong to each clus-
ter.

4. For each cluster, the entropy for e and f is calculated
using the language model from each cluster. Total en-
tropy is defined as total sum of the entropies of each
cluster.

Table 3: Topic adaptation for J-E translation
Model BLEU NIST WER PER

Baseline 22.17 6.68 68.09 51.72
Adapted 23.57 6.81 67.16 50.51

Table 4: Topic adaptation for C-E translation
Model BLEU NIST WER PER

Baseline 21.66 6.78 70.88 51.29
Adapted 22.77 6.96 69.75 50.75

5. Each translated sentence pair in each cluster is moved
to other clusters to give the smallest total entropy.

6. Repeat above process, until the entropy reduction is
smaller than a given threshold.

Topic can be defined according to the above process. In
the decoding, for a source input sentence, f , a topic T is
determined by maximizing P( f |T ). To maximize P( f |T ) we
select cluster T that gives the largest likelihood for a given
translation source sentence f .

After the topic is found, a topic-dependent language model
P(e|T ) is used instead of P(e), the topic-independent lan-
guage model in the log-linear models.

The topic-dependent language models were tested using
IWSLT06 data. Experimental results are shown in the tables
3 and 4. Our approach improved the BLEU score by 1.1% ∼
1.4%.

The paper of [6] presents a detailed description for this
work. As far as we know, a clustered language model was
also used by [7] in this evaluation. Our work and results
were similar to theirs.

In this evaluation, topic-dependent language model adap-
tation was used in only the TATR engine and in the transla-
tion of JE, CE and IE.

4. Subword-based translation for Chinese
It is possible that some words in the test data are not in the
translation table extracted from the bilingual training corpus.
There are no translations for those words. Some of these
words are rare words. Some are out-of-vocabulary (OOV)
words recognized by the subword-based word segmentation
that can recognize Chinese numerical expressions and named
entities such as place name, organization name, and person
name. These new generated words cannot find corresponding
translations in the translation table. For example, “长春路”
is a new word generated by the segmenter if it is labeled as,
“长/B春/I路/I”. “长春路” cannot be found in the translation
table, thus cannot be translated.

paul
  85



As a Chinese word is composed of two or more con-
nected characters, we introduce subwords and segment a non-
translated word into subwords, each of which consists of
fewer characters than the original word. Even if the origi-
nal word is a rare word or OOV, the resulting subwords are
not, and are translatable respectively.

The subword-based translation model was trained as fol-
lows: First, we defined a subword list from the LDC corpus,
consisting of the most frequent words. There were 5,000
words in the list. Second, we used an LDC-provided Chi-
nese named entity corpus, LDC2002L27, as the bilingual
corpus for training the subword translation model. We seg-
mented Chinese sentences in the corpus into subwords, using
a dictionary-based word segmentation approach. Thus, we
obtained a training corpus for the translation model with sub-
word sequences on the Chinese side and the corresponding
English translation. Third, a phrase-based translation model
for translating subwords was trained using the same training
approach (described in the next section).

Once an OOV is found in the test data, we first apply a
subword-based word segmenter to segment the OOV into a
subword sequence, and then we use the subword translation
model to translate the OOV. Finally we append the OOV and
its translation into the translation table, so the OOV can be
translated using the new translation table. By using this ap-
proach, about 95% of the OOVs can be translated.

We tested the subword-based OOV translation model us-
ing the NIST MT 2005 evaluation data, a 0.4% BLEU score
increase was observed.

5. Translation engines
We used three translation engines in this evaluation: TATR, a
phrase-based SMT system; HPATR3, an SMT system based
on syntactic transfer; and EM by exact match. For the OPEN
track, only TATR was used; for the CSTAR track, a hybrid
system using three engines and Selector was used. See Fig-
ure 1.

5.1. TATR

TATR is a phrase-based SMT system built within the frame-
work of feature-based exponential models:

Pr(eI
1| f J

1 ) =
exp(

∑M
m=1 λmhm(eI

1, f J
1 ))

∑
I′e′ I′1

exp(
∑M

m=1 λmhm(e′I′1 , f J
1 ))

. (1)

The best translation, êI
1, is the maximal solution of

êÎ
1 = max

I,eI
1


M∑

m=1

λmhm(eI
1, f J

1 )

 (2)

.
where hm are features. We used the following features.

