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Abstract
This paper presents a description for the ICT systems in-
volved in the IWSLT2008 evaluation campaign. This year,
we participated in Chinese-English and English-Chinese
translation directions. Four statistical machine translation
systems were used: one linguistically syntax-based, two for-
mally syntax-based, and one phrase-based. The outputs of
the four SMT systems were fed to a sentence-level system
combiner, which was expected to produce better translations
than single systems. We will report the results of the four sin-
gle systems and the combiner on both the development and
test sets.

1. Introduction

The ICT system for IWSLT2008 is a combination of four
statistical machine translation systems:

1. Silenus, a linguistically syntax-based system that uses
tree-to-string rules learned from packed forests;

2. Bruin, a formally syntax-based system that imple-
ments a maximum entropy based reordering model on
BTG rules;

3. Mencius, a phrase-based system that enables lexical-
ized reordering and similarity-based partial matching
of bilingual phrases;

4. Change, a formally syntax-based system that employs
hierarchical phrases.

They are combined at sentence level using a general lin-
ear model.

This year, we participated in three tracks (two translation
directions):

1. BTEC task, Chinese-English direction;

2. Challenge task, Chinese-English direction;

3. Challenge task, English-Chinese direction.

This paper is structured as follows. Section2 describes
the four SMT systems and the combiner; Section3 gives the
experimental results, and Section4 is the conclusion.

Figure 1:A pair of linked source forest and target string. The
solid lines denote hyperedges and the dashed lines denote
word alignments.

2. SMT Systems

2.1. Silenus

Deriving from the tree-to-string system Lynx [1, 2], Silenus
[3, 4] uses packed forests instead of1-best parse trees in both
training and decoding.

A packed parse forest is a compact representation of all
derivations (i.e., parse trees) for a given sentence under a
context-free grammar [5]. A forest can be formally defined
as a tuple〈V, E, v̄,R〉, whereV is a finite set of nodes,E is
a finite set of hyperedges,v̄ ∈ V is a distinguished node that
denotes the goal item in parsing,R is the set of weights. For
a given sentencew1:l = w1 . . . wl, each nodev ∈ V is in the
form if Xi,j , which denotes the recognition of non-terminal
X spanning from positioni throughj (that is,wi+1 . . . wj).
Each hyperedgee ∈ E is a triplee = 〈T (e), h(e), f(e)〉,
whereh(e) ∈ V is its head,T (e) ∈ V ∗ is a vector of tail
nodes, andf(e) is a weight function fromR|T (e)| to R.

Figure 1 shows a pair of Chinese forest and English
string. The solid lines denotes hyperedges and the dashed
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Table 1:A minimal derivation of the example shown in Fig-
ure 1.

(1) IP(x1:NP-B,x2:VP)→ x1 x2

(2) NP-B(x1:NR)→ x1

(3) NR(bushi)→Bush
(4) VP(x1:PP,x2:VP-B)→ x1 x2

(5) PP(x1:P,x2:NP-B)→ x1 x2

(6) P(yu))→with
(7) NP-B(x1:NR)→ x1

(8) NR(shalong)→Sharon
(9) VP-B(x1:VV, AS(le), x2:NP-B)→ x1 ax2

(10) VV(juxing)→held
(11) NN(huitan)→talk

lines denote word alignments. Each hyperedge is associated
with a probability, which we omit in Figure1 for clarity. In
a forest, a node usually has multiple incoming hyperedges.
For example, the source node IP0,6 has two incoming hyper-
edges:

e1 = 〈(NP-B0,1, VP1,6), IP0,6, 0.6〉
e2 = 〈(NP0,3, VP-B3,6), IP0,6, 0.4〉

Silenus searches for the best derivation (a sequence of
translation rules)̂d that converts a source treeT in the packed
forest into a target-language strings:

d̂ = argmax
d∈D

Pr(d|T ) (1)

Table1 gives a derivation for the example forest-string
pair.

