
Unicode for Under-Resourced Languages

Daniel Yacob

The Ge’ez Frontier Foundation

7802 Solomon Seal Dr., Springfield, VA 22152, USA
yacob@geez.org

Abstract
Best known as a standard for character encoding, Unicode should now be understood as a collection of resources for textual computing
that can aid solution of NLP problems. When an under-resourced language (U-RL) makes use of symbols or an entire system of
writing that is not supported by electronic standards, Unicode is by design the best option for the temporary encoding the written
symbols before a standard can be formalised. Leveraging Unicode for such U-RLs involves more than just symbol encoding and the
NLP researcher must also anticipate developing the most basic of computer resources such as fonts, keyboard and transliteration
systems. The paper describes in an overview the work entailed and goes further to cover raising the work products of a personal NLP
project to the level of a national and international ICT standard where the native speaker community at large will also benefit directly.

1. What is Unicode?

Very often software engineers not familiar with text
representation techniques will perceive “Unicode” as
something used to support non-English fonts. Many
early Unicode fonts did in fact append the term
“Unicode” to their base name1 and fonts are likely the
most frequently encountered utilization of Unicode that
a person will be made consciously aware of. However,
Unicode is now as pervasive in applications and
computer systems as text itself –aware of it or not, you
are already using it and have been for some time.

 “Unicode” is a very broadly used term, having
many contexts, and will mean different things to
different people. Historically, “Unicode” refers to the
Unicode Standard which defines character encodings
for the writing systems of the world. The character
encoding standard is synchronised with a parallel
standard known as “ISO/IEC 10646” that also addresses
character encoding. “Unicode” is also used
interchangeably with “ISO/IEC 10646” by all but
experts.

“Unicode” most commonly refers to only the Basic
Multilingual Plane (BMP) of the original 16 bit
standard for encoding modern writing systems. In the
right context “Unicode” may also include the 16
additional supplementary planes now a part of the
Unicode Standard where historical scripts and scripts
used by smaller communities are encoded.

“Unicode” may refer to the Unicode Consortium
2

the governing body that defines Unicode Standard. The
consortium membership is comprised of members of the
computer industry, academic institutions, and private
citizens with an interest in the activities of the
consortium. The International Standards Organization
(ISO) and the International Electrotechnical
Commission (IEC) jointly maintain the ISO/IEC 10646
standard and participants are almost entirely appointed
by a government recognised national standards body.
The Unicode consortium works so closely with the
ISO/IEC that it has become the primary driving force
behind revisions of the standard. To further distinguish

1
 e.g. in Microsoft Windows the “Lucida Sans Unicode” font

is the companion to “Lucida Sans” and “Arial Unicode MS”
the companion to “Arial”.
2
 Unicode Consortium Homepage: http://unicode.org/

between these standards bodies and their unified
standards is not important unless one intends to work
very deeply on defining the standards themselves.

“Unicode” may also refer to the Unicode Character
Database (UCD) which defines the names and
properties of characters. The database is critical for text
processing tools such as regular expressions libraries
and layout engines. Similarly, “Unicode” may refer to a
collection of annexes, technical reports and technical
standards that further define textual properties and
behaviours such as text boundaries, collation and
equivalence classes.

“Unicode” may refer to the projects under the
Unicode Consortium such as the Common Locale Data
Repository (CLDR) that defines basic vocabulary and
cultural conventions used in operating systems.
Likewise “Unicode” can refer to the International
Components for Unicode (ICU), a project involving
many of the same people, which implements most of
the specifications of the Unicode Consortium and data
such as CLDR.

 Finally, “Unicode” may refer to the Unicode home
page portal, mail lists, community, technical committee
(UTC), twice annual International Unicode Conference
(IUC), or the process by which these aspects work
together to further develop the Unicode Standard and its
family of specifications.

