
xml:tm - a radical new approach to translating XML based documents.

Andrzej Zydroń

CTO XML-INTL
PO Box 2167

Gerrards Cross
Bucks SL9 8XF

UK
azydron@xml-intl.com

Abstract
This paper describes the proposed xml:tm standard. xml:tm a revolutionary new approach to the problems of translating electronic
document content. It leverages existing OASIS, W3C and LISA standards to produce a radically new view of XML documents: text
memory. xml:tm has been offered to LISA OSCAR for consideration as a LISA OSCAR standard.

1. Translating XML documents

XML has become one of the defining technologies that
is helping to reshape the face of both computing and
publishing. It is helping to drive down costs and
dramatically increase interoperability between diverse
computer systems. From the localization point of view
XML offers many advantages:

1. A well defined and rigorous syntax that is backed
up by a rich tool set that allows documents to be
validated and proven.

2. A well defined character encoding system that
includes support for Unicode.

3. The separation of form and content which allows
both multi target publishing (PDF, Postscript,
WAP, HTML, XHTML, online help) from one
source.

Companies that have adopted XML based publishing
have seen significant cost savings compared with SGML
or older proprietary systems. The localization industry has
also enthusiastically used XML as the basis of exchange
standards such as the LISA OSCAR TMX[1] (Translation
Memory eXchange), TBX[2] (TermBase Exchange),
SRX[3] (Segmentation Rules eXchange) standards, as
well as GMX[4] (Global Information Management
Metrics eXchange) set of proposed standards (Volume,
Complexity and Quality). OASIS has also contributed in
this field with XLIFF[5] (XML Localization Interchange
File Format) and TransWS[6] (Translation Web Services).
In addition the W3C ITS[7] Committee under the chair of
Yves Savourel is working towards a common tag set of
Elements and Attributes for Localization (Translatability
of content, localization process in general etc.).

Another significant development affecting XML and
localization has been the OASIS DITA (Darwin
Information Technology Architecture) standard. DITA[8]
provides a comprehensive architecture for the authoring,
production and delivery of technical documentation.
DITA was originally developed within IBM and then
donated to OASIS. The essence of DITA is the concept of
topic based publication construction and development that
allows for the modular reuse of specific sections. Each
section is authored independently and then each
publication is constructed from the section modules. This
means that individual sections only need to be authored

and translated once, and may be reused many times over
in different publications.

A core component of DITA is the concept of reuse
through a well defined system for establishing a usable
level of granularity within document components. DITA
represents a very intelligent and well thought out
approach to the process of publishing technical
documentation. At the core of DITA is the concept the
'topic'. A topic is a unit of information that describes a
single task, concept, or reference item. DITA uses an
object orientated approach to the concept of topics
encompassing the standard object oriented characteristics
of polymorphism, encapsulation and message passing.

The main features of DITA are:
1. Topic centric level of granularity
2. Substantial reuse of existing assets
3. Specialization at the topic and domain level
4. Meta data property based processing
5. Leveraging existing popular element names

and attributes from XHTML
6. The basic message behind DITA is reuse:

'write once, translate once, reuse many times'.

2. xml:tm
xml:tm[9] is a radical new approach to the problem of

translation for XML documents. In essence it takes the
DITA message of reuse and implements it at the sentence
level. It does this by leveraging the power of XML to
embed additional information within the XML document
itself. xml:tm has additional benefits which emanate from
its use. The main way it does this is through the use of the
XML namespace syntax.

xml:tm was developed by XML-INTL and donated to
the LISA OSCAR steering committee for consideration as
a LISA OSCAR standard. In essence xml:tm is a perfect
companion to DITA - the two fit together hand in glove in
terms of interoperability and localization.

At the core of xml:tm is the concept of “text memory”.
Text memory comprises two components:

1. Author Memory
2. Translation Memory

59

mailto:azydron@xml-intl.com

3. Author Memory

XML namespace is used to map a text memory view
onto a document. This process is called segmentation. The
text memory view works at the sentence level of
granularity – the text unit. Each individual xml:tm text
unit is allocated a unique identifier. This unique identifier
is immutable for the life of the document. As a document
goes through its life cycle the unique identifiers are
maintained and new ones are allocated as required. This
aspect of text memory is called author memory. It can be
used to build author memory systems which can be used
to simplify and improve the consistency of authoring.

The following diagram shows the how the tm
namespace maps onto an existing xml document:

Figure 1. How xml:tm namespace maps onto an existing
xml document.

In the above diagram "te" stands for "text element" (an

XML element that contains text) and "tu" stands for "text
unit" (a single sentence or stand alone piece of text).