To learn tree-to-string rules from annotated training data,
we follow GHKM [6] to first identify minimal rules and then
obtain composed rules. Like in tree-based extraction, we ex-
tract rules from a packed forestF in two steps: frontier set
computation (where to cut) and fragmentation (how to cut).
It turns out that the exact formulation developed for fron-
tier set in tree-based case can be applied to a forest without
change. The fragmentation step, however, becomes much
more complicated since we now face a choice of multiple
hyperedges at each node.

We develop a breadth-first search algorithm for extract-
ing tree-to-string rules from packed forests. The basic idea is
to visit each frontier nodev, and keep a queueopen of grow-
ing fragments rooted atv. We keep expanding incomplete
fragments fromopen, and extract a rule if a complete frag-
ment is found. Some minimal rules learned from the example
forest-string pair are listed in Table1.

In tree-based extraction, for each sentence pair, each
rules extracted naturally has a count of1, which will be
used in maximum-likelihood estimation of rule probabilities.
However, a forest is an implicit collection of trees. Each tree
has its own probability (that is, product of hyperedge proba-
bilities). As a result, a rule extracted from non1-best parse

should be penalized accordingly and should have fractional
counts instead of unit count.

We penalize a ruler by the posterior probability of the
corresponding tree fragmentt = lhs(r), which can be com-
puted as the product of the outside probability of its root, the
inside probabilities of its leaf nodes, and the probabilities of
hyperedges involved in the fragment:

αβ(t) = α(root(t))×
∏
e∈t

P (e)×
∏

v∈leaves(t)

β(v) (2)

whereα(·) and β(·) are the outside and inside probabili-
ties of nodes,root(·) returns the root of a tree fragment and
leaves(·) returns the leaf nodes of a tree fragment.

Now, the fractional count of a ruler is simply

c(r) =
αβ(lhs(r))

αβ(v̄)
(3)

wherev̄ denotes the root of the forest.
We extend the simple model in Eq.1 to a log-linear

model [7]:

d̂ = argmax
d∈D

Pr(d|T )λ1 × plm(s)λ2 × eλ3|d| × eλ4|s| (4)

whereplm(s) is the language model score,|d| is the number
of rules in a derivation, and|s| is the number of target words
produced. The derivation probabilityPr(d|T ) is the product
of probabilities of translation rules involved ind:

Pr(d|T ) =
∏

r∈d

Pr(r) (5)

where eachPr(r) can be decomposed into the product of six
probabilities:

Pr(r) = p(r|lhs(r))λ5 × p(r|rhs(r))λ6

×p(r|root(lhs(r)))λ7

×plex(lhs(r)|rhs(r))λ8

×plex(rhs(r)|lhs(r))λ9

×p(T )λ10 (6)

where the first three terms are conditional probabilities based
on fractional counts,plex(·) denotes lexical weighting, and
p(T ) denotes the probability of the matched source treeT .

To search for1-best derivation, the decoder employs the
cube pruning method [8] that approximately intersects the
translation forest with language model. Basically, cube prun-
ing works bottom up in a forest, keeping at mostk +LM
items at each node, and uses the best-first expansion idea
from the Algorithm2 of Liang Huang [9] to speed up the
computation.K-best derivations can also be easily obtained
by applying Algorithm3 of Liang Huang [9].

2.2. Bruin

Bruin [10] is a formally syntax-based system that implements
a maximum entropy based reordering model on BTG [11]
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rules. Bruin employs the following three BTG rules to direct
translation:

A
[ ]→ (A1, A2) (7)

A
〈 〉→ (A1, A2) (8)

A → (x, y) (9)

The first two rules are used to merge two neighboring
blocks into one larger block either in a monotonic or an in-
verted order. A block is a pair of source and target contiguous
sequences of words. The last rule translates a source phrase
x into a target phrasey and generate a blockA.

In the following, we will define the model by separating
different features (including the language model) from the
rule probabilities and organizing them in a log-linear model.
This straight way makes it clear how rules are used and what
they depend on.

For the two merging rules, applying them on two consec-
utive blocksA1 andA2 is assigned a probabilityPrm(A):

Prm(A) = ΩλΩ · 4pLM
(A1, A2)

λLM (10)

whereΩ is the reordering score of blocksA1 andA2, λΩ is its
weight, and4pLM

(A1, A2) is the increment of the language
model score of two blocks according to their final order, and
λLM is its weight.

