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Abstract
Translation with pivot languages has recently gained atten-
tion as a means to circumvent the data bottleneck of statis-
tical machine translation (SMT). This paper tries to give a
mathematically sound formulation of the various approaches
presented in the literature and introduces new methods for
training alignment models through pivot languages. We
present experimental results on Chinese-Spanish translation
via English, on a popular traveling domain task. In contrast
to previous literature, we report experimental results by using
parallel corpora that are either disjoint or overlapped on the
pivot language side. Finally, our original method for generat-
ing training data through random sampling shows to perform
as well as the best methods based on the coupling of transla-
tion systems.

1. Introduction
Statistical machine translation (SMT) is concerned with the
machine learning task of designing and developing statisti-
cal models and algorithms to translate texts from a source
language F into a target language E. Training algorithms
for SMT generally rely on a large sample of human trans-
lations between F and E. This paradigm has proven to be
successful for language pairs for which large parallel cor-
pora are available, such as Chinese-English, Arabic-English
and French-English. The largest collections of parallel texts
typically come from national and international organizations
that publish multilingual documents, e.g. the United Nations,
European Parliament, Canadian Parliament, news agencies,
etc. Unfortunately, there are many relevant language pairs
for which such fundamental language resources are available
only to a limited extent.

To circumvent the data bottleneck, research on SMT
has been recently investigating the use of so-called pivot or
bridge languages. The assumptions are simple to state: (i)
there is lack of parallel texts between E and F, while (ii) there
exists a language G for which the are abundant parallel texts

between F and G and between G and E.
A realistic working condition with pivot languages is that

the parallel corpora for F-G and G-E are independent, in the
sense that they do not derive from the same set of sentences.
Recent research has often focused indeed on the use of par-
allel corpora, such as the Europarl Corpus, which provides
instead multiple translations of the same texts. While such
data can be regarded as interesting for the sake of performing
contrastive experiments, namely to compare translations ob-
tained with and without bridge languages, they do not reflect
the general case and results should be interpreted carefully.

This paper presents a theoretical formulation of SMT
with pivot languages, that embraces several approaches in
the literature and a few original methods. Extensive experi-
ments are reported that compare performance of each bridg-
ing when using dependent and independent parallel data. Ex-
periments were conducted on the IWSLT 2008 benchmark,
namely the translation of traveling domain expressions from
Chinese to Spanish via English.

2. Previous Work
The use of pivot or bridge languages has been advocated
for different purposes, such as rule-based machine transla-
tion systems [1], translation lexicon induction [2, 3], word
alignment [4, 5, 6], cross language information retrieval [7].

Concerning statistical machine translation, pivot lan-
guage translation has been investigated for instance by [8] in
order to extend an interlingua based speech translation sys-
tem to a new language. In [9], Catalan-English translation
is bridged through Spanish. The authors compared two cou-
pling strategies: cascading of two translation systems versus
training of system from parallel texts whose target part has
been automatically translated from pivot to target. System
cascading was recently investigated in [10], too.

In [11] word alignment systems are combined from mul-
tiple bridge languages by multiplying posterior probability
matrices. This technique requires the existence of parallel
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data for several languages, like the proceedings of United
Nations or European Parliament.

An approach based on phrase table multiplication is dis-
cussed in [10, 12]. Scores of the new phrase table are com-
puted by combining corresponding translation probabilities
in the source-pivot and pivot-target phrase-tables. Finally, in
[13] a similar approach is described, but for the sake of im-
proving translation probabilities through triangulation with
other languages.

3. SMT through pivot languages
SMT with bridge languages is concerned about how to opti-
mally perform translation from F to E, by taking advantage of
the available language resources. We can device two general
approaches to apply bridge languages in SMT, namely bridg-
ing at translation time or bridging at training time, which we
briefly overview now.

