
The MIT-LL/AFRL IWSLT-2007 MT System

Wade Shen, Brian Delaney†

MIT Lincoln Laboratory
Information Systems and Technology Group

244 Wood St.
Lexington, MA 02420, USA
{swade,bdelaney}@ll.mit.edu

Tim Anderson, Ray Slyh

Air Force Research Laboratory
Human Effectiveness Directorate

2255 H St.
Wright-Patterson AFB, OH 45433

{Timothy.Anderson,Raymond.Slyh}@wpafb.af.mil

Abstract
The MIT-LL/AFRL MT system implements a standard

phrase-based, statistical translation model. It incorporates a
number of extensions that improve performance for speech-
based translation. During this evaluation our efforts focused
on the rapid porting of our SMT system to a new language
(Arabic) and novel approaches to translation from speech in-
put.

This paper discusses the architecture of the MIT-
LL/AFRL MT system, improvements over our 2006 system,
and experiments we ran during the IWSLT-2007 evaluation.
Specifically, we focus on 1) experiments comparing the per-
formance of confusion network decoding and direct lattice
decoding techniques for machine translation of speech, 2) the
application of lightweight morphology for Arabic MT pre-
processing and 3) improved confusion network decoding.

1. Introduction
During the evaluation campaign for the 2007 International
Workshop on Spoken Language Translation (IWSLT-2007)
our experimental efforts centered on 1) the improvement of
statistical MT when processing speech input and 2) robust
methods for coping with minimal training data.

In this paper we describe improvements over our base-
line system. Refer to [5] for more detail regarding the imple-
mentation of these stages of processing. The conditions of
this year’s evaluation have changed as have the data sets and
languages for which we’ve submitted system. As such, the
processing stages described in 2 have been adapted accord-
ingly.

The remainder of this paper is structured as follows. In
Section 2, we discuss the baseline system and minor im-
provements to this standard statistical MT architecture that
we incorporate. In sections 3, 4 and 5 we describe improve-
ments to our baseline system including the design and imple-
mentation of a new, lattice-based decoder for speech input

†This work is sponsored by the Air Force Research Laboratory under
Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclu-
sions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

and the implementation of light morphological analysis for
Arabic MT preprocessing.

Section 6 shows results from a variety of development
experiments using the provided data sets. In these experi-
ments, we compare the performance of different ASR-based
MT strategies using the same baseline system on both the
Arabic and Italian speech translation tasks. We also report
on experiments comparing the light Arabic morphological
processing we employed to more sophisticated methods and
their relative performance impact on MT quality.

1.1. IWSLT-2007 Data Usage

We submitted systems for Chinese, Arabic and Italian-to-
English language pairs. In each case, we used only data sup-
plied by the evaluation (and in Italian, the named-entity list)
for each language pair for training and optimization. From
these data, we extract word/character alignments. These
alignments are then expanded using slightly modified ver-
sions of standard heuristics. This process is described in de-
tail in Section 2. Phrases are then extracted and counted,
and the resulting phrase table is then used for decoding and
rescoring. Language models are trained using the English
side of each language pair.

Using development bitexts separated from the training
set, we then employ a minimum error rate training process
to optimize model parameters with a held-out development
set. These trained parameters and models can then be ap-
plied to test data during decoding and rescoring phases of
the translation process.

2. Baseline System

Our baseline system implements a fairly standard SMT archi-
tecture allowing for training of a variety of word alignment
types and rescoring models. It has been applied successfully
to a number of different translation tasks in prior work, in-
cluding prior IWSLT evaluations. The training/decoding pro-
cedure for our system is outlined in Table 1. Details of this
system are described in [5].

Training Process
• Word and character segment training corpus
• Compute GIZA++ and Competitive Linking Align-

ments (CLA) for segmented data [6] [7]
• Extract phrases for all variants of the training corpus
• Split word-segmented phrases into characters
• Combine phrase counts and normalize
• Train language models from the training corpus
• Train TrueCase models
• Train source language repunctuation models

Decoding/Rescoring Process
• Decode input sentences use base models
• Add rescoring features (e.g. IBM model-1 score, etc.)
• Merge n-best lists (if input is ASR n-best)
• Rerank n-best list entries

Table 1: Training/decoding structure

2.1. Phrase Table Training

To maximize phrase table coverage we combine multi-
ple word and character alignment strategies, extending the
method described in [6]. For all language pairs, we com-
bine alignments from IBM model 5 (see [1] and [8]) and
alignments extracted using the competitive linking algorithm
(CLA) described in [7]. Phrases were extracted from both
types of alignments and combined in one phrase table. This
was done by summing counts of phrases extracted from
alignment types before computing the relative frequency
used in the our phrase tables.