The application of a lexical rule is assigned a probability
Prl(A):

Prl(A) = p(x|y)λ1 · p(y|x)λ2 · plex(x|y)λ3

·plex(y|x)λ4 · exp(1)λ5 · exp(|x|)λ6

·pLM (x)λLM (11)

wherep(·) are the phrase translation probabilities in both
directions, plex(·) are the lexical translation probabilities
in both directions, andexp(1) andexp(|x|) are the phrase
penalty and word penalty, respectively.

We define the reordering modelΩ on three factors: an
ordero, a blockA1, and a blockA2. Given two neighboring
blocksA1 andA2, the central problem is how to predict their
ordero ∈ {monotonic, inverted}. This is a typical two-
class classification. To estimate the conditional probability
p(o|A1, A2), a reasonable way is to use features of blocks as
reordering evidences under maximum entropy model:

pθ(o|A1, A2) =
exp(

∑
i θihi(o,A1, A2))∑

o′ exp(
∑

i θihi(o′, A1, A2))
(12)

wherehi(o,A1, A2) ∈ {0, 1} is a feature function andθi is
the corresponding feature weight.

There are three steps to train a maximum entropy based
reordering model: (1) first extract reordering examples from
word-aligned bilingual corpora, (2) then generate features
from these examples, and (3) finally estimate the feature
weights of maximum entropy model.

target

source

b1

b2

b3

b4

c1

c2

Figure 2:Blocks and orders. The bold dots are corners and
the arrows from the corners are their links.

We define each vertex of a block as acorner. Each corner
has fourlinks in four directions:top-left, top-right, bottom-
left, andbottom-right. Each link connects two blocks that
share with the same corner. Thetop-right and bottom-left
links connect blocks in a monotonic order andtop-left and
bottom-rightlinks connect blocks in an inverted order. For
example, there are four blocks,b1, b2, b3, andb4, in Figure
2. b1 andb2 share with a cornerc1 andb3 andb4 share with
a cornerc2. According to above definitions,b1 andb2 are
connected in a monotonic order by thebottom-leftand top-
right links of c1, andb3 andb4 are connected in an inverted
order by thetop-leftandbottom-rightlinks of c2.

Two kinds of features are designed for our MaxEnt-based
reordering model: lexical features and collocation features.
Lexical features are defined on the first words of source and
target phrases. Collocation features are defined on the com-
bination of boundary words. Why are we particularly inter-
ested in boundary words? We believe that boundary words of
blocks capture information of block reordering. To test this
assumption, we calculate the information gain ratio(IGR) for
boundary words as well as the whole blocks against the or-
der on the extracted reordering orders. IGR measures how
precisely a featuref predicts a classc:

IGR(f, c) =
E(c)− E(c|f)

Ef
(13)

whereE(·) is an entropy andE(·|·) is a conditional entropy.
Surprisingly, the IGR for boundary words (0.2637) is very
close to that of blocks (0.2655), suggesting that boundary
words do provide sufficient information for predicting re-
ordering.

Based on CKY algorithm, the decoder finds the best
derivation that produces the input sentence and its transla-
tion. To speed up the computation, Bruin also makes use of
cube pruning. The lazy Algorithm3 [9] are used forn-best
list generation.

2.3. Mencius

Mencius [12] is a phrase-based system that is very similar
to Moses [13]. The major difference is that we introduce
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similarity-based partial matching for bilingual phrases to al-
leviate data sparseness problem.

Given two source phraseŝfJ
1 and f̂ ′

J

1 , their matching
similarity is given by

SIM(f̂J
1 , f̂ ′

J

1 ) =

∑J
j=1 δ(fj , f

′
j)

J
(14)

where

δ(f, f ′) =
{

1 if f = f ′

0 otherwise
(15)

Note that we only consider two source phrases that have
the same length. To make partially matching more reliable,
we further restrict that they share with the same parts-of-
speech sequence.