• phrase translation probability from source to target

• inverse phrase translation probability

• lexical weighting probability from source to target

• inverse lexical weighting probability

• phrase penalty

5.2. HPATR3

HPART3 is developed from HPATR2 [8] which is a statis-
tical MT system based on syntactic transfer. The difference
between HPATR3 and HPATR2 is that HPATR3 uses a log-
linear model and minimum error rate training.

The translation model of HPATR3 is defined as an in-
side probability of two parse trees, which is used to cre-
ate probabilistic context-free grammar rules. The system
searches for the best translation that maximizes the prod-
uct of the following probabilities: probability of source tree
model, probability of target tree model, and probability of
tree-mapping model. A characteristic of HPATR3 is that the
syntactic transfer carried out not only word translations but
also translation of multi-word sequences. Parsing hypothe-
ses, which are multi-word sequences connected by context-
free grammar rules, are created. The best hypothesis (parse
tree and translation) is selected according to the models used.

Therefore, HPATR3 is an MT system that contains fea-
tures of phrase-based SMT as well as syntax-based SMT.

5.3. EM

EM is a translation memory system that matches a given
source sentence against the source language parts of trans-
lation examples extracted from a parallel corpus. If an exact
match can be achieved, the corresponding target language
sentence will be used. Otherwise, the system fails to output
a translation.

5.4. Selector

In order to select the best translation among outputs gen-
erated by multiple MT systems, we employ an SMT-based
method that scores MT outputs by using multiple language
(LM) and translation model (TM) pairs trained on differ-
ent subsets of the training data. It uses a statistical test to
check whether the obtained TM·LM scores of one MT out-
put are significantly higher than those of another MT output
[9]. Given an input sentence, m translation hypotheses are
produced by the component MT engines (m = 1 for this eval-
uation), whereby n different TM·LM scores are assigned to
each hypothesis. In order to check whether the highest scor-
ing hypothesis is significantly better then the other MT out-
puts, a multiple comparison test based on the Kruskal-Wallis
test is used [10]. If one of the MT outputs is significantly bet-
ter, this output is selected. Otherwise, the output of the MT
engine that performs best on a development set is selected.
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6. Post-processing
The official submission format for the evaluation results is a
case-sensitive English translation with punctuation. Because
our translation engines give English translations in lowercase
without punctuation, we need to recover capitalization and
punctuation.

We experimented with two approaches for this purpose.
The first used by using SRI LM tools 1, “disambig and hidden-
ngram”. The second used in-house tools based on discrimi-
native training. We found that our capitalization tool achieved
a higher F-score result than the SRI tools, but the punctuation
tool was not promising.

6.1. Punctuation using the SRI tools

As to punctuation, we used the SRI tools, “hidden-ngram,”
which is based on Ngram language models. In fact, we de-
veloped an in-house punctuation tool based on maximum en-
tropy (ME) method, where we can view a punctuation behind
a word as a label to the previous word. We integrated many
features into the ME-based model. However, our punctuation
results were not satisfactory. The F-score was lower than that
of using the SRI tools. Finally, we decided to use the SRI
tools for punctuation. We are still investigating this problem.

6.2. Capitalization based on CRF++

Our capitalizer is modeled by the conditional random fields(CRF)
approach. We view the problem of capitalizing lowercase
words as one of labeling words with one of four tags: AL,
IU, AU, or MX, that stand for all lowercase, initial upper-
case, all uppercase and mixed case.

For example, the sentence, McAdam is CEO of a British
company, is labeled as, mcadam/MX is/AL CEO/AU of/AL
a/AL British/IU company/AL.

The CRF tagging model is defined as,

p(T |W) =

exp


M∑

i=1


∑

k

λk fk(ti−1, ti,W) +
∑

k

µkgk(ti,W)


 /Z,

Z =
∑

T=t0t1···tM

p(T |W)

(3)

where T is a tag sequence and W is a word sequence for
tagging. fk and gk are unigram and bigram features, and λ
and µk are feature’s values.