For the purposes of this paper “Unicode” will refer
then to the family of standards and technologies
associated with the Unicode Consortium that can be
utilised for working with a written language in a
computer environment. For the NLP researcher,
“Unicode” need be no more than a means to some other
end. How Unicode can be applied to help solve
problems in NLP, and in particular for Under-
Resourced Languages (U-RLs) that may not yet be
supported in Unicode, will be the focus of this paper.

2. Working With Unicode

More than anything else, what Unicode offers NLP
is a resource for representing written languages. To a
lesser degree, Unicode can also be an aid for tokenizing
spoken language with phonetic symbology and for text
corpora processing from comprehensive properties
provided for all written symbols.

33

A review of software under the Natural Language
Software Registry

3
 reveals that many applications have

already migrated to Unicode which makes them
accessible to U-RLs already. Typically, Unicode based
tools are designed to be language neutral and will be
able to process language specific information through
modules (classes, xml data, etc) containing settings and
rules applicable for that language. So adapting a tool for
a specific language is often a matter of developing the
needed module.

NLP tools and applications are most often
engineered to work on a very specific problem set so it
will not be the purpose here to recommend one NLP
resource over another. Rather the objective is to make
an overview of the most likely tasks entailed to
customise an existing application to support a given
language via Unicode as well to leverage Unicode in
applications that you author yourself.

2.1. Operating Systems

Applying Unicode, the first thing that you will need
is a recent computer operating system (OS) with native
support for the encoding standard. Fortunately, this side
of the 21st century it is harder and harder to find an
operating system that does not support Unicode. The
newer the operating system the better but you will want
to consider upgrading if your computer runs with Apple
MacOS earlier than version 9.2, Microsoft Windows
other than CE, NT, XP, Vista or 2000, Solaris earlier
than 2.8, or GNU/Linux with glibc earlier than 2.2.2.

Linux systems are provided by many different
distributors with as many different configurations and
so deserve a little more attention. To determine if the
version of glibc is of version 2.2.2 or later enter the
following at the command line:

% ls -l /lib/libc.so.* /lib/libgtk*

which should return a response containing libraries
similar to:

lrwxr-xr-x 1 root root 13 Nov 29

2004 /lib/libc.so.6 -> libc-2.3.2.so*

libc.so.6 is a symbolic link to the current version of
glibc on the system which in the above example is
version 2.3.2. If the operating system is not at the
version level indicated here this does not mean that you
will be unable to work with Unicode. The consequence
will be that you are less assured that you will be able to
view or enter Unicode text in terminals or use it with
some applications. You may in fact still apply the
encoding for your needs but there are fewer guarantees
and you will likely have to try several editor
applications before finding one that can display
Unicode text as expected (consider Yudit discussed
later).

The window desktop environment in a GNU/Linux
system is entirely separate from the OS. If your system
is recent enough to have glibc 2.2.2 or later, then it very
likely also has GNOME 2.0 or KDE 2.0 or later which
are Unicode safe window environments.

3
 NL Software Registry: http://registry.dfki.de/

2.2. The IPA

When working with phonology, Unicode offers the
symbols of the International Phonetic Alphabet. (IPA)
The IPA is maintained by the International Phonetic
Association and defines a unique symbol for every
phoneme used in spoken languages. The IPA is itself a
standard for the linguistics community to apply for
phonetic transcription that will assure mutual
comprehension within the field in the present and
future. The IPA should be applied in the NLP
community wherever spoken language must be
tokenised and avoids creating your own system where
data can only be understood by your own applications.
Using the IPA under Unicode will allow you to take
advantage of Unicode based software and reduces the
new resources that you would otherwise have to invest
time to develop.

The SIL Doulos font presents all the IPA symbols
with excelling quality using typeface resembling the
Times Roman4.

2.3. The PUA

When developing a new orthography, extending an
existing one, or have found that Unicode does not have
the symbol that you need –you can still use Unicode.
Unicode has a built in way to support additions to its
own character repertoire via the Private Use Area
(PUA). In this region of the character encoding standard
you may define your own symbols. This is helpful when
working with an experimental orthography or an as yet
unsupported writing system, two frequent occurrences
with U-RLs.

