

The TÜBİTAK-UEKAE Statistical Machine Translation System for IWSLT 2007

Coşkun Mermer, Hamza Kaya, Mehmet Uğur Doğan

National Research Institute of Electronics and Cryptology (UEKAE) The Scientific and Technological Research Council of Turkey (TÜBİTAK) Gebze, Kocaeli, Turkey

{coskun, hamzaky, mugur}@uekae.tubitak.gov.tr

- System Description
- Training
 - Phrase table augmentation
- Decoding
 - Out of Vocabulary Words (OOV)
- Results
- Conclusion and Future Work

- Participated in translation tasks
 - Arabic-to-English
 - Japanese-to-English
- Built on phrase-based SMT software Moses
- Used only supplied data and Buckwalter Arabic Morphological Analyzer (BAMA)

System Description

- System Description
- Training
 - Phrase table augmentation
- Decoding
 - Out of Vocabulary Words (OOV)
- Results
- Conclusion and Future Work

- Devset1-3 are included in the training with all 16 reference segments
- Train and Devset1-3 are given equal weight
- Language models
 - 3-gram for AR-EN
 - 4-gram for JP-EN
 - Trained with modified Kneser-Ney discounting and interpolation

JÜBİTAK	Training						
UEKAE	 Multi-sentence segments are split 						
	Before splitting After splitting						
	AR-EN	44,164 *	49,318				
	JP-EN	64,145 *	71,435				
		* train segments + 16 * dev1-3 segme	nts				

- Parameter tuning
 - Manually tested different set of parameters
 - Different data favored different parameters
 - Instead of selecting argmax, selected mode in a desirable interval to select a robust set of parameters

Phrase Table Augmentation

- Translation model is represented in a *phrase table*
- Bi-directional alignment and phrase extraction
 with grow-diag-final-and heuristics
- Source-language words without a one-word entry in phrase table are listed
- The words, which are in the list and have a lexical translation probability above a threshold in *GIZA++* word alignment, are added to phrase list

Phrase Table Augmentation

Corpus	AR-EN	JP-EN
Source vocabulary size	18,751	12,699
Number of entries in the original phrase table	408,052	606,432
Number of source vocabulary words without a one-word entry in the original phrase table	8,035	6,302
Number of one-word bi-phrases added to the phrase table	21,439	23,396
Number of entries in the augmented phrase-table	429,491	629,828

- System Description
- Training
 - Phrase table augmentation
- Decoding
 - Out of Vocabulary Words (OOV)
- Results
- Conclusion and Future Work

Decoding

- Decoding is done on tokenized and punctuated data
 - Source-side punctuation insertion (for ASR data)
 - Target-side case restoration
- SRILM tools used for punctuation restoration

Decoding

 Merged 10 sentences to train punctuation restorer with more internal sentence boundaries

	Ν	Devset4	Devset5
	1	24.32	20.23
AR-EN	10	24.95	20.66
	1	15.59	14.26
JP-EIN	10	17.82	16.12

Out of Vocabulary Words

- Lexical Approximation
 - Find a set of candidate approximations
 - Select the candidate with least edit distance
 - In case of a tie, more frequently used candidate is chosen

- Arabic lexical approximation (2 pass)
 - Morphological root(s) of the word found by feature function using BAMA
 - If not, skeletonized version of the word is found by feature function
- Japanese lexical approximation (1 pass)
 Right-truncations of the word is found by feature function

Run-time Lexical Approximation

	Devset4		Devset5	
	# of OOVs	BLEU	# of OOVS	BLEU
Original	661	24.91	795	20.59
After LA#1	185	25.33	221	21.22
After LA#2	149	25.56	172	21.51
JP-EN	Devset4		Devset5	
	# of OOVs	BLEU	# of OOVS	BLEU
Original	119	23.68	169	20.44
After LA	10	23.84	17	20.69

mjAny~ is OOV

Out of Vocabulary Words

- Lexical approximation finds candidates
 mjAnyP, mjAnY, mjAnA, kjm, mjAny, mjAnAF
- mjAny has an edit distance of 1, so it's selected

Out of Vocabulary Words

After lexical approximation

hl hw mjAny?

Is it free ?

- System Description
- Training
 - Phrase table augmentation
- Decoding
 - Out of Vocabulary Words (OOV)
- Results
- Conclusion and Future Work

UEKAE	AE Results					
		Clean Transcript	ASR Output			
	AR-EN	49.23	36.79			
	JP-EN	48.41	42.69			

Clean vs. ASR

- Possible causes of performance drop in ASR condition
 - Recognition errors of ASR
 - Punctuation restorer performance
 - Parameter tuning for clean transcript but not for ASR output

AR-EN vs. JP-EN

- Possible causes of higher performance drop in AR-EN than JP-EN
 - Lower accuracy of Arabic ASR data than Japanese data
 - Higher difficulty of punctuation insertion due to higher number of punctuation types
 - Less reliable punctuation insertion caused by higher recognition error rate

AR-EN vs. JP-EN

Lexical approximation is sensitive to recognition errors

	Clean transcript	ASR output	Clean-to-ASR degradation
Original source	38.48	31.82	17.3%
After LA	49.23	36.79	25.3%

Devset4-5 vs. Evaluation Set

 There is a dramatic variation in the improvement obtained with the lexical approximation technique on the evaluation and development sets

Devset4-5 vs. Evaluation Set

TÜBİTAK____

	Devset4	Devset5
Original source	24.91	20.59
After LA#1	25.33	21.22
After LA#2	25.56	21.51
Improvment	2.6%	4.5%
	Evaluation set clean transcript	Evaluation set ASR output
Original source	38.48	31.82
After LA	49.23	36.79
Improvment	27.9%	15.6%

Devset4-5 vs. Evaluation Set

- 167 of 489 evaluation set segments have at least one reference which is a perfect match with a training segment
- Only 19 of 167 have the source segment exactly the same as in the training set
- Remaining 148 segments represents a potential to obtain a perfect match

TÜBİTAK_____ U E K A E

Number of segments	Devset4	Devset5	Evaluation set
Exact match of at least one reference with a segment in the training set	12	4	167
Exact math of the source with a segment in the training set	1	0	19
Total	489	500	489

- System Description
- Training
 - Phrase table augmentation
- Decoding
 - Out of Vocabulary Words (OOV)
- Results
- Conclusion and Future Work

Conclusion and Future Work

- Make the system more robust to ASR output. For this goal:
 - Using n-best/lattice ASR output
 - Tuning system for ASR output
 - Better punctuation performance

Thank you for your attention!