NUDT Machine Translation System for IWSLT2007

Presenter: Boxing Chen

Authors: Wen-Han Chao & Zhou-Jun Li

National University of Defense Technology, China

Outline

- System Description
 - Word Alignment
 - Phrase Pair Extracting
 - Example-Based Decoder
- Experiments
- Future Works

System Description

- Three Main Components
 - Word Alignment
 - Phrase Pair Extraction
 - Example-based Decoder

Word Alignment - (1)

- DP algorithm and log-linear model to compute the word alignment
 - Feature functions
 - ITG constraint
 - Word co-occurrence probability
 - Distortion model
- Word alignment
 - a binary branching tree
 - satisfy ITG constraint
 - many-to-many alignment

Word Alignment - (2)

(a) A valid word alignment example

(b) An ITG tree for the word alignment (a)

Phrase Pair Extraction

- Extracting phrase pairs
 - each constituent sub-tree is a phrase pair (block)
- Building models
 - Direct and inverse wordand phrase-based TM
 - Reordering model over all block pairs

Chinese	English		
我	i		
再次	once again		
检查	checked		
我 的	my		
包	Bag		
我的 包	my bag		
检查 我的 包	checked my bag		
再次 检查 我的包	checked my bag once again		
我 再次 检查 我的 包	i checked my bag once again		

Decoding

- Log-linear model used to score the partial hypotheses
- Baseline: CKY style decoder
- Example-based decoder
 - Examples retrieval
 - Generation: matching and merging

Example-based Decoder - (1)

- Examples retrieval
 - Collect source blocks from input
 - Collect (top N) phrase pairs from the TM for each source block
 - If an example (sentence-pair) can be matched by at least one phrase-pair, it is a valid example.
 - Keep top M examples for a specific phrasepair

Example-based Decoder - (2)

- Matching
 - Matching the input with each example
 - get a translation template
 - the translation template forms a new ITG tree.
 - Decoding each un-translated string (child input) iteratively
 - get a set of child translation templates.

Example-based Decoder - (3)

你 能 打开 你的 包 吗?

(a) Input

(b) Example A

Example-based Decoder - (4)

(c) Translation Tempate after match input with Example A

Example-based Decoder - (5)

(e) Translation Tempate after match the child input with Example B

Example-based Decoder - (6)

Merging

- merging the child templates with the parent templates.
 - consider the child template as a sub-tree
 - merge it with the parent ITG tree.

Example-based Decoder - (7)

Example-based Decoder - (8)

- beam search
 - scoring function for each translation template is:

$$f(temp) = \log P(E_{trans} \mid C_{trans}) + \log H(C_{untrans})$$

Experiments-(1)

- We take part in the C-E task
 - Training corpus
 - 39,953 sentence pairs
 - development set
 - IWSLT07_devset3_*
 - 506 Chinese sentences and 16 references
 - test set
 - IWSLT07_devset2_*
 - 500 Chinese sentences and 16 references
 - official test set
 - 489 Chinese sentences

Experiments-(2)

- Preprocessing
 - tokenization
 - lowercasing
 - Stemming by using a morphological dictionary

		Chinese	English (stemmed)
Train. Data	Sentences	39,963	
	Words	351,060	377,890
	Vocabulary	11,302	7,610
Dev. Set	Sentences	506	
	Words	3,826	
Test Set	Sentences	489	
	Words	3,189	

Experiments-(3)

- Baseline
 - CKY decoder
- Results for the stemmed corpus

	Bleu			
	Dev set	Test	Official	
Decoder		Set	Test set	
CKY- Decoder	0.3614	0.3156	0.2741	
EB- Decoder	0.3958	0.3334	0.3012	

Experiments-(4)

- Post-Processing
 - Morphological changes
 - using a morphological dictionary and 3-gram LM
 - Case sensitive outputs: two simple rules
 - Uppercasing the first word of a sentence
 - Changing the word "i" to "I"

Experiments-(5)

- Reasons for the result
 - the data becomes more sparse
 - the post-processing is too simple

	Bleu		
Decoder	Dev	Test	Official
	set	set	Test set
CKY-Decoder	0.1843	0.1769	0.1758
EB-Decoder	0.2024	0.1966	0.1934

Future Works

- Better examples retrieval algorithm.
- More feature functions in log-linear model.
- Improving morphological generation.

- Thank Dr. Boxing Chen for the presentation and the useful suggestions
- Thank you for your attention.
- Any Questions?
 - cwh2k@163.com

Main References

- Philipp Koehn, Franz Josef Och and Daniel Marcu: "Statistical Phrase-Based Translation". In NAACL/HLT 2003, pages 127-133(2003)
- David Chiang: "A Hierarchical Phrase-Based Model for Statistical Machine Translation". In Proc. of ACL 2005, pages 263–270 (2005)
- Franz Joseph Och and Hermann Ney: "Discriminative training and maximum entropy models for statistical machine translation". In Proceedings of the 40th Annual Meeting of the ACL, pp. 295–302(2002)
- Dekai Wu: "Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora". Computational Linguistics, 23(3):374(1997)
- Franz Joseph Och and Hermann Ney: "A Systematic Comparison of Various Statistical Alignment Models". Computational Linguistics, 29(1):19–52, March(2003)
- Wen-Han Chao and Zhou-Jun Li: "Incorporating Constituent Structure Constraint into Discriminative Word Alignment", MT Summit XI, Copenhagen, Denmark, September 10-14, 2007, accepted. (2007)
- R. Moore. "A discriminative framework for bilingual word alignment". In Proceedings of HLT-EMNLP, pages 81–88, Vancouver, Canada, October. (2005)
- I. Dan Melamed. "Models of Translational Equivalence among Words". Computational Linguistics, 26(2): 221–249. (2000)
- Taro Watanabe and Eiichiro Sumita: "Example-based Decoding for Statistical Machine Translation". In Machine Translation Summit IX pp. 410-417 (2003)
- Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu: "BLEU: a Method for Automatic Evaluation of Machine Translation". In Proceedings of the 40th Annual Meeting of the Association fo Computational Linguistics(ACL), Philadelphia, July 2002, pp. 311-318(2002)
- A. Stolcke, "SRILM An extensible language modeling toolkit," in Proceedings of the International Conference on Spoken Language Processing, Denver, Colorado, 2002, pp. 901–904