You may define additional letters in this region of
the standard and use them safely with your own
applications and others. If you want to visualise the
symbols that you have encoded in the PUA you will
need to modify a font to contain these symbols. Since
you have made your own “private encoding” within
Unicode you risk losing some portability. Sending a
document to a colleague that contains your additions,
you will also need to send along your modified font. If
your PUA additions are processed in a multilingual
system where another researcher has also made PUA
extensions, there is the possibility of encoding
collisions. This is an exceedingly rare occurrence but
becomes possible when you go from the private use
case to one that is public.

The PUA may also be used to encode other useful
tokens, for example tags and other markers that you
would like to have in a text stream that you would
processes yourself. You may not need to view tokens of
this type but if you chose to do so it is again a matter of
modifying a font.

2.4. Fonts

Fonts provide us with an instance of Unicode
encoded characters. Fonts can have many styles
(typefaces) and the Unicode standard does not tell us
how letters should appear (glyphs) or how they should
be typed (hardware dependent). The standard simply
assigns numeric addresses (in computer memory these
are byte sequences) to the abstraction notion of a

4
 SIL Doulos Font: http://scripts.sil.org/DoulosSILfont

34

“letter”. A “Unicode font” is one that applies these
assignments (encoding) to the letters that it contains.
Not every “Unicode font” will contain all letters of
Unicode, in fact few do. The reasons here are primarily
the labour required to produce a complete coverage of
Unicode’s 51,980 graphical characters as well as the
undesirably file sizes that result (fonts are files) which
can be on the order of 20 Mb. Few people really need
all characters of all alphabets and so most Unicode fonts
will only support a few writing systems needed by a
target community. This approach works fine so long as
you are aware of the supported character range within
the font, when letters are not available an application
may instead substitute a blank space, a dot, a question
mark or commonly a rectangle (�).

When working with a U-RL there is a greater
likelihood that the orthography of the language is not
yet supported in Unicode. In this case you will need to
create your own fonts in order to view text in the native
script. This need not be an obstacle because there are
freely available tools to create and edit fonts, but it will
require an investment of your time that will vary
depending on number of letters that need be created.

Fonts come in two types they are either bitmaps – a
matrix of on or off dots like a tile design, or they are
outlines of the shapes of the letters. The outlined
versions (“TrueType” is the most common) are more
portable and scale to different sizes with better quality
than do the bitmap fonts, but they can take more time to
produce. If your intent is not to market the fonts
commercially than you do not need to be an artist to be
able create letters you need only be able to use a mouse.

A number of commercial and free tools are available
for creating and manipulating fonts. Working with
bitmap fonts “gbdfed”5 is a very easy to use tool that
runs natively under Linux but can also be used on other
operating systems where the GTK library has been
ported to. “FontForge”6 is an open source outline font
editor that can run on most every major operating
system (some additions may be required) that also
supports some bitmap formats. It will always be a less
intensive effort to start with an open source font and to
modify it for your needs than to start completely from
scratch. Fonts that do not also contain the Latin letters
can later be problematic to work with, some systems
will refuse to use them, so including the ASCII range of
letters is always recommend. Seemingly countless free
and open source fonts can be found readily with an
internet search.

2.5. International Components for Unicode

By far the most extensive, complete and Unicode
specific resource is the International Components for
Unicode (ICU)7. ICU comes in the form of both a
C/C++ library and a Java JAR. The resource was
initially a project of IBM before going Open Source, it
has the participation of many of the key Unicode
personnel and offers reference implementations of the
Unicode family of standards.

5
 gbdfed Homepage:

http://crl.nmsu.edu/~mleisher/gbdfed.html
6 FontForge Homepage: http://fontforge.sf.net/
7
 ICU Homepage: http://icu-project.org/

The ICU homepage described the resource as “…a
mature, widely used set of C/C++ and Java libraries for
Unicode support, software internationalization and
globalization (i18n/g11n). It grew out of the JDK 1.1
internationalization APIs, which the ICU team
contributed, and the project continues to be developed
for the most advanced Unicode/i18n support. ICU is
widely portable and gives applications the same results
on all platforms and between C/C++ and Java
software.” (ICU)

ICU should be considered as a resource for Unicode
text processing, some of its services will be touched on
in following sections.

