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Abstract
We describe the system developed by the team of the
National University of Singapore for the Chinese-English
BTEC task of the IWSLT 2009 evaluation campaign. We
adopted a state-of-the-art phrase-based statistical machine
translation approach and focused on experiments with dif-
ferent Chinese word segmentation standards. In our official
submission, we trained a separate system for each segmenter
and we combined the outputs in a subsequent re-ranking step.
Given the small size of the training data, we further re-trained
the system on the development data after tuning. The evalua-
tion results show that both strategies yield sizeable and con-
sistent improvements in translation quality.

1. Introduction
This is the first year that the National University of Singapore
(NUS) participated in the evaluation campaign of the Interna-
tional Workshop on Spoken Language Translation (IWSLT).
We submitted a run for the Chinese-English BTEC task1,
where we were ranked second out of twelve participating
teams, based on the average of the normalized scores of ten
automatic evaluation metrics. We adopted a phrase-based
statistical machine translation (SMT) approach, and we in-
vestigated the effectiveness of different Chinese word seg-
mentation standards. Using a maximum entropy model [1]
and various data sources, we trained six different Chinese
word segmenters. Each segmenter was then used to pre-
process the Chinese side of the training/development/testing
bi-texts, from which a separate phrase-based SMT system
was built. Some of the resulting six systems yielded substan-
tial translation performance gains as compared to a system
that used the default segmentation provided by the organiz-
ers. Finally, we combined the output of all seven systems.

The rest of this paper is organized as follows: Section 2
introduces the phrase-based SMT model, Section 3 presents
our pre-processing techniques, Section 4 describes our re-
ranking-based system combination approach, Section 5 ex-
plains the training methodology, Section 6 gives the evalua-
tion results, which are discussed in Section 7, and Section 8
concludes and suggests possible directions for future work.

1Named after the Basic Travel Expression Corpus (BTEC).

2. Phrase-Based Machine Translation
We use the phrase-based statistical machine translation
model in all our experiments. A brief description follows.

Statistical machine translation is based on the noisy chan-
nel model. Given a foreign-language (e.g., Chinese) input
sentence f, it looks for its most likely English translation e:

e∗ = argmax
e

Pr(e|f) = argmax
e

(
Pr(f|e)× Pr(e)

)
In the above equation, Pr(e) is the target language

model; it is trained on monolingual text, e.g., the English
side of the training bi-text. The term Pr(f|e) is the transla-
tion model. In phrase-based SMT, it expresses a generative
process: (1) the input sentence f is segmented into a sequence
of phrases (all segmentations are considered equally likely),
(2) each phrase is translated into the target language in iso-
lation, and (3) some of the target phrases are reordered. The
phrase translation pairs and their probabilities are acquired
from a parallel sentence-aligned bi-text, and are typically in-
duced from word-level alignments using various heuristics.

In phrase-based SMT, the noisy channel model is typ-
ically extended to a more general log-linear model, where
several additional terms are introduced. For each pair of
phrases used, there are four terms: forward and backward
phrase translation probabilities, and forward and backward
lexicalized phrase translation probabilities. There is also
phrase penalty, which encourages the model to use fewer,
and thus longer, phrases. Word penalty on the target lan-
guage side is also included, which controls the overall length
of the English output. Finally, the phrase reordering is con-
trolled by a distance-based distortion model.

Under this log-linear model, the most likely English
translation e is found as follows:

e∗ = argmax
e

Pr(e|f) ≈ argmax
e,s

Pr(e,s|f)

= argmax
e,s

(
Pr(e)λ1 ×

|s|∏
i=1

Pr(f̄i|ēi)λ2 × Pr(ēi|f̄i)λ3

× Prw(f̄i|ēi)λ4 × Prw(ēi|f̄i)λ5 × d(starti, endi−1)λ6

× exp(|ēi|)λ7 × exp(−1)λ8

)
- 91 -

Proceedings of IWSLT 2009, Tokyo - Japan



In the above equation, s is a segmentation of f into
phrases. The symbols ēi and f̄i denote an English-foreign
translation phrase pair used in the translation, and |s| is the
number of such pairs under the current segmentation. The
terms Pr(ēi|f̄i) and Pr(f̄i|ēi) are the phrase-level condi-
tional probabilities, and Prw(ēi|f̄i) and Prw(f̄i|ēi) are cor-
responding lexical weights as described in [2]. The distance-
based distortion term d(starti, endi−1) gives the cost for rel-
ative reordering of the target phrases at position i and i − 1;
more complex distortion models are possible, e.g., lexical-
ized. The remaining two terms exp(|ēi|) and exp(−1) are
the word penalty and the phrase penalty respectively. The
parameters λi are typically estimated from a tuning set using
minimum error rate training (MERT) as described in [3].