Additionally, for Chinese-to-English translation, both
word and character segmentation were used for training CLA
and GIZA alignment models. Phrases were then extracted
from all four alignments and combined. Word segmented
phrases were resegmented into characters before counting.

2.2. Language Model Training

During the training process we built n-gram language models
for use in decoding/rescoring, TrueCasing and repunctuation.
In all cases, the SRI Language Modeling Toolkit [9] was used
to create interpolated Knesser-Ney LMs. Additional class-
based language model were also trained for rescoring. All
models were trained with the English side of IWSLT parallel
texts that were supplied.

2.3. Optimization and Rescoring

Our translation model assumes a log-linear combination
phrase translation models, language models, etc.

log P (~e|~f) ∝
∑
∀r

λrhr(~f,~e)

To optimize system performance we training scaling fac-
tors, λr, for both decoding and rescoring features so as
to minimize an objective error criterion. This is done us-

ing a standard Powell-like grid search using a development
set [2] [3]. In this year’s evaluation, we used an error crite-
rion that combines NIST and BLEU scores:

Error(s) = k − (100.0BLEU(s) + 1.0NIST (s))

A full list of the independent model parameters that we
used in our system is shown in Table 2.

Decoding Features
P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion
P̂ (e) – 4-gram language model

Rescoring Features

P̂rescore(e) – 5-gram LM
P̂class(e) – 6-gram class-based LM

PModel1(f |e) – IBM model 1 translation probabilities

Table 2: Independent models used in log-linear combination

3. Direct ASR Lattice Decoding
In this section, we describe our weighted finite state trans-
ducer (FST) decoder. Finite state transducers provide a
useful framework for natural language processing applica-
tions as the implementation details of graph optimization and
search are handled through a software library that operates on
a common state machine representation [11]. However, using
FST technology for machine translation does present some
technical hurdles. The FST composition operation combines
individual model scores such that it is difficult to extract these
scores for weight optimization. Additionally, the inputs paths
to intermediate models can sometimes be lost during com-
position, making them difficult to retrieve later. For exam-
ple, after the application of all necessary models for trans-
lation, it is possible to retrieve either the unordered input
words/phrases or the re-ordered input words/phrases but not
both. Finally, distortion must be limited as the total number
of combinations allowed must be computed up front.

Finite state transducers have been used successfully in
machine translation applications, and our decoder is based
on some of these systems. We use the MIT FST toolkit
in our implementation [12]. In [14], a phrased-based FST
system was shown to perform better than a word based sys-
tem. In [13], the authors implemented a phrase-based FST
translation system. The system showed gains when the input
lattice acoustic and language model scores were included in
the minimum error rate training. An FST system based on

alignment templates is presented in [15]. Our implementa-
tion borrows the distortion model used in this system. A
multi-layered FST decoding approach is presented in [16].
Significant gains in speed over the pharaoh decoder [4] are
shown.

Our decoder takes as input a finite state acceptor which
represents either a single input sentence or the output from a
speech recognizer. The best translation can be described as
the best path through the transducer given by:

E = I ◦ P ◦D ◦ T ◦ L (1)

where ◦ represents the composition operation. I represents
the input acceptor and P is the phrase segmentation trans-
ducer. The transducer given by D performs phrase permuta-
tions. T and L are the translation and language models, re-
spectively. In the following sections, we describe each model
in detail.

3.1. Input Lattice Processing

The input acceptor, I , is a representation of the source lan-
guage input. For the 1-best case, it is simply a linear au-
tomaton with a single path. For ASR input, it consists of a
pruned and pre-processed weighted ASR lattice. The input
lattice may require some language specific pre-processing
such as character/word segmentation for Chinese. This is
first performed on the original ASR input lattice. Next, the
input lattice in SLF format is converted to the FST format
using weights for the acoustic model, language model, and
word penalty. All noise/garbage words are translated to ep-
silon/null links. A punctuation mark is hypothesized after
each word only if the word-punctuation bigram occurred in
the source language training set. This helps to ensure that
source phrases are not missed due to punctuation in the trans-
lation model. The resulting transducer with punctuation is
then rescored with a 4-gram language model trained on the
source language bitext. Finally, pruning is performed such
that the final transducer contains only the top-N entries. The
last step is necessary to control memory usage during de-
coding. Empirical results show that the decoder rarely visits
paths which occur deep in the n-best list. Figure 1 shows an
example of an input speech acceptor with punctuation added.
Next, the input transducer, I , is composed with a phrase seg-
mentation transducer, P , which maps input source words to
phrases taken from the phrase table.