2.6. Transliteration

Transliteration is the systematic conversion of one
system of writing onto another. It is most often used in
NLP for converting text to and from some encoding
system into a Romanised form that legacy resources can
then understand. As more resource become Unicode
enabled there is proportionally less reliance on the
conversion technique. Transliteration will however

always be useful when facing text that is not in a script
that you are familiar with, working with toponymic
lexicons, and making rough conversions to and from a
writing system and the IPA.

As provided, the ICU transliteration capability is
promoted as supporting “50+” systems. New

<icu:transform type="Latin">

 # variables

 $gammaLike = [ΓΚΞΧγκξχ�] ;

 ...

 # convert all to decomposed

 ::NFD (NFC) ;

 ...

 α ↔ a ; Α ↔ A ;

 β ↔ v ; Β ↔ V ;

 # contextual transforms

 γ } $gammaLike ↔ n } $egammaLike ;

 Γ } $gammaLike ↔ N } $egammaLike ;

 γ ↔ g ; Γ ↔ G ;

 δ ↔ d ; ∆ ↔ D ;

 ε ↔ e ; Ε ↔ E ;

 ζ ↔ z ; Ζ ↔ Z ;

 # contextual transform

 Θ } $beforeLower ↔ Th ;

 θ ↔ th ; Θ ↔ TH ;

 ι ↔ i ; Ι ↔ I ;

 κ ↔ k ; Κ ↔ K ;

 λ ↔ l ; Λ ↔ L ;

 µ ↔ m ; Μ ↔ M ;

 # contextual transforms

 ν } $gammaLike → n\' ;

 Ν } $gammaLike ↔ N\' ;

 ν ↔ n ; Ν ↔ N ;

 ...

 # convert back to composed

 ::NFC (NFD) ;

 </icu:transform>

Figure 1: Latin ↔ Greek Transliteration Sample in ICU

35

transliteration systems can be added without requiring
source code recompilation. Figure one presents a
familiar example with the Latin and Greek alphabets:

A very valuable feature of transliteration in ICU is
the extension to “compound transforms”. Under the
concept of compound transformations defined
transliteration systems may be chained together for
special conversions. For example:

[:Lu:] Latin-Katakana; Latin-Hiragana;

Defines a compound transformation where
uppercase Latin letters (identified with the Unicode
character class [:Lu:]) are converted into Katakana. The
output of the first transformation, terminated with the
semicolon “;” symbol, becomes the input for the next.
The remaining lowercase Latin characters will be
converted into Hiragana. For example:

Reversible transliteration systems require strict
adherence. The most common deviations from stringent
transliteration come from the application of
transcription rules. There are legitimate reasons for
applying transliteration and transcription together, for
example when a transcription is well established and the
transliterated rendering would cause confusion. The
meta-language for transcription should be capable of
contextual processing to make some conversion of
transcription and other phonological phenomena that
manifest in an orthography possible. This capability
will also be useful in validation and conformance work
where conversion from transcription to stringent
transliteration is the objective.

For example, a regular expression based rule for the
elision of gemination characters:

 ([^aeiou]){2} ⇒ $1;

which replaces two occurrences of a non-vowel (i.e. a
consonant) with a single occurrence. Contextual
transliteration of Greek gamma:

{γ} [ΓΚΧΞγκχξ] > n;

 γ > g;

which converts gamma into n if gamma is followed by
any of: Γ, Κ, Χ, Ξ, γ, κ, χ or ξ. To enhance phonetic
transcription it is advantageous to precondition an
English string to better represent the spoken value of the
word in the target language. For example “progeny” in
American English spoken form is “pro-ǧə-ni” (IPA).
Rules can be applied here, within the domain of
American English orthography:

([^aeiou])y$ > $1i;

oge > oje;

thus the Cyrillic rendering, for example becomes
“пройени” and not naïvely as “прогены”. These
special rules should generally be applied prior to regular
transliteration. At the end of a transliteration process the
capability may also help further simplify symbol

clusters that have occurred from the application of
earlier rules.