3.1. Bridging at Translation Time

Under this framework, we try to integrate or couple two lev-
els of translation within the same decoding problem:

source text pivot text target text
f → g → e

namely, from the source text to the pivot text, and from the
pivot text to the target text:

The corresponding statistical decision criterion can be
derived by modeling the pivot text as a hidden variable and
by assuming independence between the target and the source
strings, given the pivot string:

f → ê = argmax
e

p(e | f)

= argmax
e

∑
g

p(e,g | f)

= argmax
e

∑
g

p(g | f) p(e | g)

≈ argmax
e

max
g

p(g | f) p(e | g) (1)

Notice that in the last step we also apply the usual max ap-
proximation, to reduce the complexity of the search proce-
dure. By assuming standard phrase-based models for each of
the probability expressions in the right-hand side of the last
equation, we have to extend the search with other two hidden
variables: a, b as follows:

argmax
e,a

max
g,b

p(g,b | f) p(e,a | g) (2)

The two variables a and b, respectively, model phrase seg-
mentation and re-ordering for each considered translation di-
rection. Figure 1 shows the two level alignments for a sim-
ple example involving translations from Chinese to Italian,
through English. Horizontal segments show that the English
string is segmented differently when it is generated from Chi-
nese than when it is translated into Italian.

3.1.1. Coupling Independent Alignments

From a computational complexity view, the two level trans-
lation problem is at least as hard as the Spoken Language
Translation (SLT) problem [14]. Briefly, in SLT source
strings are sequences of acoustic observations x, pivot strings
are transcription hypotheses f of x, and the target strings are
translations e of f . By taking advantage of approximations
proposed for the SLT case, we can reduce the computational
burden of (2) by limiting the pivot translations g to a limited
subset G(f):

argmax
e,a

p(e,a | g) max
(g,b)∈G(f)

p(g,b | f) (3)

Natural candidates to represent such subsets of pivot trans-
lations are n-best lists and word-graphs produced by the
source-to-pivot translation engine.

3.1.2. Coupling Constrained Alignments

Besides limiting the translation candidates g, another alterna-
tive proposed in the literature is to constrain the alignments
a and b to share exactly the same segmentation, and b to be
monotonic. An example of the effect of these constraints is
shown in Figure 1. With these restrictions, search can be car-
ried out in a single step by pre-computing the product of the
involved phrase-tables. Assuming two phrase tables with en-
tries (f̃ , g̃) and (g̃, ẽ), and scores t(f̃ , g̃) and t(g̃, ẽ), respec-
tively, we can build a new phrase table with entries (f̃ , ẽ) and
scores computed according to one of the following criteria:

• Integration:

t(ẽ | f̃) =
∑

g̃

t(f̃ , g̃)× t(g̃, ẽ) (4)

• Maximization:

t(ẽ | f̃) = max
g̃

t(f̃ , g̃)× t(g̃, ẽ) (5)

Search with constrained alignments requires the target lan-
guage model and a single distortion model that directly maps
source to target positions. At first sight, it seems rather dif-
ficult to compute the distortion model by combining the dis-
tortion models of the two translation steps. As there are no
parallel data to train a lexicalized distortion model, we opted
for a plain exponential distortion model.

3.2. Bridging at Training Time

Another way to exploit parallel training corpora F-G and G-E
is to use them to develop and train a translation system from
F to E.

3.2.1. Bridging Alignment Models

We will focus here on possible extension of the standard
training criterion of IBM alignment models [15], which as-
sumes a parallel corpus (F,E) = {(fi, ei)} and looks for
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since  the  new  administration  took  office  this  year

desde que la nueva administracion tomo posesion de su cargo este año

this year new administration  took  office  since the

desde que la nueva administracion tomo posesion de su cargo este año
Target
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Figure 1: Phrase-based translation from Chinese to Spanish, through English, with independent alignments (left) and constrained
alignments (right).

parameters maximizing

θ∗FE = argmax
θF E

∏
i

PθF E
(fi | ei) (6)

Let us assume instead the availability of a parallel cor-
pus (F,G) = {(fi,gi)} and of an already trained translation
system from G to E, that models the posterior probability
P (e | g). The probability P (f | g) can be written as the
marginal distribution:

P (f | g) =
∑
e

P (f | e)P (e | g) (7)

were we assume independence between the target and source
strings, given the pivot string. If P̃ (e | g) is the given trans-
lation model and PθF E