3.2. Distortion

The distortion model is inspired by the technique in [15]. The
exponential number of source word permutations does not
allow for arbitrary word movement prior to phrase segmen-
tation. A compromise is to perform swapping at the phrase
level after phrase segmentation. This can still allow for long
distance reordering with reasonable decoding times. The dis-
tortion penalty, expressed as a log probability, is calculated

0 1

sono:sono/89.2

2?:?/0.60

3

di:di

ad:ad/0.18

4.:./0.47

5

,:,/0.49

6

di:di

7

osaka:osaka

di:di

ad:ad/0.16

di:di

8

osaka:osaka

9

?:?

.:./0.048

?:?

Figure 1: Example input source language acceptor with
punctuation.

as follows:

Dpen = −(len(phraseA) + len(phraseB))×Wdist (2)

where len() denotes the length of the phrase in words, and
Wdist is the weight applied to the distortion model. Longer
phrase swaps can be discouraged by increasing the value of
Wdist.

Initial experiments showed that a single phrase swap was
not enough for language pairs with very different sentence
structures. We simply apply the phrase swapping transducer
twice to provide longer distance reordering permutations.
However, this results in a duplication of paths and an increase
in lattice size as the original phrase order is duplicated with
higher path cost.

3.3. Translation Model

The translation model transducer, T , takes source phrases as
input and produces target words as output. The transducer
arc weights are calculated as a weighted sum of the transla-
tion model weights, including source phrase and target word
penalties. No language model is applied at this time. Initially
the model is built to accept only one source phrase before ter-
minating with a final node. At this point, the model can be
optimized, which can result in a reduction in the number of
states by factor of 6.

After the reordered source phrase transducer is composed
with the translation model, an intermediate pruning step is
performed. This pruning step uses a wider beam threshold
and removes any high-cost translation and distortion related
paths before the application of the language model.

3.4. Language Model

The language model is a weighted finite state acceptor built
from a standard back-off n-gram model with Knesser-Ney
smoothing. Some additional software translates the LM into
an FST representation and optimization is performed. We use
a 4-gram model for decoding the IWSLT dev and test sets,
but the FST architecture allows for arbitrary n-gram length
subject to memory constraints.

The language model is applied to the intermediate trans-
ducer created by I ◦ P ◦ D ◦ T . Due to the large number

of path expansions with higher order language models, this
step uses a Viterbi search with beam and histogram pruning
as opposed to a full composition operation.

3.5. Out of Vocabulary Words

During the composition of C = A◦B, if the output alphabet
of A is not a subset of the input alphabet of B, then some or
all input paths of A will not be present in C. More simply,
out-of-vocabulary source language words that are not in our
phrase table will result in transducers with incomplete paths.

An OOV word is detected by comparing the input alpha-
bet of the phrase segmentation transducer with the output
alphabet of the input transducer I . Any words in I which
are not found in P are handled in a separate FST, O, which
simply passes them through with a fixed OOV penalty. The
union of O with P and T is taken and Kleene-* closure is
applied:

P̂ = Closure(P ∪O) (3)
T̂ = Closure(T ∪O) (4)

The resulting transducers P̂ and T̂ can now accept any num-
ber of source words, including the detected OOV words.

For the language model, we train an open-class LM with
an <unk> tag. Then we search the network for all <unk>
tags and add a parallel link with equal weight that passes
the OOV word to the output. The resulting models can now
accept all words present in the source acceptor I .

3.6. Minimum Error Rate Training

Similar to other decoders, we are able to perform minimum
error rate training using n-best lists output from the decoder.
However, due to the score combination and loss of interme-
diate input paths using FSTs, we need to take some extra
steps to retrieve individual model scores. Table 3 shows the
various model weights that are trained during minimum er-
ror rate training. Our system uses some custom software to
retrieve each of these individual model scores from an n-best
entry.