2.7. Keyboards

When a U-RL requires a writing system which has
little or no computer legacy it can be useful to develop a
typing system for entering new in-language text.
Adding an Input Method (a typing system, or “IM”) is
very platform and API specific exercise. Unlike
character encoding and fonts formats, there are no
recognised standards for a keyboard implementation
that is portable across operating systems or window
environments. Unless you have hired typist to enter or
compose text for your project, developing a keyboard
system will likely not be worth the investment of time
to learn the APIs and develop the IM software. When
time is an issue it will be more efficient to develop a
transliteration system, enter the text samples you need
in regular Latin script, and convert them into the target
script (still under Unicode encoding) with a
transliterator.

If it is essential to have an IM for your project the
best options on a Window system will be to work with
the very robust Tavultesoft Keyman Developer8 which
has a small licensing fee. On Linux systems the trend
has been to move towards the Smart Common Input
Method (SCIM)9 where an IM can be defined in
configuration files without having to develop new
source code. The SCIM based Keyboard Mappings For
Linux (KMFL) also offers some Linux compatibility for
Keyman IMs. Keyman and SCIM attempt to provide
keyboard support for all applications within a window
environment. Some applications do provide their own
keyboard interpreters as a means to obtain greater
independence from the window system and thus offer
some portability between window and operating
systems. Yudit

10
 and Emacs are two such examples of

editor applications that provide their own IM
infrastructure. Adding an IM to Emacs11 will take a
little knowledge of the Lisp programming language and
in Yudit it is a matter of writing a text based mapping
file.

As a last resort, a platform portable IM can be
developed in either Java or JavaScript but under the
restricted contexts of where these languages can be
used.

2.8. Text Processing

Unicode and ICU do not address analytical
linguistic issues directly but do provide many of the
language neutral facilities that you would build upon to
address language specific problems. For instance ICU
does not have support for stemming but will apply
Unicode definitions for character properties to offer text
segmentation, normalization, and highly advanced
pattern matching.

A number of writing systems have numerous legacy
encoding systems; for example Vietnamese had 43
systems (Erard) and Ethiopic over 70. Unicode offers a

8 Tavultesoft Homepage: http://tavultesoft.com/
9
 SCIM Homepage: http://www.scim-im.org/

10 Yudit Homepage: http://yudit.org/
11

 Emacs Home: http://www.gnu.org/software/emacs/

 Input ⇒ [:Lu:] Latin-Katakana; ⇒ Latin-Hiragana;

Washington ⇒ ウashington ⇒ ウあしんぐとん

36

vendor neutral encoding that legacy systems can be
converted into. Algorithms may then be developed to
understand only a single system. ICU offers over 700
encoding system conversions and developers may add
to it as needed. (Davis and Scherer)

ICU also provides character normalization services.
A character in Unicode may still have for than one
form, this is common with “composed characters”. For
example ‘ä’ may be the singe character with address
U+00E4 or may also be comprised of the two characters
‘a’ + ‘¨’ with the addresses U+0061 and U+0308.
There are seemingly endless numbers of possible
composed characters and ICU will know how to map
components into a single character if available or
possibly a Unicode defined named sequence; thus
making text comparisons more successful.