We used word features only. An example of the use of
model 3 is shown in [2]. We used CRF++ 2 to train the CRF
tagger.

Our capitalization model achieved higher accuracy than
the SRI tools. For testing the performance of our capitalizer,
we used the devset4 reference data. We removed the punc-
tuation and lowercased the reference data, and then used our

1http://www.speech.sri.com/projects/srilm
2http://www.chasen.org/t̃aku/software/CRF++

tools to recover punctuation and capitalization. We measured
the results in terms of BLEU against the original reference
data. We compared our tools with the SRI tools. The im-
provement was about 10%. The BLEU score increased from
0.81 using SRI tools to 0.827 using our in-house capitalizer.

7. Evaluation Results
As mentioned in Section 1, we participated in 14 of the 18
tests. The training data statistics for all language pairs and
tracks (OPEN and CSTAR) are shown in Table 5, where
“Source” stands for source language and numbers in the paren-
theses indicate number of distinct sentences. “word tokens”
indicates a word with an attached tag. “word types” is the
surface form.

The training parallel corpus size was 40,000 for CE and
JE and 20,000 for AE and IE in the OPEN track. For the
CSTAR track, we used 600,000 sentence pairs for training
the translation model and LMs.

The language model for English was learnt on a larger
set of English data than the supplied data. In addition to the
20,000 supplied data sentences, 190,000 sentences from the
business domain was used. However, we found that smaller
than 0.5% BLEU score increases were earned for all lan-
guage translations as a result of enlarging the data.

We used GIZA++ [11] and Pharaoh 3 for training and pa-
rameter tuning. The process of training the translation mod-
els for the TATR engine was the same for all language pairs
except in regard to data preprocessing.

We used the TATR translation engine for the OPEN track.
We used TATR, HPATR3, EM, and Selector for the CSTAR
track.

The decoding process was divided into several steps: (1)
For a given ASR output without case and punctuation, we
used the SRI tools to insert punctuation into the output. (2)
The ASR output was split according to the inserted punctu-
ation. (3) We translated each split segment separately using
multiple MT engines: TATR, HPATR3 and EM. (4) We se-
lected the best translation hypothesis for each split segment
separately by using the Selector. This step was spared for
the OPEN track. (5) We recombined all segment translations
to obtain the translation output. (6) We inserted punctuation
and capitalization as described in Section 6 to obtain the final
English translation output.

All the results submitted in the official runs are shown
in Table 7 and Table 9. The official submissions are with
punctuation and capitalization. The results without punctua-
tion and capitalization are shown in Table 8 and Table 10. In
the tables, the numbers in each slot indicate the ASR output
(before ”/”) and the correct transcription (after ”/”).

The results indicate the following:

• There is a 3% to 6% increase in terms of BLEU score
for the correct transcription translation relative to the

3http://www.iccs.inf.ed.ac.uk/ pkoehn/
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Table 5: Training data statistics
#Sentences #Word Count #Word Tokens #Word types

Source English Source English Source English Source English
CE OPEN 39,953(37,559) 39,953(39,633) 342,362 367,265 11,174 9,263 11,174 7,225

CSTAR 678,748(399,527) 716,280(358,681) 4,606,373 5,756,026 43,273 28,851 43,271 21,809
JE OPEN 39,953(37,173) 39,953(39,633) 398,498 367,265 13,627 9,263 11,407 7,225

CSTAR 691,711(490,499) 651,558(444,859) 6,795,833 5,514,327 56,021 32,291 45,111 24,295
AE OPEN 19,972(19,777) 19,972(19,880) 154,279 183,673 18,292 6,940 18,292 5,465
IE OPEN 19,972(19,641) 19,972(19,880) 171,764 183,673 10,085 6,940 10,085 5,465

ASR output translation. Hence, the ASR error rate has
a significant impact on translation.

• Using more data improves translation because the re-
sults of the CSTAR track are better than those of the
OPEN track.

• Comparing spontaneous speech and read speech trans-
lation in the CE track, we found that the translation re-
sults of spontaneous speech were more erroneous than
those of read speech. This is because the ASR error
rate is higher for spontaneous speech recognition.