More detailed description of phrase-based SMT models
can be found in [2] and [4]. In our experiments, we used
Moses [5], a popular open-source toolkit.

3. Pre-processing
For the training, development, and testing bi-texts, we per-
formed the following five types of pre-processing:

3.1. ASCII-ization

Originally, the English letters on the Chinese side of the
bi-text were encoded as full-width characters; we converted
them to ASCII, thus ending up with some ASCII words on
the Chinese side of the bi-texts, e.g., ABC, Diaz, Opera,
Watanabe, Yamada. Note that most of these words are part
of named entities, which are likely to be preserved during
translation. Thus, in order to improve word alignments, we
added each such ASCII word as an individual sentence to
both the English and the Chinese side of the training bi-text.
Multiple copies could also be added in order to place more
confidence on this heuristic in the EM word alignment step.
In our experiments, exactly two copies were added.

3.2. Sentence Breaking

We observed that the training and the development bi-texts
often contained two or more sentences on the same line. In
many cases, this happened simultaneously on both the Chi-
nese and the English side of the bi-text, as in the following
example:

• 当然。它是九十九美元不是吗？

• Of course . It was ninety-nine dollars , wasn’t it ?

In such cases, each sentence can be translated individu-
ally and the output concatenated afterwards. We found no
sentence-level reordering in the training corpus.

The potential advantage of breaking up these sentences
is that the decoder will only need to deal with shorter inputs,
which are much easier to translate. We thus split the sen-
tences in the training bi-text whenever possible, i.e., when

splitting yielded the same number of sentences on the Chi-
nese and English side of the bi-text, thus increasing the num-
ber of lines from 19,972 to 23,110, or by 16%. We further
had to split the sentences from the development bi-text (and
ultimately, from the Chinese test data); otherwise, the perfor-
mance of our system was negatively affected.

3.3. Capitalization

We removed all capitalization from both the English and the
Chinese side of the training and the development bi-texts, as
well as from the test data. In order to add proper casing to the
final output, we used the re-caser included in Moses, which
we trained on the English side of the training bi-text.

3.4. English Re-tokenization

Although English words are typically written naturally in a
segmented form, some ambiguities regarding tokenization
still remain. In particular, the English side of the bi-text con-
tained many tokens with internal apostrophes, which could
cause data sparsity issues, e.g., it’s, I’ll, weren’t. We thus
re-tokenized the English side of the training and the devel-
opment bi-texts by inserting a space before the apostrophe
where appropriate.

3.5. Number Translation

Because of the spoken nature of the data and because of the
domain, numbers were abundant in both the training and the
development bi-texts. Hence, translating them correctly was
a must for a good system. Unfortunately, number translation
is not so amenable to SMT methods, and we had to design a
specialized system that combines a maximum entropy clas-
sifier with hand-crafted rules.

First, we manually inspected part of the English side of
the training bi-text, and we identified the following five com-
mon ways to express a number:

1. Integer, e.g., size twenty-two.

2. Digits, e.g., flight number one one three.

3. Series, e.g., March nineteen ninety-nine.

4. Ordinal, e.g., July twenty-seventh.

5. Others: all other cases, e.g., 一 (‘one’) translated as
a/an in English.

We trained a log-linear (maximum entropy) classifier in order
to determine which of the above five categories should apply
for each number instance in the Chinese text. The model used
the following seven features: (1) number of digits in the nu-
merical form; (2) the numerical value of the number; (3) the
preceding word; (4) the preceding character; (5) the follow-
ing word; (6) the following two words; and (7) conjunction
of features (3) and (5).
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We selected these features in a greedy process from a
pool containing many others, by repeatedly adding the fea-
ture contributing the biggest improvement. The process con-
tinued until no new feature was able to enhance the perfor-
mance any further. The weights of these features were then
optimized on the supplied training bi-text.