Similar to normalization the notion of equivalence
classes is supported in regular expressions languages.
ICU extends the Java regular expressions support to
account for all character classes in the “Unicode
Character Database”12. Here every property of a
character is defined, such as case, letter type,
punctuation type, numeric type, and so on, there are a
great number of these classes. In a very simple example
of how they are applied in a regular expression, the
following statement would match only letters with
“uppercase” property but excluding (‘-’) those in the
Latin alphabet:

/[\p{Lu}-\p{Latin}]/

Both the C/C++ and Java APIs support the Unicode

style regular expressions extensions as defined in the
Unicode Technical Report #18

13
. The Perl and C#

programming languages also support Unicode style
regular expressions without depending on ICU. While
very powerful for complex pattern matching the
Unicode regular expressions syntax does not always go
far enough to support lesser understood properties of U-
RL scripts. The Perl regular expressions support is very
simple to extend and some modules have been
developed to support pattern matching in syllabic
scripts such as Cherokee and Ethiopic. For example
with the Regexp::Ethiopic

14
 Perl module the expression:

/[�-�]{#4,6#}/

matches any character in the range of � through � but
only in the 4

th
 or 6

th
 orders, ie the set:

[������	
��
�]

The module demonstrates overloading of the Perl
regular expressions engine. The same can be done with
the ICU classes, it is often faster however to prototype
and experiment in Perl first and then follow with a Java
or C/C++ implementation as needed.

3. Working for Unicode

12 http://www.unicode.org/Public/UNIDATA/UCD.html
13 http://www.unicode.org/reports/tr18/
14

 http://search.cpan.org/~dyacob/Regexp-Ethiopic/

As an NLP researcher working with an U-RL your
objective will be to solve some very specific problem
within a limited period of time and within the fiscal
constraints of a budget. The native speaker community
will benefit from the body of knowledge of their
language having been expanded by your work. You will
have made it easier for future researchers to enter into
and further explore the language. You may solve the
problem that lies before you and move on to others, you
have no further obligation to work with the language
beyond your original mandate. If you’re lucky,
however, your experience with the U-RL may become a
labour of love that you continue to seek funding to work
on or take up in personal time.

If you are so able and wish to do so, working
beyond the problem that brought you to the U-RL, you
can expect to be drawn deeper and deeper into the
community and engage in every broader computing
resource problems. Indeed, you may be one of very few,
or even the only, person actively developing software
for the community for quite some time. As the
resources that you develop and provide become utilised
by the research and native-speaker community, you
inherit some responsibility to maintain them and
provide support services.

Gradually you will also become a technical bridge
between the community and the greater software
industry. At this level you have become a subject expert
on the language and its computing resources. The best
service that you can do for the language, and yourself,
is to build upon your experience and community
contacts to advance your work to the level of standards
for the language. With standards available for the
language software companies have in a sense the “legal
basis” that they need to begin support for the
requirements of the language. This will be a great
benefit to the native speakers and with the software
industry picking up support for a language you will be
relieved of the burden of having to maintain and support
your earlier work.

3.1. Character Encoding and The Script
Encoding Initiative

If in the course of your work you have developed a
font or experimental encoding system for the script, you
will want to consider permanent encoding in the
Unicode Standard. Doing so will ensure that the letters
will live on for the life of the standard itself and give
software companies the technical foundation needed to
support the script and language.

The challenge of obtaining the standard however is
not unlike trying to be your own trial lawyer in
courtroom in a foreign environment where you do not
know the laws. It is not for the faint of heart and will
most definitely become a bigger undertaking than you
had in mind.

It will be much better to have an experienced
standardisation expert on your side that knows the
system and can navigate the process for you while you
provide the subject matter expertise. Launched in April
2002 at University of Berkeley, the Script Encoding
Initiative (SEI)

15
 is just such an expert.

15

 SEI Homepage: http://www.linguistics.berkeley.edu/sei/

37

The SEI has “…the goal of organizing and
orchestrating the completion of the Unicode Standard.
SEI involves other institutions than software companies,
reaching out to academia and the public sector, drawing
upon scholars around the world as a major resource and
on their research results, existing publications and script
descriptions. SEI also involves a small group of experts
in script encoding to work with scholars to make
finished, workable proposals and to move those
proposals through the standardization process as soon as
possible.” (Anderson)

Even if you never anticipate working on a standard
for the script, do collect as much cultural information
about the writing system as you can while you have the
opportunity in the field. If not you, a native speaker or
another researcher wishing to work with the SEI, can
apply the information in a proposal process. There is
almost always more to letters than just the sounds they
make.