Input lattice parameters
P (X|f) Source acoustic model

P (f) Source language model
Wpen(f) Source word insertion penalty
Ppunc(f) Source language model w/punctuation
OOVpen Out-of-vocabulary penalty

Table 3: Additional model parameters used in FST optimiza-
tion.

4. Light Morphology for Arabic MT
The Arabic language makes use of rich morphology to en-
code syntactic and semantic information. For standard statis-
tical models of MT, the rich variation of morphological forms

present in Arabic limits phrase learning to inflected forms
seen during training. When training data is sparse, this can
severely limit the performance of an SMT system (see 6.3).
As the training data for the IWSLT evaluations is extremely
limited, we performed morphological preprocessing prior to
training translation models and testing.

In addition to morphological features that are part of the
grammar of the “standard” written language, often called
Modern Standard Arabic (MSA), inconsistencies arise from
differing conventions in various regions of the Arabic speak-
ing world or an individual’s proficiency with MSA. Inconsis-
tencies due to an individual’s proficiency can be considerable
as the native language of Arabic speakers is almost always a
colloquial dialect of Arabic rather than MSA [17, 18].

For the purpose of improving MT quality we addressed,
at least to some degree, (1) inconsistencies in the use of the
Arabic character hamza; (2) inconsistencies in the marking
of tanween; (3) the attachment as proclitics of certain con-
junctions, prepositions, and the definite article; and (4) the
attachment as enclitics of direct object pronouns and pos-
sessive adjective pronouns [19, 20, 21]. The separation of
proclitics and enclitics can be performed by Arabic tokeniz-
ers such as the support vector machine (SVM) tokenizer de-
scribed in [19].1 However, the approach taken here involves
only lightweight stemming specifically designed to improve
word alignment and phrase training. The process, which we
call AP5, incorporates five simple stemming stages.

4.1. AP5 Process Details

The first step in the preprocessing addressed some inconsis-
tencies in the use of the Arabic character hamza (Z) when
used with the Arabic character alef (@) at the beginning of
words. In this step, when the forms @,

�
@,

@, and @

were

encountered at the beginning of a word, they were collapsed
into the single form @ following the convention used by NIST
in ASR evaluations 2.

The second step in the preprocessing addressed inconsis-
tencies in marking tanween, which denote the indefiniteness
of nouns [20, 21]. There are three tanween markings that de-
note the three grammatical cases of nominative, accusative,
and genitive. While there are rules and conventions regard-
ing their use, one can still find them inconsistently applied.
In this step, all tanween markings were removed.

The third step separated the proclitics ð (“wa,” → “and”)
and È@ (“al,” the definite article) from the rest of the words
to which they were attached. The conjunction ð can precede
È@ as in �

èPAJ
�Ë@ð (“wa-al-sayArah,” → “and the car”), which
would be separated as �

èPA J
� È@ ð. Again, the separation
was performed by a simple rule; there was no morphological
analysis performed to determine whether leading ð and È@

were really proclitics or just the leading parts of words. Thus,
words such as É�ð (“waSala,” → “he arrived”) would be
incorrectly separated. For statistical MT preprocessing, such
false alarm errors could potentially be repaired by the MT
system during translation.

1The first version of this tool was formerly available at: http://
www-nlp.stanford.edu/∼mdiab.

2Tools available at: http://www.nist.gov/speech/tools/

The fourth step separated the proclitics H. (“bi,” →
“by/with”),

	
¬ (“fa,” → “then”), ¼ (“ka,” → “as”), and È

(“li,” → “to”), as well as their individual combinations with
a following È@ . The case of È followed by È@ is written in
MSA without the intervening alef as É Ë (“lil”); however,
when separated, the alef of the definite article was restored.
As with the separation of ð and È@, some words can be
incorrectly separated by the regular expression substitutions.

The final step separated the enclitic pronouns from the
words to which they were attached. First, when separat-
ing enclitic pronouns, some ambiguities can be created. For
example the second person singular masculine attached pro-
noun “ka” is written as ¼, which is indistinguishable ortho-
graphically from the proclitic ¼ (see step 4) when it is
stemmed. To prevent these ambiguities, each enclitic pro-
noun is marked with the suffix post to disambiguate them.