Our hope is that similar bilingual phrases can be used to
create translation templates if one source phrase cannot find
translations in the phrase table. For example, suppose that
we cannot find translations for a source phrase “yu zuotian
dida taiguo” in a phrase table, in which we find a similar
source phrase “yu zuowan dida bulage” with its translation
“arrived in Prague last evening”. According to the alignment
information, we obtain a translation template:

〈yuX1 didaX2, arrived inX2 X1〉
Then, the unmatched source substrings “zuotian” and
“ taiguo” can be translated into “yesterday” and “Thailand”,
respectively. As a result, the translation for “yu zuotian dida
taiguo” is “ arrived in Thailand yesterday”.

Given a source sentence, the decoder firstly search for all
possible translation options from the phrase table by exact
matching. For source phrases which have no translations, we
construct translations by similarity-based partially matching,
as shown in above example. Then, the decoder works the
same as Moses does.

2.4. Change

Change is an implementation of the state-of-the-art hierarchi-
cal phrase-based model. Considered as an extension of stan-
dard phrase-based model, hierarchical phrase-based model
allows non-contiguous parts of source sentence to be trans-
lated into possibly non-contiguous parts of target sentence.
The model can be formalized as a synchronous context-free
grammar, in which a rule is of the form:

X → 〈γ, α,∼〉 (16)

whereX is a non-terminal,γ andα are strings of terminals
and non-terminals, and∼ is a one-to-one correspondence be-
tween the non-terminals ofγ andα.

Our implementation faithfully follows Chiang’s work [8].
The only exception is the condition for terminating cube
pruning. Chiang’s implementation [8] quits upon consider-
ing the next item if its score falls outside the beam by more

thanε. We find that large number of items will often be enu-
merated under this condition in our experiments. To tackle
this problem, we further limit the number of items taken from
the heap.

2.5. System Combination

We combine the outputs of single SMT systems at sentence
level, similarly to the work by Macherey and Och [14].
Global linear models are used as a framework for reranking
a mergedn-best list:

ŷ = argmax
y∈GEN(x)

f(x, y) ·W (17)

wherex is a source sentence,y is a translation,f(x, y) is a
feature vector,W is a weight vector, andGEN(x) is the set
of possible candidate translations.

There types of features are used: (1) relative BLEU
scores against 1-best translations from other candidates, (2)
language model scores, and (3) length of the translation. The
feature weights are tuned using minimum-error-rate train-
ing [15]. In this year’s evaluation, each single SMT system
generated200-best list translations, which were merged and
served as the input to the combiner.

3. Experimental Results

3.1. Data

Besides the data provided by the organizer, we used the fol-
lowing additional data1:

1. Chinese LDC (CLDC-LAC-2003-004);

2. Chinese LDC (CLDC-LAC-2003-006);

3. Chinese LDC (2004-863-008);

4. Chinese LDC (2004-863-009);

5. LDC2002L27 “Chinese-English Translation Lexicon
Version3.0”;

6. LDC2005T34 “Chinese-English Named Entity Lists
Version1.0”;

7. “Tanaka’s Corpus”.

The training corpus contains about8.1M Chinese words
and8.6M English words. The data were used by all the four
single systems to train their model parameters respectively.
The English sentences of training corpus were used to train
a 5-gram language model using SRILM [16]. Similarly, the
Chinese part was used to train a5-gram language model for
English-to-Chinese direction.

1They are allowed for usage according to the “resource” page of the of-
ficial IWSLT 2008 website
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Table 3:BLEU scores of five systems on test sets.

BTEC CE CT CE CT EC
System

CRR ASR.1 CRR ASR.1 CRR ASR.1

Silenus 0.4639 0.4061 0.4048 0.3541 0.4988 0.4119
Bruin 0.4796 0.4097 0.4114 0.3280 0.4746 0.3950

Mencius 0.4689 0.3960 0.3850 0.3050 0.4700 0.3864
Change 0.4712 0.3946 0.4066 0.3308 0.4815 0.3961

Combination 0.4943 0.4403 0.4370 0.3703 0.5045 0.4249

Table 2: BLEU scores of five systems on IWSLT 2007
Chinese-English development set.