(fi | ei) is an alignment model to be
estimated, the following training criterion can be applied:

θ∗FE = argmax
θF E

∏
i

∑
ei

PθF E
(fi | ei)P̃ (ei | gi) (8)

In the new formulation ei becomes now a hidden ran-
dom variable generated by the translation system P̃ (e | g),
trained on a parallel corpus (G, E). Notice that our formu-
lation leaves us free about the way the latter model is built.
Namely, we will assume P̃ (e | g) to be the best phrase-based
model we can develop from training data (G, E).

The concern is now how to efficiently estimate the word
alignment models with the criterion (8). A first reasonable
approximation is to limit the sum over ei to the n-best hy-
potheses, or equivalently to limit the support of P̃ (e | g) to
the top n translations. While we leave for future work the
extension of the standard training algorithms, at least for the
simplest IBM alignment models, in this work we only experi-
mented the simplest case, namely using the 1-best hypothesis
(Viterbi) ei, which trivially results in the criterion (6) with ei

obtained by taking the top best translation from P̃ (ei | gi).

3.2.2. Random Sampling of Training Data

Another simple method we investigate is to generate a paral-
lel corpus by sampling from an available translation system
from G to E. The idea is simple. For each example (fi,gi) in

the training corpus (F,G) we generate a random sample of m
translations eij of gi according to the distribution P̃ (e | g).
Given the newly created sample (F,E) = {(fi, eij)}, j =
1, . . . , k, we build a translation system from word alignments
estimated by maximizing the criterion:

θ∗FE = argmax
θF E

∏
i,j

PθF E
(fi | eij) (9)

Practically, we generate n-best list of translations e from gi

and normalize their translation scores in order to define the
posterior P̃ (e | gi). Then, we sample with replacement k
alternatives from this list according to the posterior distri-
bution. The idea is to get a sample that contains possible
duplicates of the most probable translations. In this way,
most reliable word alignments are reinforced during train-
ing as well as phrase-pairs using words of the most probable
translations.

This approach is indeed more sound than just taking the
list of n-best, as experimental results will confirm in the fol-
lowing sections.

4. Task description
The approaches introduced in the previous section were eval-
uated on a benchmark provided by the 2008 International
Workshop on Spoken Language Translation1. One of the
proposed tasks consists in translating from Chinese to Span-
ish by pivoting through English. Training and evaluation data
are from the Basic Travel Expression Corpus (BTEC) [16], a
collection of parallel translations in the traveling domain.

Five monolingual corpora were available: two for Chi-
nese (C1 and C2), two for English (E1 and E2) and one for
Spanish (S1). C1, E1, and S1 are also aligned at the sentence
level, hence they provide a trilingual parallel corpus; C2 and
E2 are aligned as well and form a bilingual parallel corpus.
The official benchmark for the pivot task of IWSLT consists
only in the two non overlapping bilingual parallel corpora
CE2 and ES1, while the bilingual parallel corpus CS1 is for
contrastive experiments. The benchmark also includes a de-
velopment set of 506 Chinese sentences, with 16 alternative
translations in English and Spanish. In order to evaluated

1www.slc.atr.jp/IWSLT2008/
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and compare our approaches we extracted a test set of 998
sentences from the trilingual corpus (CES1).

More details about training, dev and test sets are given in
Tables 1. Statistics reported refer to texts after tokenization
or segmentation (for Chinese), and converting numbers into
digits.

Chi Eng Spa
corpus 1 sentences 18,974

words 161K 172K 176K
dictionary 8,017 8,210 10,773

corpus 2 sentences 18,999
words 150K 172K -
dictionary 8,114 8,631 -

dev sentences 506
words 3,721 3,769 3,774
dictionary 935 931 1,053

test sentences 998
words 8,588 9,294 9,445
dictionary 1,668 1,731 2,090

Table 1: Statistics of the available training data, dev and test
sets: number of sentences, number of running words, and
dictionary size.