5. Improved Confusion Network Decoding
In preparation for this year’s evaluation, we made a number
of enhancements to the confusion network decoding process
that we applied to last year’s evaluation [24]. Due to limited
time in 2006, we were not able to directly optimize source
ASR parameters for our evaluation systems. This year’s eval-
uation system fully optimizes all source input parameters.

In the process, we modified the confusion network pro-
cessing within the moses decoder to handle additional
scores from input ASR lattices. This allowed for separate
scaling factor optimization for source language acoustic and
language model scores. Acoustic and language model scores
are kept when processing the lattice into confusion network
form using the SRI lattice-tool [9]. During minimum
error rate training, we use these scores in place of the ASR
posterior probability, (eliminating the need to set a fixed pos-
terior scaling).

Additionally, we experimented with source confusion
network repunctuation of input confusion networks. For text-
only systems that needed source repunctuation (Italian and
Arabic) we create a confusion network for each sentence by
inserting a column of possible punctuation marks between
each source word. For ASR input systems we compared the
strategy used in [24] with a full repunctuation of the input
confusion network. For a given column of the input confu-
sion network k, this process requires summation of posterior
probabilities for all paths of length n − 1 leading to the col-
umn k.

6. Experiments
In preparation for the 2007 evaluation, we ran a number
of experiments to evaluate the performance of 1) different
speech decoding strategies, 2) the use of light morphology
for Arabic and 3) the use of skip language models for Chi-
nese. These experiments and the development data configu-
rations are described below.

6.1. Corpus Description

For this year’s evaluation we made trained models using only
the provided data set. For optimization and tuning we used
different combinations of development sets for different lan-
guages and different input types. For Italian translation, as
dev5b was significantly different than prior evaluation data
sets, we split this set into two halves, dev5bp1 (the first 500
sentences of dev5) and dev5bp2 (the remainder) for use in
optimization and testing respectively.

6.2. Comparison Lattice and Confusion Network Decod-
ing Strategies

We ran experiments in the text-only condition using con-
fusion network repunctuation. The results of these exper-
iments are shown in Table 4 using the first 500 sentences
of dev5b (designated as dev5bp1) for optimization and
testing against the remainder of (dev5bp2). As shown, al-
lowing ambiguity in source repunctuation improves perfor-
mance. Similarly, for ASR input, full repunctuation slightly
outperforms the 1-best strategy we employed during last
year’s evaluation.

Condition Repunct Method BLEU
IE Text 1-best 18.60
IE Text Full Conf-Net 19.44
IE ASR 1-best 18.00
IE ASR Full Conf-Net 18.20

Table 4: BLEU Scores for different repunctuation strategies.

We also ran a number of experiments optimizing for both
source language model and acoustic model scores in place
of the ASR posterior. As shown in Table 5 this improves
performance for all language pairs, though most prominently
in Arabic.

Language (dev/test) Source Features BLEU
CE (dev4/dev5) ASR Posterior 18.17
CE (dev4/dev5) src LM + AM 18.30
AE (dev4/dev5) ASR Posterior 21.77
AE (dev4/dev5) src LM + AM 22.92
IE (dev5bp1/dev5bp2) ASR Posterior 17.93
IE (dev5bp1/dev5bp2) src LM + AM 18.20

Table 5: BLEU Scores for different source language opti-
mization features.

Table 6 shows the results comparing the performance of
the confusion network and the FST-based lattice decoders.
Both systems perform comparably and, in Arabic, the lattice-
based decoder showed significant gains. We expect that, with
further refinement, this system could be improved.

BLEU
Language Pair Lattice Conf Net
CE 17.76 18.3
AE 23.94 22.92
IE (opt: dev4, test: dev5) 30.65 30.45
IE (opt: dev5bp1, test: dev5bp2) 17.23 18.20

Table 6: BLEU scores on dev5 after optimization on dev4
with FST decoder.

Morphological Processing BLEU
None (baseline) 55.40
Steps 1 + 2: Hamza and Tanween normalization 55.93
+ Step 3: wa-al proclitic stemming 57.62
+ Step 4: Proclitic stemming II 57.52
+ Step 5: enclitic pronoun stemming 58.73

Table 7: Impact of different AP5 processing steps.