• If a higher BLEU score means the language is easier
to translate, the order of languages in terms of ease of
translation seems to be IE>AE>JE>CE according to
the BLEU scores. Remarkably, IE and AE used fewer
training data but had a higher BLEU score than JE and
CE.

• Comparing Table 7 and Table 8, Table 9 and Table 10,
we see that for CE and JE, the results with case and
punctuation are slightly better than without case and
punctuation. However, for AE and IE, the reverse is
true. The results with case and punctuation are much
worse than without case and punctuation. Because
we recover case and punctuation after translation, this
seems to prove that adding case and punctuation re-
duces the translation performance for AE and IE trans-
lation. Because CE and JE are difficult language pairs,
the effect of adding case and capitalization is not easily
observable.

• Table 9 and Table 10 show the contributions of the
single MT engines for the CSTAR track. We used
three translation engines and a Selector. We found that
the Selector achieved a better BLEU score for JE read
speech.

The ASR output is without punctuation. Before the ASR
output is translated, we added punctuation to it and applied a
sentence splitting technique to split the ASR output into seg-
ments. Our translation engines translated each segment and
finally assembled these translations in sequence. Table 11
compares results with and without sentence-splitting. We

Table 6: Contributions of single engines in official run sub-
mission

TATR HPATR3 EM
CE spontaneous 454 (90.8%) 46 (9.2%) 0

read 452 (90.4%) 48 (9.6%) 0
correct 455 (91%) 42 (8.4%) 3 (0.6%)

JE read 405 (81%) 92 (18.4%) 3 (0.6%)
correct 408 (81.6%) 86 (17.2%) 6 (1.2%)

found that the sentence splitting technique significantly im-
proved the BLEU score for CE and JE. However, its results
were slightly worse for AE and IE. Recalling the previous ex-
periments showing that adding punctuation after translation
reduced the BLEU scores for AE and IE, we feel that keep-
ing punctuation information in training translation model is
the right strategy for AE and IE. However, it is better to re-
move punctuation for CE and JE in training. One possible
explanation is that AE and IE are similar language pairs.

8. Conclusions

In this IWSLT evaluation, we used several new approaches:
subword-based word segmentation, named entity recognition
and translation, ME- and CRF-based punctuation and cap-
italization, sentence splitting, and language model adapta-
tion. These approaches proved effective in the recent NIST
machine translation evaluation; however, we didn’t evaluate
these approaches completely in the IWSLT task due to time
limitations.

This year’s system differs from last year’s system in that
we used a phrase-based statistical machine translation sys-
tem, TATR. This system is still in the preliminary stages of
development. Many important models such as the distortion
model are not implemented yet. A simple position-dependent
parameter was used in the decoding to represent the distor-
tion. We expect to improve this system in our future work.

We used the 1-best translation for the ASR track in this
evaluation. We could achieve a better score if we used N-best
or lattice translation.
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Table 7: Translation results in the OPEN track (with case and punctuation)
BLEU4 NIST METEOR WER PER

CE spontaneous speech 0.1591/0.206 4.9696/5.8613 0.4117/0.487 0.7291/0.6837 0.5851/0.5314
CE read speech 0.1775/0.206 5.2286/5.8613 0.4336/0.487 0.7147/0.6837 0.5705/0.5314
JE read speech 0.1899/0.2122 5.5915/5.9494 0.4574/0.49 0.6984/0.6657 0.5458/0.5182
AE read speech 0.2117/0.2365 5.9216/6.3521 0.4867/0.5224 0.6354/0.6112 0.5272/0.4986
IE read speech 0.2989/0.3763 6.8985/8.1318 0.5744/0.663 0.55/0.4738 0.4641/0.3901

NOTE: the numbers indicate the translatios of the ASR output (before “/”) and the correct transcription (after “/”)

Table 8: Translation results in the OPEN track (without case and punctuation)
BLEU4 NIST METEOR WER PER