Translation performance is reported in terms of case sen-
sitive BLEU% score. Statistical significance tests are carried
out by applying a paired t-test on a 50-fold partition of the
test set.

5. System description
All experiments have been run with phrase-based statistical
MT systems developed with the Moses open-source toolkit
[17]. The employed decoder features a statistical log-linear
model including a phrase-based translation model, a lan-
guage model, a distortion model, and word and phrase penal-
ties. The resulting eight weights of the log-linear combina-
tion are optimized by means of a minimum error training pro-
cedure [18].

The phrase-based translation model provides direct and
inverted frequency-based and lexical-based probabilities for
each phrase pair included in a given phrase table. Phrase
pairs are extracted from symmetrized word alignments gen-
erated by GIZA++ [19]. This extraction method does not ap-
ply in the case of pivoting with constrained alignments (see
Section 3.1.2) as the phrase table is obtained by taking the
product of two existing phrase tables.

A 5-gram word-based LM is estimated on the target
side of the parallel corpora using the improved Kneser-Ney
smoothing [20]. The distortion model is a standard negative-
exponential model.

Table 2 shows the BLEU scores achieved by the baseline
systems (Direct) on the dev and test sets. It is worth noticing
that the system trained on CE1 outperforms the one trained
on CE2. The reason is that both dev and test sets seem much

closer to the former corpus than to the latter, as shown by the
out-of-vocabulary (OOV) rates on the source side.

task data dev test
BLEU OOV BLEU OOV

Chi-Eng CE1 43.08 2.90 26.91 2.00
CE2 33.22 4.14 19.09 3.80

Eng-Spa ES1 54.39 1.97 49.13 2.01
Chi-Spa CS1 31.94 2.90 23.67 2.00

Table 2: Results of direct translation systems trained on dif-
ferent language pair corpora.

In the following, we describe how we implemented the
pivoting approaches introduced in Section 3.

6. Sentence-level Coupling
In system coupling with unconstrained alignments, we con-
sider two methods for interfacing the CE and ES systems.
The easiest method, called Cascade, uses only the 1-best
English translation ĝ of the Chinese sentence f . The sec-
ond way, named Nbest, consists of generating m-best Span-
ish translations for each of the n-best English translations
g1 . . .gn generated by the CE system, and rescoring all
n × m hypotheses using both CE and ES translation scores.
In this case the subset G(f) = {g1 . . .gn}.

The CE system has been trained on the CE2 data while
the ES system on ES1. Table 3 reports BLEU scores ob-
tained with different settings of n and m. (Notice that for
each setting a specific weight optimization was performed.)

We considered two ways of combining the translation
scores during re-scoring of the n × m hypotheses: either a
log-linear model of the two global scores of the systems, or a
log-linear model of all their 16 features. The second strategy
showed to be vastly superior (α = .02), and was applied in
all subsequent experiments.

Increasing n and m from 1 to 10 gives a statistically sig-
nificant benefit (α = .02). Unfortunately, further increases
do not show to pay off on the test set, probably because
weight optimization tends to overfit the dev data.

Our phrase-based SMT system can possibly generate
identical (or duplicate) translation alternatives with different
feature scores, as different phrase segmentations are taken
into account. By comparing the generation of n×m-best al-
ternatives with or without duplicates, no definitive choice can
be made because performance seems again suffering from
the overfitting problem. Hence, we preferred to use dupli-
cates because it results mathematically correct as shown in
Eq 3.

7. Phrase-level Coupling
In system coupling with constrained alignments, we com-
pared performance under two different training conditions:
namely, the use of two disjoint bilingual corpora or the ex-
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n,m rescoring not distinct distinct
features dev test dev test

1 - 25.13 16.44 25.13 16.44
10 2 25.28 16.60 24.98 16.75

16 26.65 17.59 27.00 17.96
20 16 27.18 17.03 27.54 17.51
50 16 27.78 16.96 27.87 17.21
100 16 27.89 17.64 28.55 16.93

Table 3: Results of the Cascade and Nbest approaches. Ei-
ther distinct or duplicate n × m-best alternatives are com-
pared.

ploitation of one trilingual parallel corpus. In the former
case, we took the product of phrase tables estimated from
CE2 and ES1, in the latter the product of phrase tables esti-
mated on CE1 and ES1.