6.3. Arabic Morphology Experiments

We conducted experiments comparing AP5 processing
against our baseline system (no morphological processing)
and against the tokenization algorithm described in [19].
In all cases, a 4-gram LM is used during decoding along
with two rescoring language models (7-gram class + 6-gram
word). Additionally IBM model-1 scores are applied during
rescoring. Results for these experiments are described below
on dev3 using dev2 for optimization.

6.3.1. AP5 vs. No Morphological Processing

The preprocessing steps of AP5 discussed in the previous
section were developed and tested one at a time, and each
succeeding step improved the BLEU score over that obtained
using all of the preceding steps. Nevertheless, there are a
number of interactions that can occur between the steps, and
additional experiments are needed to determine the effects of
reordering and modifying some of these steps. After tuning,
the results for each stage are shown in Table 7.

Interestingly, as we would expect from such a simple
morphological analysis system, the current ordering of the
morphological processing operations leads to several incor-
rect splits due to interactions across steps. For example, in
�
é
	
KñºËAJ. Ë @ (“al-bAlkUnah,” → “the balcony”), the leading È@

is separated in step three, thereby exposing ÈAK. for incorrect
separation in step four. Despite this, MT performance on the
whole is improved significantly over the baseline.

6.3.2. AP5 vs. SVM-based Tokenization for MT

Additional experiments were conducted to compare the per-
formance of AP5 against the tokenization step of Version 1 of
the SVM-based part-of-speech tagger and base phrase chun-
ker of [19]. The SVM-based algorithm of [19] was trained

Stemming Applied BLEU
None (baseline) 55.40
AP5 58.73
SVM-based [19] 55.65

Table 8: AP5 processing vs. SVM-based tokenization

on data from the Arabic Penn Treebank 1 (Version 2.0),3. As
such, it may be significantly mismatched to data from the
IWSLT evaluation set. We compared the performance of this
tokenization process against AP5 for machine translation.

In [19], their SVM-based tokenizer was compared to a to-
kenizer based on rules (similar to those of AP5) as well as to
a rule-based system with a dictionary of pretokenized forms.
Their SVM tokenizer outperformed, in terms of tokenization
accuracy, the other two tokenizers when tested on other Ara-
bic Treebank data (Fβ=1 = 99.12 versus Fβ=1 = 88.62
for the rule-based system and Fβ=1 = 93.71 for the rule-
and dictionary-based tokenizer). We expect that AP5 would
likely perform worse than the either the dictionary or SVM-
based systems.

That said, in our experiments AP5 was found to perform
better in terms of BLEU score than the SVM-based tokenizer,
though both systems improved the baseline system. Table 8
shows the results of these experiments.

This may be caused by differences between IWSLT-style
data and Treebank-style data, or a lack of consistency in to-
kenization for word alignment and phrase extraction. Other
related studies have shown that better tokenization does not
necessarily improve MT peformance [22] and the effect here
may be related.

6.4. Chinese Text-only Experiments

In this year’s Chinese to English system we started with the
baseline system configuration we used for last year’s system.
As this year’s evaluations differed from 2006, our model
training procedures were adapted accordingly. Decoding
was done using the moses decoder with a 4-gram language
model and n-best lists of 100 sentences were rescored with a
5-gram language model and a 6-gram class-based language
model. Results were TrueCased with a 4-gram TrueCaser
trained on the training data.

Our primary system was optimized using development
sets 1 and 2 (evaluation sets from CSTAR 2003 and IWSLT
2004). TrueCased results on dev3 were 58.53 BLEU in this
configuration.

It is worth noting that optimization from different ran-
dom starts yielded significantly different results. We ran a
set of baseline experiments with six consecutive optimiza-
tion and test cycles. The results of this were highly vari-
able: 57.66, 57.91, 58.12, 57.87, 57.58, and 58.53 (mean:
57.70, confidence interval[95%]: ± 0.41). Similar results

3See: http://www.ldc.upenn.edu

Sk d12+sk d12-sk lm+d2+sk lm+d2-sk

2 57.40 ± 0.40 57.74 ± 0.39 57.78 ± 0.26 57.88 ± 0.09
3 57.35 ± 0.47 57.60 ± 0.38 58.05 ± 0.21 57.79 ± 0.40
4 57.15 ± 0.19 56.96 ± 0.33 57.51 ± 0.24 57.69 ± 0.25
5 57.00 ± 0.50 57.75 ± 0.40 57.71 ± 0.26 58.00 ± 0.21
6 57.04 ± 0.23 57.62 ± 0.53 57.73 ± 0.22 57.61 ± 0.25

Table 9: Chinese dev3 results with and without skip lan-
guage models

were reproduced using an independent implementation (from
the moses toolkit) of the Powell-based minimum error rate
training procedure.