For the Chinese side of the bi-text, including the training,
the development, and the testing sections, we translated each
Chinese-side number into English as follows: we first used
the classifier to choose one of the above five number transla-
tion categories, and then we applied the corresponding hand-
crafted translation rules; no translation was performed if the
category was Others.

Finally, we added all English words that were, or could
be, part of a translated English number, e.g., ten, twenty-
three, and, etc., to both sides of the training bi-text twice,
as we did for ASCII-ization.

4. Word Segmentation and Re-ranking
In this section, we describe our experiments with different
Chinese word segmentations and how we combine them into
a single system using re-ranking.

4.1. Chinese Word Segmentation

Chinese word segmentation (CWS) has been shown conclu-
sively as an essential step in machine translation, at least as
far as current phrase-based SMT methods are concerned [6].
However, CWS is complicated by the fact that a word is not
a well-defined concept in Chinese, where characters, words,
and phrases form a blurry continuum. As a consequence,
multiple standards exist for the CWS task. For example, two
of the SIGHAN CWS bakeoffs offered data according to five
different standards: Academia Sinica (AS), UPenn Chinese
Treebank (CTB), City University of Hong Kong (CITYU),
Peking University (PKU), and Microsoft Research (MSR).

It has been hypothesized that different standards may be
best suited for different tasks, and the effect of CWS on ma-
chine translation has been studied in several recent works,
including lattice-based methods [7, 8], segmentation granu-
larity tuning [9], and CWS standards interpolation [10].

In our experiments, we adopted a very pragmatic ap-
proach: we prepared seven candidate systems, each using a
different CWS. The final translation output was then selected
in a system combination step. Five of the seven segmen-
tations (AS, CTB, CITYU, PKU, and MSR) were generated
by an in-house segmenter described in [1], which was ranked
first in the AS, CITYU, and PKU open tasks and second
in the MSR open task in the SIGHAN 2005 bakeoff (CTB
was absent in that year). The two remaining systems were
the default segmentation provided by the IWSLT organizers,
and ICTCLAS-generated [11] segmentation respectively. Al-
though ICTCLAS was also based on the PKU standard, the
output seemed different enough from our PKU segmenter to
be included as a separate candidate.

4.2. System Combination by Re-ranking

At different stages of our system development, different seg-
menters had an edge for different parameter settings, includ-
ing ICTCLAS, AS, MSR, and PKU. However, in our final
configuration, the best overall performance came from ICT-
CLAS and PKU, but not for all three testing datasets that we
used – those for IWSLT05, IWSLT07, and IWSLT08. Sur-
prisingly, AS performed worst overall.

Given the instability of the performance of the Chinese
word segmenters for different parameter settings, we chose
not to rely on a single segmenter, but to train a separate sys-
tem for each of the above-mentioned seven segmenters and
to combine their output in a subsequent system combination
step. Unlike in typical system combination setup, our task
was greatly simplified for two reasons: (1) due to time con-
straints, we did not attempt to synthesize new translations
from the existing candidates, but rather aimed to select one of
those candidates, and (2) all seven systems used the same pa-
rameter settings and the same SMT toolkit, and consequently
had comparable scores and probabilities. Thus, we used the
scores reported by the SMT system, rather than having to
rely on system-independent features as is typically done. Our
system combination module was trained and used as follows:

1. We ran all seven candidate systems on the develop-
ment data. The output included the English translation
and thirteen associated scores from the SMT toolkit,
which we used as features:

(a) five (5) from the distortion model;

(b) two (2) from the phrase translation model;

(c) two (2) from the lexical translation model;

(d) one (1) for the language model;

(e) one (1) for the phrase penalty;

(f) one (1) for the word penalty; and

(g) one (1) for the final overall translation score (as
calculated by Moses from all individual scores
above and the MERT-tuned parameters).

2. A global fourteenth feature repetition count was
added, which gives the number of systems that gen-
erated the target translation.

3. The oracle BLEU score for each translation candidate
was calculated. Unfortunately, since BLEU was de-
signed as a document-level score, it was often zero at
the sentence-level in our case. Using bi-gram BLEU
scores proved to be a good work-around.

4. A supervised classifier was trained to select the can-
didate with the highest BLEU score given the above-
described fourteen features. A number of methods to
train the classifier were evaluated, including MERT,
SVMrank, and maximum entropy (MaxEnt); the last
was found to perform the best.
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An inspection of the MaxEnt model revealed that the rep-
etition count had the dominant weight, i.e., our system com-
bination worked mostly as a majority vote.