CE spontaneous speech 0.1615/0.2123 5.3592/6.3848 0.4114/0.4862 0.7481/0.6946 0.5746/0.5105
CE read speech 0.1772/0.2123 5.6649/6.3848 0.4323/0.4862 0.7290/0.6946 0.5583/0.5105
JE read speech 0.1832/0.2077 5.9428/6.3325 0.4569/0.4893 0.7219/0.6826 0.5370/0.5018
AE read speech 0.2164/0.2463 6.3959/6.8893 0.4869/0.5229 0.6406/0.6105 0.5055/0.4734
IE read speech 0.3194/0.412 7.4724/8.9027 0.5739/0.6625 0.5342/0.4450 0.4265/0.3415

Table 9: Translation results in the CSTAR track (with case and punctuation)
BLEU4 NIST METEOR WER PER

CE spontaneous speech
Selector 0.2008/0.2654 5.4009/6.5274 0.4502/0.5425 0.6994/0.6380 0.5629/0.5003
TATR 0.2002/0.2635 5.4077/6.5485 0.4498/0.5427 0.7033/0.6425 0.5660/0.5034

CE read speech
Selector 0.2155/0.2654 5.6857/6.5274 0.4787/0.5425 0.6733/0.6380 0.5443/0.5003
TATR 0.2189/0.2635 5.7302/6.5485 0.4792/0.5427 0.6748/0.6425 0.5463/0.5034

JE read speech
Selector 0.2487/0.2861 6.2778/6.8327 0.5039/0.5536 0.6569/0.6104 0.5118/0.47
TATR 0.2463/0.2875 6.2447/6.8588 0.5018/0.5518 0.6617/0.6180 0.5146/0.4716

HPATR3 0.2177/0.2597 5.852/6.6586 0.4833/0.5308 0.6998/0.6317 0.5603/0.5057

Table 10: Translation results in the CSTAR track (without case and punctuation)
BLEU4 NIST METEOR WER PER

CE spontaneous speech
Selector 0.2039/0.2751 5.8205/7.086 0.4492/0.5419 0.7129/0.6384 0.5482/0.4765
TATR 0.2053/0.2745 5.852/7.1355 0.4488/0.5420 0.7170/0.6430 0.5500/0.4778

CE read speech
Selector 0.2214/0.2751 6.1453/7.086 0.4783/0.5419 0.6813/0.6384 0.5304/0.4765
TATR 0.2254/0.2745 6.1993/7.1355 0.4787/0.5420 0.6833/0.6430 0.5306/0.4778

JE read speech
Selector 0.2466/0.2867 6.7157/7.3021 0.5032/0.5529 0.6726/0.6191 0.4994/0.4533
TATR 0.2438/0.2851 6.6367/7.3166 0.5011/0.5510 0.6782/0.6295 0.50340.4564/

HPATR3 0.2131/0.2555 6.2587/7.1613 0.4825/0.5300 0.7237/0.6472 0.5609/0.5003
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Table 11: Comparison of results with and without sentence
splitting

BLEU4 NIST METEOR WER PER
CE spontaneous speech

with 0.1591 4.9696 0.4117 0.7291 0.5851
without 0.1551 4.9322 0.4095 0.7382 0.5871

CE read speech
with 0.1775 5.2286 0.4336 0.7147 0.5705

without 0.1756 5.2115 0.4336 0.7229 0.5719
CE correct

with 0.206 5.8613 0.487 0.6837 0.5314
without 0.2051 5.8468 0.4876 0.6944 0.5316

JE read speech
with 0.1899 5.5915 0.4574 0.6984 0.5458

without 0.1817 5.4639 0.4532 0.7228 0.5524
JE correct

with 0.2122 5.9494 0.49 0.6657 0.5182
without 0.2023 5.8312 0.4826 0.6925 0.5225

AE read speech
with 0.2117 5.9216 0.4867 0.6354 0.5272

without 0.2122 5.9287 0.4874 0.6345 0.5263
AE correct

with 0.2365 6.3521 0.5224 0.6112 0.4986
without 0.2384 6.3691 0.5221 0.6100 0.4976

IE read speech
with 0.2989 6.8985 0.5744 0.55 0.4641

without 0.2991 6.9066 0.5713 0.5551 0.4627
IE correct

with 0.3763 8.1318 0.663 0.4738 0.3901
without 0.3774 8.1429 0.6601 0.4766 0.3880
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