7.1. Description of the Algorithm

The source-pivot and pivot-target phrase tables are sorted
lexicographically on the pivot phrases. The algorithm reads
in parallel from both tables and matches lines with equal
pivot phrases. This is linear in terms of numbers of phrase
pairs. The matched lines are then combined by multiplying
scores as explained in section 3.1.2 into a preliminary table.
As the resulting table could contain duplicates of (f̃ , ẽ), we
sort it on the phrase pairs and collapse duplicate entries either
by summing or maximizing equal entries.

Scores of phrase pairs have been computed according to
either the policies proposed. Results (BLEU%) on the test
set reported in Table 4 show that integrating scores is signif-
icantly better choosing the maximum of them (α = .01).

disjoint overlap
integration 16.65 23.50
maximization 15.88 22.82

Table 4: Results on the test set achieved by the PhraseTable
approach with two different policies for generating phrase
pair scores.

CE2 CE1 ES1 product
disj over

src phr 76K 128K 277K 21K 94K
trg phr 82K 134K 284K 32K 108K

phr pairs 133K 185K 333K 592K 696K
avg trans 1.8 1.4 1.2 28.2 7.4
common - - - 59K 143K

Table 5: Statistics about the original and the product phrase
tables when pivot data are either disjoint or overlapped.

Table 5 reports statistics of the original CE and ES phrase
tables and of the phrase table generated by multiplication:
the number of source phrases, target phrases and phrase
pairs, and the average number of translations for each source
phrase. Furthermore, for the derived phrases tables the
amount of common pivot (English) phrases in both original
phrase tables is reported: this figure gives a rough estimate
of the overlap between the two original phrase tables, and
hence it indirectly measures how much Chinese content can
be conveyed into Spanish through English,

In the disjoint training condition only 1/3 of the origi-
nal Chinese phrase can be translated into Spanish through
English. Instead, the average number of translations hugely
grows, by significantly increasing the ambiguity of transla-
tions and the number of wrong translations. Furthermore,
only 59K of the 133K phrase-pairs (44%) in the CE2 table
have a match in the ES1 phrase table. In fact, the common
pivot phrases are mainly of length 1 (65%) as shown in Fig-
ure 2.

When the overlapped training condition is applied, the
percentage of common pivot phrases increases to 77%. In
this case, missing phrase matches are due to different phrase
segmentations on the English side, that result after training
separately CE and ES systems.
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Figure 2: Number of common pivot phrases in the two origi-
nal phrase tables.

8. Synthesis of Training Data
In order to automatically generate Chinese-Spanish parallel
data, we used the system trained on ES1 translate data E2 into
a synthetic corpus S̄2. In this way we obtain the parallel cor-
pus CS̄2 that can be used to directly train a Chinese-Spanish
SMT system.

Several ways were investigated to generate the synthetic
corpus CS̄2. The simplest method is to use the 1-best Spanish
translation of each English sentence [9]. The second method,
exploits instead the n-best Spanish translations. Chinese sen-
tences are replicated in order to match the number of gener-
ated translations. A more theoretically sound method – de-
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scribed in Section 3.2.2 is to generate a random sample of
size m from the n-best Spanish translations after properly
normalizing the translation scores.

All these methods can be seen as a way to perform unsu-
pervised training. Once generated, synthetic parallel corpora
can be used to train phrase tables and LMs.

n,m lm dev test
1-best 1 S1 22.05 14.56
1-best 1 S̄2 23.58 15.38
1-best 1 S1+S̄2 24.57 16.13
n-best 100 S1+S̄2 26.04 17.03
sampling 100 S1+S̄2 26.02 17.68

Table 6: Results of the Synthesis approach using CE2 and
ES1 training corpora.