Additional experiments were conducted to investigate the
potential benefit of using skip language models in the rescor-
ing process [23]. Skip language models with skips ranging
from 2 to 6 were investigated as either a replacement for or
in addition to the 5-gram language model normally used in
our rescoring process. Two systems were tested with skip
language models:

• d12 – The baseline system optimized on dev sets 1
and 2.

• lm+d2 – The baseline system in which dev2 ref-
erences augment the target language model training,
only dev set 1 used in optimization and n-best lists of
1000 were used.

Table 9 shows the results for each model configuration
when a skip language model is used in addition to a rescor-
ing language model (+sk) and when it replaces the standard
rescoring language model (-sk). Each cell of this table shows
the average score from six optimization runs with error bars
(at 95% confidence).

The results indicate that replacing the rescoring language
model with a skip language model in general does better than
adding it as an additional rescoring model. System lm+d2
with skip of 5 (replacing the rescoring language model) and
skip of 3 (adding the skip language model) yields BLEU
scores that show significant improvement over the baseline.

These results indicate that a skip language model may
provide some benefit when used in the rescoring process. Fu-
ture experiments will investigate how well the results of this
system and that of our baseline configuration would fuse.

7. Evaluation Results
7.1. System Configurations

As the source input conditions differed for different language
pairs, we tailored our systems appropriately. Table 10 shows
the configuration of our systems for each language pair and
input type.

Two different repunctuation strategies were employed for
Arabic speech input. The aren-asr-2 system makes use
of phrase tables trained with source punctuation removed. In

contrast, the aren-asr-1 system uses a punctuated phrase
table and repunctuates the source ASR lattice.

Text Input
Language System BLEU
Chinese czen-primary 36.31
Arabic aren-primary 45.53
Arabic aren-secondary 47.41
Italian iten-primary 28.42

Table 11: Overall performance of submitted systems with text
input on test-2007. (primary systems in bold)

ASR Input BLEU
Configuration Ar (Speech) It (Speech)
Confusion Net Decoder 42.93 25.00
Lattice Decoder 44.29 22.78

Table 12: Overall performance of submitted systems with
ASR input test-2006. (primary systems in bold)

Tables 11 and 12 show our official submissions to the
2007 IWSLT evaluation. Official primary submissions re-
sults are shown in bold.

8. Acknowledgements
We’d like to thank Tyler Pierce for providing language sup-
port in Chinese. We would also like to thank the staff of the
Information Systems and Technology group at MIT Lincoln
Lab for making machines available for this evaluation effort.

9. References
[1] Brown, P., Della Pietra, V., Della Pietra, S. and Mer-

cer, R. “The Mathematics of Statistical Machine Trans-
lation: Parameter Estimation,” Computational Linguis-
tics 19(2):263–311, 1993.

[2] Och, F. J. and Ney, H., “Discriminative Training
and Maximum Entropy Models for Statistical Machine
Translation,” In ACL 2002: Proc. of the 40th Annual
Meeting of the Association for Computational Linguis-
tics, pp. 295-302, Philadelphia, PA, July 2002.

[3] Och, F. J., “Minimum Error Rate Training for Statistical
Machine Translation,” In ACL 2003: Proc. of the Asso-
ciation for Computational Linguistics, Japan, Sapporo,
2003.

[4] Koehn, P., “Pharaoh: A Beam Search Decoder for
Phrase-Based Statistical Machine Translation Models,”
In Proceedings of the Association of Machine Transla-
tion in the Americas (AMTA), Washington, DC, 2004.

[5] Shen, W., Delaney, B. and Anderson, T., “The MIT-
LL/AFRL IWSLT-2006 MT System,” In Proc. Of the

System Language Decoder Type Source Repunctation Light Morph. Rescoring
czen-primary Chinese Text N/A no 6g class + 5g skip-LM
aren-primary Arabic Text N/A yes 7g class + 6g rescore + model1
aren-secondary Arabic Text N/A yes none
aren-asr-1 Arabic Lattice yes yes none
aren-asr-2 Arabic ConfNet N/A no 7g class + 6g rescore + model1
iten-primary Italian Text yes no 6g class + 5g rescore
iten-asr-1 Italian ConfNet yes no 6g class + 5g rescore
iten-asr-2 Italian Lattice yes no none

Table 10: System Configurations for different language pairs.