System provided provided + additional

Silenus 0.3413 0.3919
Bruin 0.3572 0.4213

Mencius 0.3692 0.4341
Change 0.3792 0.4287

Combination 0.3894 0.4483

3.2. Annotation

We used the Chinese lexical analysis system ICTCLAS for
splitting Chinese characters into words and the tokenizer pro-
vided by IWSLT for tokenizing English sentences. After
that, we convert all alphanumeric characters to their 2-byte
representation. Then, we ran GIZA++ and used the “grow-
diagfinal” heuristic to get many-to-many word alignments.

We observe that in a sentence some phrases are more
likely to appear at the beginning, while other phrases are
more likely to be located at the end. Inspired by the liter-
ature in language modeling, we mark the beginning and end-
ing of word aligned sentences with two tags, “〈s〉” and “〈/s〉”,
to capture such reordering information. The sentences to be
translated will also be annotated with the two tags, which
will be removed after decoding.

To get packed forests for Silenus, we used the Chi-
nese parser modified [17] by Haitao Mi and the English
parser [18] modified by Liang Huang to produce entire parse
forests. Then, we ran the Python scripts [19] provided by
Liang Huang to output packed forests. To prune the packed
forests, Huang [19] uses inside and outside probabilities to
compute the distance of the best derivation that traverses a
hyperedge away from the globally best derivation. A hyper-
edge will be pruned if the difference is greater than a thresh-
old. Nodes with all incoming hyperedges pruned are also
pruned.

3.3. Results

Table2 presents the BLEU scores (case-sensitive, with punc-
tuations) of our five systems achieved on the IWSLT 2007
Chinese-English development set. Prior to the evaluation, we
used the development sets from 2003 to 2006 as development

sets to tune model scaling factors and used 2007 development
set as test set. “provided” denotes the training data provided
by the organizer that consist of about30K pairs of sentences.
“provided+additional” denotes all the training data we have,
as listed at the beginning of Section 3.1. We observe that us-
ing more data results in substantial improvements of about5
BLEU points.

Table 3 gives the BLEU scores (case-sensitive, with
punctuations) of our five systems achieved on the test sets.
“BTEC CE” denotes Chinese-English direction of BTEC
task, “CT CE” denotes Chinese-English direction of chal-
lenge task, and “CTEC” denotes English-Chinese direction
of challenge task. “CRR” denotes correct recognition results
and “ASR.1” denotes using1-best ASR output.

Our sentence-level system combiner outperformed sin-
gle systems consistently on all tasks. While system combi-
nation benefited Chinese-English direction significantly, the
improvements on English-Chinese direction were relatively
small. One possible reason might be that fewer development
sets are available for English-Chinese direction for system
combiner to optimize the parameters automatically.

For single SMT systems, Bruin got better results than the
others on Chinese-English direction. Interestingly, Silenus
surpassed other systems significantly on English-Chinese di-
rection. There are two findings worth noting:

1. Silenus uses packed forests instead of1-best parses,
minimizing the negative effect of parsing errors. As
the amount and domain of data used for training
parsers are comparatively limited, parsers will in-
evitably output ill-formed trees when handle real-
world text. Guided by such noisy syntactic infor-
mation, syntax-based models that rely on only1-
best parses are prone to produce degenerate transla-
tions. The results suggest that packed forests do help
syntax-based systems to achieve comparable perfor-
mance with phrase-based systems on tourism-related
sentences.

2. Parsing accuracy has a substantial effect on syntax-
based models. Silenus obtained better results on
English-Chinese direction than Chinese-English direc-
tion. We believe the major reason is that parsing on
English is more accurate than Chinese.
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4. Conclusion

In this paper, we give a brief introduction to our four single
SMT systems and one system combiner. We report the re-
sources used, annotation techniques, and results achieved on
the test sets. We find that our implementation of sentence-
level system combination works for all tasks. Another in-
teresting finding is that syntax-based models could produce
translations as good as phrase-based systems on tourism-
related text if packed forests are used.
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