We also tried to add various forms of length-ratios, but all
of them turned out to be ineffective, contrary to the findings
of many teams in 2008. This could be due to our candidate
systems being very similar, and thus not that different in the
length of their outputs, or to the fourteen features already
capturing the pertinent information adequately.

5. Training Methodology
Below we explain how we tuned various parameters of the
phrase-based SMT system. We further describe a novel re-
training technique yielding sizeable improvements in BLEU.

5.1. Parameter Tuning

The Moses phrase-based SMT toolkit has a large number
of options. While it comes with very sensible defaults, we
found experimentally that varying some of them had a sig-
nificant impact on the translation quality.

Table 1 shows some non-standard settings used in our
submission. Note that, for word alignments, we used the
Berkeley Aligner2 [12] in unsupervised mode, which we
found to outperform GIZA++ significantly. We used the de-
fault parameters of the aligner, except that we increased the
number of iterations to 40.

5.2. Re-training on the Development Dataset

In a typical machine learning setup, the data is split into train-
ing, development, and testing datasets, which are then used
as follows:

1. The system is trained on the training dataset.

2. The development dataset is used for tuning, e.g., for
meta-parameter estimation, for setting configuration
options, and for feature selection.

3. The testing dataset is used to assess the performance
of the system on unseen data.

Better utilization of the data can be achieved with an ex-
tended procedure that uses re-training:

4. The system is re-trained on a concatenation of the
training and the testing datasets, using the parameters
from step 2 above.

5. The system is then re-tuned on the development
dataset.

6. Finally, the system is re-trained on a concatenation of
all available data (training, development, and testing),
using the parameters from the previous step.

2http://code.google.com/p/berkeleyaligner/

Since the last three steps use more data, we can generally ex-
pect improvements in the performance of the overall system.

Given the small size of the training data, which consisted
of 19,972 BTEC sentence pairs only, re-training proved to
be very helpful in our case. For the development data, we
used the CSTAR03 and IWSLT04 datasets, which had a to-
tal of 1,006 Chinese and 16,096 English sentences (there
were 16 English reference translations for each Chinese sen-
tence). For step 3, we used the IWSLT05, IWSLT07, and
IWSLT08 datasets for testing; they had a total of 1,502 Chi-
nese sentences and 19,142 English sentences. If we consider
the number of sentence pairs or the size of the English-side,
the above-described re-training allowed us to use nearly three
times as much training data.

Our setup was further complicated due to the extra sys-
tem combination step. The full procedure is explained below:

1. We used the training bi-text to build a phrase table and
to train an English language model.

2. We used the development dataset to tune the weights of
the log-linear model of the phrase-based SMT system
using MERT.

3. We concatenated the training and the development
datasets; we then re-built the phrase table and re-
trained the language model on this new dataset.

4. We repeated the above three steps for each of the seven
Chinese word segmenters, thus obtaining seven candi-
date systems.

5. We performed feature selection for the combination
of the seven systems, using three-fold cross-validation
on the testing bi-texts: we trained the MaxEnt re-
ranking model on IWSLT05+IWSLT07 and tested it
on IWSLT08; we then trained on IWSLT05+IWSLT08
and tested on IWSLT07; and, finally, we trained on
IWSLT07+IWSLT08 and tested on IWSLT05. We se-
lected features that optimized the average of the BLEU
scores for the three folds.

6. We re-trained the MaxEnt model for system combi-
nation on a concatenation of all three testing datasets:
IWSLT05, IWSLT07, and IWSLT08.

7. We re-built the phrase table and we re-trained the lan-
guage model on a concatenation of the training and the
testing datasets.

8. We used MERT to tune the system feature weights on
the development dataset.

9. We re-built the phrase table and we re-trained the En-
glish language model on all data combined (training,
development, and testing), using the feature weights
from step 8.
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(Meta-)Parameter Standard Setting Our Setting
Language model order 3 5
Language modeling toolkit SRILM IRSTLM
Word aligner GIZA++ Berkeley aligner
Alignment combination heuristic grow-diag-final intersection
Phrase reordering model distance monotonicity-bidirectional-f
Maximum phrase length 7 8
BLEU reference length used in MERT shortest closest
Miscellaneous – drop unknown words

Table 1: Some standard settings in Moses and their non-standard counter-parts used in our system.