3.2. Script Name and Language Codes

Along with the encoding of the written symbols of
the script, the script and language identities likewise
need to be encoded in the respective standards. In this
case the standard relevant to language encoding is the
ISO 639 family (parts 1, 2 and 3). It is in this standard
where “en” is defined as a code for “English” and “lol”
for “Mongo”. These ISO 639 language codes are used
by applications and operating systems to configure a
language setting.

Parts one and two cover only 506 of the 7,300 main
languages tracked by the Ethnologue. (SIL) Part three
attempts to cover all of the world’s languages and has
been a draft standard for a number of years and should
become a final standard shortly.

If the U-RL that you are working with is not
covered by ISO 639-3, you will want to request its
inclusion from the registrar

16
. Requests can also be

made for the encoding of a dialect. It is still possible to
request a code assignment from ISO 639-2 which may
help gain software support faster. However, ISO 639-2
does require evidence of 50 in-language documents
from 5 institutes that most U-RLs are unlikely to have

17
.

To encode a script identity, such as “tfng” for
“Tifinagh”, ISO 15924 is the applicable standard. As
with language name encodings the registrar should be
contacted if the script the U-RL uses has not been
assigned a code

18
.

3.3. National Standards

Most every country will have some government
recognized body such as a ministry, industrial
consortium, or professional organization entrusted to
define standards for the nation as a whole. Working
with a national standards body should always be
attempted before approaching an international body.

It may be the case that the national standards body
does not have the interest, expertise, funds or other
resources to develop a national standard for technology
focused topics such as character encoding, collation,

16 ISO 639-3 Registrar: http://www.sil.org/iso639-3/
17 ISO 639-2 Reg. : http://www.loc.gov/standards/iso639-2/
18

 ISO 15924 Registrar: http://www.unicode.org/iso15924/

keyboard mappings, or more deeply linguistic areas
such as lexicons.

On the other hand, a standards body may be grateful
for any help it can get and will welcome your initiative
particularly in information technology areas.
Potentially, a standards body may fund and even take
over the “defacto standard” that you have intrinsically
developed for your resources and evolve it into a formal
standard. Having a national standards body endorse and
legalize a defacto standard for a system puts the highest
level of clout behind it. This will make it much easier to
achieve international recognition for the standard,
particularly if the standards body is also the nation’s
representative to the ISO. Local software companies
may also begin supporting the standard without waiting
for the international recognition.

4. Conclusion

In uncharted territory there will be more to explore
academically, and more pure knowledge build, but at
the cost of moving a little slower while you tread the
first roads.

The entry cost into working on a U-RL will always
be higher relative to working on a well explored
language. This greater cost is incurred for the lack of
informational, computational and the lowest level of
resources for language representation on a computer.
With each passing year the growing availability of
Unicode based tools helps lower the entry cost in both
time and money required to undertake U-RL research.
Indeed, it has never been easier.

While there can be a greater burden upon an NLP
researcher to develop basic level resources to engage in
U-RL research, there is also the opportunity to realize a
greater and more meaningful impact from the research
activity. By developing those resources and filling the
resource void, you are helping the language and its
culture make the leap into the information era and have
a better chance at surviving into the future.

5. References

Anderson, Deborah, September 2003. The Script
Encoding Initiative, Multilingual Computing,
Volume 14, Issue 6, 34.

Davis, Mark, and Markus Scherer, 2005. Globalizing
Software, Retrieved April 14, 2006, from
http://icu.sourceforge.net/docs/papers/globalizing_s
oftware.ppt

Erard, Michael, 2003, September. Computers Learn
New ABCs, Technology Review, 28.

International Components for Unicode. (n.d.). Retrieved
April 14, 2006, from http://icu.sourceforge.net/

SIL International, 2006. Ethnologue, Retrieved April
14, 2006 from http://www.ethnologue.com/

38

