The LIUM Arabic/English Statistical Machine Translation System for IWSLT 2008

ABSTRACT

This paper describes the system developed by the LIUM laboratory for the 2008 IWSLT evaluation. We only participated in the Arabic/English BTEC task. We developed a statistical phrase-based system using the Moses toolkit and SYSTRAN's rule-based translation system to perform a morphological decomposition of the Arabic words. A continuous space language model was deployed to improve the modeling of the target language. Both approaches achieved significant improvements in the BLEU score. The system achieves a score of 49.4 on the test set of the 2008 IWSLT evaluation.

INTRODUCTION

- Only Arabic/English BTEC task (mainly text)
- Similar architecture than Ar/En NIST or Fr/En WMT system
- Only BTEC bitexts
- Small improvements using additional LM data (Gigaword)
- Two different tokenizations of the Arabic source text:
- full word mode
- morphological decomposition kindly provided by SYSTRAN
- No system combination

SYSTEM ARCHITECTURE

- Statistical phrase-based system using Moses and own tools
- Two pass approach:
- Decode with Moses and generate 1000-best lists
- Rescore *n*-best lists with continuous space LM
- -Maximum BLEU tuning on rescored *n*-best lists using public CONDOR tool
- All models are case sensitive models
- Punctuation markers are considered as normal words

2nd pass optimisation

Yannick Estève Sadaf Abdul-Rauf Holger Schwenk LIUM, University of Le Mans, FRANCE Name.Surname@lium.univ-lemans.fr

Continuous space LM

- Tries to tackle the data sparseness problem [Y. Bengio, NIPS'01]
- Idea: projection of the word indices onto a continuous space
- *n*-gram probability estimation in this continuous space
- \Rightarrow Better generalization to unseen *n*-grams can be expected
- Implementation using a 3-layer neural network
- Backpropagation training to learn the continuous representation of the words and the *n*-gram LM probabilities
- Several tricks to tackle the high complexity

Dev Data

- Dev4 and Dev5 seem to be very similar
- Dev6 is mainly close to the BTEC training corpus.
- Analysis of the Arabic **source**: Test08 seems to be close to Dev4/5
- \Rightarrow All tuning is done on Dev05
- Results on Dev6 and Test08

Post-processing

- Translations of Test08 data contain only few punctuation marks
- This is in contrast to Dev5 and Dev6
- \Rightarrow negative impact on our system
- We were unable to analyze the Arabic source
- Simple post-processing to restore end-of-sentence punctuation

EXPERIMENTAL EVALUATION

Language Modeling

- English part of BTEC train and Dev1-4 (all English references)
- LDC Gigaword (3.3 billion words)
- GALE part of the 2006 NIST test set (1.1M words).
- contains WEB blogs (tourism related ?)
- -we realized after the evaluation that this data was only distributed to participants of the NIST MT eval
- 4-gram back-off LMs with Modified Kneser-Ney smoothing
- Individual LMs are interpolated together

	train	LM	Perplexity on
Corpus	#words	size	Dev5
BTEC train	153k	3.3M	109.8
+BTEC Dev1-4	+205k	6.5M	75.0
+Gale	+1.1M	309M	71.6
+Gigaword	+3.3G	1.1G	58.4
+ CSLM	3.4G	71M	49.3

- Dev data helps a lot
- GALE data brings small improvement
- Gigaword is important although out-of-domain
- CSLM brings nice gain in perplexity

Adding more parallel data

Trans Defau BTEC

BTEC

BTEC

Impro BTEC

BTEC BTEC

Baseline experiment with NIST Arabic/English system

Translation	Language	Dov5	Dev6
model	Model	Devo	
NIST	NIST	21.01	33.49
NIST	BTEC+Giga	21.62	37.29
BTEC	BTEC	21.35	47.09
BTEC	BTEC+Giga	23.18	44.15

• Large News systems performs badly on BTEC tourism task • In-domain LM improves only Dev6

• BTEC bitexts only help for Dev6

 \Rightarrow The generic system achieves reasonable scores on Dev5 only

lation model	Language model	Dev5	Dev6	Test08
alt tokenization:				
	BTEC	21.35	47.09	43.45
	BTEC + Dev1-4	22.90	45.16	42.98
	BTEC + Dev1-4 + Giga	23.18	44.15	43.70
+ Dev1-4	BTEC + Dev1-4	28.15	47.33	42.71
	BTEC + Dev1-4 + Giga	28.39	47.62	44.19
+ Dev1-4 + Gale	BTEC + Dev1-4 + Giga	28.17	47.82	43.52
	larger word list	30.49	49.51	45.08
oved tokenization:				
+ Dev1-4	BTEC + Dev1-4 + Giga	31.20	52.10	48.09
	idem CSLM	32.38	52.42	47.52
+ Dev1-4 + Gale	BTEC + Dev1-4 + Giga	31.63	50.76	47.16
+ Dev1-6	BTEC + Dev1-6 + Giga	-	-	48.04
	idem CSLM	-	-	49.39

• The large LM with the Gigaword data has only a small impact on the BLEU scores, despite a good gain in perpelxity • Gale bitext seem to be useful

IMPROVED TOKENIZATION

• It is known that a morphological decomposition of the Arabic words can improve the word coverage and by these means the translation quality

• Particularly true for under-resourced tasks like BTEC

• Usually the Buckwalter transliterator and the MADA and TOKAN tools from Columbia University are used

Using SYSTRAN's sentence analysis

• Sentence analysis represents a large share of the computation in a rule-based system

• Apply first decomposition rules coupled with a word dictionary

• For words that are not known in the dictionary, the most likely decomposition is guessed

- tences.
- Result analysis:

- Relation to SPE:

CONCLUSION AND PERSPECTIVES

Ongoing work

This work has been partially funded by the French Government under the project INSTAR (ANR JCJC06_143038).

• In general, all possible decompositions of each word are generated and then filtered in the context of the sentence. • This steps uses lexical knowledge and a global analysis of the sen-

 \rightarrow Integration of linguistic knowledge,

but difficult to apply onto a word lattice from ASR

• Substantial improvements in the BLEU score

Dev6: $47.62 \rightarrow 52.10$, Test08: $44.19 \rightarrow 48.09$

• Gale bitexts are not useful any more

• The morphological decomposition seems to achieve better translations than adding additional bilingual out-of domain data.

• word based system: SMT performs the full translation task

• SPE: SMT only corrects the output of rule-based system

• SYSTRAN's tokenisation + SMT:

somewhere in the continuum between both

INTERFACE WITH SPEECH RECOGNITION

• Simple 1-best coupling

 \rightarrow Bad performance on ASR transcriptions

Condition	Dev5	Dev6	Test08
Text input	32.38	52.42	49.39
ASR 1-best input	28.98	43.94	38.26

• Based on Moses decoder

• Two extensions achieved significant improvements:

- morphological word decomposition based on SYSTRAN's rulebased translation system

– *n*-best list rescoring with a continuous space language model

• No gain with additional bitexts

• Small improvements with additional LM data

• Explore unsupervised training of translation model

• Comparison of SYSTRAN's morphological decomposition with MADA/TOKAN and other standard tools

ACKNOWLEDGMENTS