For the 2009 testing dataset, we used the seven Moses sys-
tems obtained in step 9 with the feature weights from step 8.
Our final submission was generated by combining these sys-
tems using the MaxEnt re-ranking model trained in step 6.

6. Evaluation
As we have seen above, our system is complex and has many
settings. While some configuration choices can be explained
theoretically, the optimal values of most parameters are to be
determined empirically. Below we will try to justify some of
the non-standard settings used in our system.

Due to their non-linear nature, it is difficult to isolate the
effect of the individual choices. While it is usually more con-
venient to gradually raise the baseline and to report the im-
provements following every change, we will adopt a different
approach. We will use the final best system as the “topline”
and we will report the performance drop as each change is
reverted. This is more sound since the eventual decision to
include or exclude a configuration change is to be made on
the sole basis of how it affects the current best configuration;
the relative improvement with respect to the baseline at the
time of the introduction of the configuration change is irrele-
vant, even though the two may be correlated.

All scores reported are obtained using the official evalu-
ation guidelines and the NIST mteval3 script (version 13).

6.1. Pre-processing and Configuration Options

Table 2 shows the individual effects of each of the pre-
processing steps described in Section 3 (except for capital-
ization). The last row contains the BLEU scores for our fi-
nal topline system evaluated on the three testing datasets as
well as an averaged score; each of the previous four rows
illustrates the effect of excluding a single step from the pre-
processing pipeline. All reported results are for the default
segmentation. We can see that the largest improvement is
contributed by the number translation module (1.6 BLEU
points on average), while sentence breaking has the least
average effect (about 0.2 BLEU points). Note, however,
that the impact of the individual pre-processing steps varies
across the different segmenters.

3ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl

Table 3 shows the effect of some of the non-standard pa-
rameter settings we used with Moses. We can see that replac-
ing GIZA++ with the Berkeley aligner improves the average
BLEU score by 0.9 points, while using a lexicalized reorder-
ing model yields 1.4 BLEU points of average improvement.
However, the highest average positive impact of 1.7 BLEU
points is achieved when the unknown words are dropped dur-
ing decoding.

6.2. Re-training

Table 4 shows the impact of re-training on the seven systems
corresponding to the seven different Chinese word segmen-
tations. The before re-training rows show the performance of
the system on the three testing datasets (and their average) at
the end of step 2 as described in the previous section, while
the after re-training rows show their performance at the end
of step 4.

Note that steps 7, 8, and 9 from the previous section add
one further re-training step for each of the seven systems,
and thus the performance of the individual systems, and ulti-
mately of their combination, is expected to be even higher on
the actual testing dataset for 2009. Unfortunately, we could
not assess the size of that improvement since we have no ac-
cess to the reference translations for that dataset at the time
of writing.

6.3. System Combination

Table 5 shows the BLEU score for each cross-validation it-
eration of our combined system as well as the score for the
best individual system. In all three iterations, the combined
system outperforms the best individual system (which is dif-
ferent for each iteration), showing that our re-ranking-based
system combination model is effective in predicting the best
candidate out of the seven.

Again, note that in the final submission, we further re-
train the system combination model using all data from the
IWSLT05, IWSLT07, and IWSLT08 datasets, according to
step 6 of our training methodology, as described in the pre-
vious section. It is thus reasonable to expect even higher
performance on the actual testing dataset for 2009. However,
we have no unbiased way of quantifying it since we have no
access to the reference translations for that dataset at the time
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Excluded Pre-processing Step IWSLT05 IWSLT07 IWSLT08 Average
ASCII-ization 0.5286 0.3104 0.4438 0.4276
Sentence breaking 0.5260 0.3100 0.4535 0.4298
Number translation 0.5272 0.2941 0.4262 0.4158
English re-tokenization 0.5244 0.3102 0.4439 0.4262
Keep all (i.e., exclude none) 0.5189 0.3264 0.4503 0.4319

Table 2: The effect of excluding each of the four pre-processing steps. Shown are the BLEU v13 scores for three testing datasets
as well as their average. All reported results are for the default segmentation.