Table 6 reports results of the Synthesis approaches using
the data available for the pivot condition, the parallel corpora
CE2 and ES1. For each setting a specific weight optimiza-
tion is performed. Concerning the estimation of the target
LM, the table shows that using synthetic data S̄2 significantly
improves the scores with respect to using the supplied data
S1 only (α = .03); using both sets gives the best results.
Regarding the different methods to generate the parallel cor-
pus, sampling shows to outperform the other two methods
(α = .03). The choice of randomly selecting 100 translations
from the 100-best alternatives resulted as a good compromise
for the task at hand, which features a rather limited vocabu-
lary and short input sentences.

An explanation of the difference in performance of the
various synthesis methods concerns the way data reflect the
confidence of the system that generated them. When data
consists of 1-best translations, no information is conveyed
about the level of confidence of each single translation. In
the n-best case, more information about the confidence of
the translations is supplied, implicitly. Typically all transla-
tions in the n-best list are very similar to each other, hence
the most stable portions of them occur more frequently than
those for which the system was more uncertain. However,
the drawback of the approach is that very low scoring trans-
lations receive the same status of the top scoring one. The
random sampling approach improves the n-best approach by
penalizing the selection of low scoring translations and by
generating data which better reflects the confidence of the
system.

9. Discussion
For the sake of comparison, main results of the previously
presented approaches are summarized in Table 7.

Nbest and Synthesis approaches seem to achieve com-
parable performance and both outperform the Cascade and
PhraseTable methods. Differences are statistically signifi-
cant at a level alpha = .05.

From a computational point of view, the Nbest approach
is expensive at run-time: it actually translates n + 1 times
(1 for Chinese-to-English and n for English-to-Spanish) and
re-scores and re-ranks n×m alternatives per input sentence.
Instead, the Synthesis approach requires more resources for
training due to cost of translating the whole English corpus
and to compute word alignments over a potentially very large
synthetic corpus.

CS task CE task
training disjoint overlap overlap
Direct – 23.67 26.91
Cascade 16.44 24.04 22.36
Nbest 17.64 25.16 23.39
PhraseTable 16.65 23.50 24.01
Synthesis 17.68 25.19 27.58

Table 7: Results on the test set achieved by different pivot
approaches to Chinese-Spanish and Chinese-English transla-
tion. The Direct system is also reported.

As a contrastive condition we also used the CE1 parallel
corpus to train the all systems –practically CE1 replaces the
corpus CE2. Notice that this training condition assumes that
a trilingual parallel corpus CES1 is available.

All systems achieved significantly larger BLEU scores in
this contrastive condition. This also confirms that the quality
of CE1 is much better than CE2 as already stated in Sec-
tion 5.

We also run the Direct system trained on the CS1 corpus.
Interestingly, its score is comparable with that of the Cascade
and PhraseTable systems, but clearly below the score of the
Nbest and Synthesis systems (α = .02).

A possible explanation for this behavior is related to the
nature of the three involved languages. Translating from
Chinese to Spanish requires introducing significant mor-
phology information and word re-ordering. In some sense,
pivoting through English results in a nice factorization of
the issues: Chinese-English translation copes with most of
the word-reordering but little morphology, while English-
Spanish translation implies little word re-ordering but more
morphology. Probably this factorization has a positive im-
pact in terms of less data sparseness in the training data and
results in better statistical models. To provide an evidence to
our claim, we performed corresponding experiments in the
Chinese-English task pivoting through Spanish, with systems
trained on CSE1. In this condition Direct significantly out-
performs Cascade and PhraseTable (α = .01). Hence, in
this case the pivot language does not seem to factor out the
complexity of the translation task.

Moreover, on the Chinese-English translation via Span-
ish Nbest performs significantly better than Cascade (α =
.02), but PhraseTable outperforms Cascade (α = .01). It
is worth noticing that Synthesis significantly outperforms all
other approaches, Direct system included. A reasonable ex-
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planation for this behavior is that Synthesis completely skips
the most difficult step (translating from Chinese to Spanish)
and fully exploits the easiest step (i.e. translating from Span-
ish to English). This property could be used for generating
synthetic Chinese data as well, if parallel data with a lan-
guage close to Chinese were available.
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