International Workshop on Spoken Language Transla-
tion, Kyoto, Japan, 2006.

[6] Chen, B. et al, “The ITC-irst SMT System for IWSLT-
2005,” In Proc. Of the International Workshop on Spo-
ken Language Translation, Pittsburgh, PA, 2005.

[7] Melamed, D., “Models of Translational Equivalence
among Words,” In Computational Linguistics, vol. 26,
no. 2, pp. 221-249, 2000.

[8] Al-Onaizan, Y., Curin, J., Jahr, M., Knight, K., Lafferty,
J., Melamed, I.D., Och, F.J., Purdy, D., Smith, N.A.,
Yarowsky, D., “Statistical machine translation: Final
report,” In Proceedings of the Summer Workshop on
Language Engineering at JHU, Baltimore, MD 1999.

[9] Stolcke, A., “SRILM - An Extensible Language Mod-
eling Toolkit,” In Proceedings of the International Con-
ference on Spoken Language Processing, Denver, CO,
2002.

[10] Philipp Koehn et al, “Moses: Open Source Toolkit for
Statistical Machine Translation,” Annual Meeting of
the Association for Computational Linguistics (ACL),
Prague, Czech Republic, June 2007.

[11] M. Mohri, “Finite-State Transducers in Language and
Speech Processing,” In Computational Linguistics, vol
23, no 2, pp 269-311, 1997.

[12] L. Hetherington, “The MIT Finite-State Transducer
Toolkit for Speech and Language Processing,” In Proc.
Intl. Conf. on Spoken Language Processing, Jeju, Ko-
rea, 2004.

[13] E. Matusov, H. Ney and R. Schulster, “Phrase-Based
Translation of Speech Recognizer Word Lattices Us-
ing Loglinear Model Combination,” In Proc. Auto-
matic Speech Recognition and Understanding Work-
shop (ASRU), San Juan, Puerto Rico, 2005.

[14] A. Perez, M.I. Torres, and F. Casacuberta, “Speech
Translation with Phrase Based Stochastic Finite-State,”
In Proc. of Intl. Conf. on Acoustics, Speech and Signal
Processing, Toulouse, France, 2007.

[15] S. Kumar and W. Byrne, “A Weighted Finite State
Transducer Implementation of the Alignment Template
Model for Statistical Machine Translation,” In Proc. of
2003 Conf. of the NAACL, Edmonton, Canada, 2003.

[16] B. Zhou, L. Besacier and Y. Gao, “On Efficient Cou-
pling of ASR and SMT for Speech Translation,” In
Proc. of Intl. Conf. on Acoustics, Speech and Signal
Processing, Toulouse, France, 2007.

[17] C. Holes, “Modern Arabic: Structures, Functions, and
Varieties,” Georgetown University Press: Washington,
D.C., 2004.

[18] M. C. Bateson, “Arabic Language Handbook,” George-
town University Press: Washington, D.C., 2003.

[19] M. Diab, K. Hacioglu, and D. Jurafsky, “Automatic
tagging of Arabic text: From raw text to base phrase
chunks,” in Proceedings of HLT-NAACL, (Boston
MA), May 2004.

[20] E. Badawi, M. G. Carter, and A. Gully, “Modern Writ-
ten Arabic: A Comprehensive Grammar,” Routledge:
London, 2004.

[21] J. Mace, “Arabic Grammar: A Reference Guide,” Edin-
burgh University Press: Edinburgh, 1998.

[22] P. Koehn and K. Knight, “Empirical Methods for Com-
pound Splitting,” In Proc. of the European Assoca-
tion for Computational Linguistics, Budapest, Hungary,
2003.

[23] D. Guthrie et al, “A Closer Look at Skip-gram Mod-
elling,” In Proceedings of the Language Resources
and Evaluation Conference (LREC), pp. 1222-1225,
Genoa, Italy, 2006.

[24] W. Shen, R. Zens, N. Bertoldi, and M. Federico, “The
JHU Workshop IWSLT-2006 MT System,” In Proc.
Of the International Workshop on Spoken Language
Translation, Kyoto, Japan, 2006.