(Meta-)Parameter Our Setting Reverted to IWSLT05 IWSLT07 IWSLT08 Average
Aligner Berkeley aligner GIZA++ 0.5246 0.3101 0.4342 0.4230
Reordering model monotonicity-bidirectional-f distance 0.5230 0.2983 0.4333 0.4182
Miscellaneous drop unknown words – 0.5157 0.3023 0.4278 0.4153

Keep all (i.e., revert nothing) 0.5189 0.3264 0.4503 0.4319

Table 3: The effect of excluding some of the non-standard parameter settings we used with Moses. Shown are the BLEU v13
scores for three testing datasets as well as their average. All reported results are for the default segmentation.

Segmentation Re-training IWSLT05 IWSLT07 IWSLT08 Average
Default before 0.5161 0.2887 0.4241 0.4096

after 0.5189 0.3264 0.4503 0.4319
ICTCLAS before 0.5296 0.2923 0.4149 0.4123

after 0.5394 0.3129 0.4539 0.4354
AS before 0.5321 0.2901 0.4053 0.4092

after 0.5272 0.3074 0.4458 0.4268
CITYU before 0.5390 0.2899 0.4002 0.4097

after 0.5304 0.3208 0.4301 0.4271
CTB before 0.5279 0.3012 0.4138 0.4143

after 0.5319 0.3053 0.4550 0.4307
MSR before 0.5337 0.2921 0.4214 0.4157

after 0.5338 0.3217 0.4406 0.4320
PKU before 0.5317 0.2977 0.4070 0.4120

after 0.5367 0.3164 0.4501 0.4344

Table 4: Effect of re-training on the seven systems corresponding to the seven different Chinese word segmentations. Shown are
the BLEU v13 scores for three testing datasets as well as their average.

Trained on Tested on Combination BLEU Best Individual BLEU
IWSLT07 + IWSLT08 IWSLT05 0.5457 ICTCLAS 0.5394
IWSLT05 + IWSLT08 IWSLT07 0.3268 Default 0.3264
IWSLT05 + IWSLT07 IWSLT08 0.4656 CTB 0.4550

Average 0.4460 – 0.4403

Table 5: Results for system combination. Shown are the BLEU v13 scores for evaluating on each of the three testing datasets as
well as their average. Further shown are the corresponding best individual systems and their scores.
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of writing.

7. Discussion
The previous section has shown that the improvements come
from several sources, the most notable being the following:

• Pre-processing: 1.6 BLEU points from number trans-
lation; 0.6 BLEU points from English re-tokenization.

• Moses tuning: 1.7 BLEU points from dropping the
unknown words; 1.4 BLEU points from the reordering
model; 0.9 BLEU points from the Berkeley aligner.

• Re-training: approximately 2 BLEU points. This was
before the system was re-trained again on all datasets,
including the testing ones, which can be expected to
boost the performance even further.

• Segmentation and system combination: improve-
ment of 1.4 BLEU points over the default segmenta-
tion, 1 BLEU point over the single best segmentation,
and 0.6 BLEU points over an oracle that picks the best
segmentation for any individual test sentence.

We further experimented with hierarchical phrase-based
SMT, which was a popular component of many IWSLT sys-
tem combinations in previous years. However, in our exper-
iments, hierarchical SMT systems performed significantly
worse than phrase-based ones. Moreover, combining hier-
archical and phrase-based systems greatly complicated our
experimental setup, while the performance of the combina-
tion did not improve. We thus eventually chose the current
setup because of its simplicity, which allowed us to explore
other parameter optimizations.

Finally, we tried using word sense disambiguation
(WSD) to improve SMT. Using the method described in [13],
we were able to achieve approximately 0.5-1.0 BLEU point
of absolute improvement. Unfortunately, we could not in-
clude the module in our final submission due to logistic is-
sues.

8. Conclusion and Future Work
We have described the NUS system for the Chinese-English
BTEC task of the IWSLT 2009 evaluation campaign. In a se-
ries of experiments with a state-of-the-art phrase-based SMT
model, we have observed that different Chinese word seg-
mentation standards had an edge for different parameter set-
tings. We thus chose not to rely on a single segmenter, but to
train a separate system for each of seven segmenters and to
combine their outputs in a subsequent system combination
step using re-ranking. Given the small size of the training
dataset, we further experimented with re-training the system
on the development and on the testing datasets. The evalua-
tion results have shown that both strategies yielded sizeable
and consistent improvements in translation quality.

In future work, we plan to experiment with lattice-based
system combination. Finding a more principled way to com-
bine different word segmentations is another promising re-
search direction that we plan to pursue. Finally, we intend to
incorporate WSD in our system combination.
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