The following simplified example shows how xml:tm
is implemented in an XML document. The xml:tm
elements are highlighted in red to show how xml:tm maps
onto an existing XML document.:

<?xml version="1.0" encoding="UTF-8" ?>
<office:document-content
 xmlns:text="http://openoffice.org/2000/text"
 xmlns:tm="urn:xmlintl-tm-tags"
xmlns:xlink="http://www.w3.org/1999/xlink">
 <tm:tm>
 <text:p text:style-name="Text body">
 <tm:te id="e1" tuval="2">
 <tm:tu id="u1.1"> Xml:tm is a
revolutionary technology for dealing
 with the problems of translation
memory for XML documents by using
 XML techniques to embed memory
directly into the XML documents themselves.
</tm:tu>
 <tm:tu id="u1.2"> It makes extensive
use of XML namespace. </tm:tu>
 </tm:te>
 </text:p>
 <text:p text:style-name="Text body">

 <tm:te id="e2">
 <tm:tu id="u2.1"> The “tm” stands for
“text memory”. </tm:tu>
 <tm:tu id="u2.2"> There are two
aspects to text memory: </tm:tu>
 </tm:te>
 </text:p>
 <text:ordered-list text:continue-
numbering="false" text:style-name="L1">
 <text:list-item>
 <text:p text:style-name="P3">
 <tm:te id="e3">
 <tm:tu id="u3.1"> Author
memory</tm:tu>
 </tm:te>
 </text:p>
 </text:list-item>
 <text:list-item>
 <text:p text:style-name="P3">
 <tm:te id="e4">
 <tm:tu id="u4.1"> Translation
memory</tm:tu>
 </tm:te>
 </text:p>
 </text:list-item>
 </text:ordered-list>
 </tm:tm>
</office:document-content>

And the composed document:

Figure 2. The composed document.

4. Translation Memory
When an xml:tm namespace document is ready for

translation the namespace itself specifies the text that is to
be translated. The tm namespace can be used to create an
XLIFF document for translation.

4.1. XLIFF
XLIFF[5] is another XML format that is optimized for

translation. Using XLIFF you can protect the original
document syntax from accidental corruption during the
translation process. In addition you can supply other
relevant information to the translator such as translation
memory and preferred terminology.

The following is an example of an XLIFF document
based on the previous example:

60

http://openoffice.org/2000/text
http://www.w3.org/1999/xlink

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE xliff PUBLIC "-//XML-INTL XLIFF-XML
1.0//EN" "file:xliff.dtd">
<xliff version="1.0">
 <file datatype="xml" source-language="en-USA"
target-language="es-ESP">
 <header>
 <count-group name="Totals">
 <count count-type="TextUnits"
unit="transUnits">40</count>
 <count count-type="TotalWordCount"
unit="words">416</count>
 </count-group>
 </header>
 <body>
 <trans-unit id="t1">
 <source> xml:tm</source>
 <target> xml:tm </target>
 </trans-unit>
 <trans-unit id="t2">
 <source> Xml:tm is a revolutionary
technique for dealing with the problems of
translation memory for XML documents by using
XML techniques and embedding memory directly
into the XML documents themselves.
 </source>
 <target> Xml:tm is a revolutionary
technique for dealing with the problems of
translation memory for XML documents by using
XML techniques and embedding memory directly
into the XML documents themselves.
 </target>
 </trans-unit>
 <trans-unit id="t3">
 <source> It makes extensive use of XML
namespace.
 </source>
 <target> It makes extensive use of XML
namespace.
 </target>
 </trans-unit>
 <trans-unit id="t4">
 <source> The “tm” stands for “text
memory”. </source>
 <target> The “tm” stands for “text
memory”. </target>
 </trans-unit>
 <trans-unit id="t5">
 <source> There are two aspects to text
memory: </source>
 <target> There are two aspects to text
memory: </target>
 </trans-unit>
 <trans-unit id="t6">
 <source> Author memory </source>
 <target> Author memory </target>
 </trans-unit>
 <trans-unit id="t7">
 <source> Translation memory </source>
 <target> Translation memory </target>
 </trans-unit>
 </body>
 </file>
</xliff>

The magenta colored text signifies where the translated
text will replace the source language text as shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE xliff PUBLIC "-//XML-INTL XLIFF-XML
1.0//EN" "file:xliff.dtd">
<xliff version="1.0">
 <file datatype="xml" source-language="en-USA"
target-language="es-ESP">
 <header>
 <count-group name="Totals">
 <count count-type="TextUnits"
unit="transUnits">40</count>
 <count count-type="TotalWordCount"
unit="words">416</count>
 </count-group>
 </header>
 <body>
 <trans-unit id="t1">
 <source> xml:tm</source>
 <target> xml:tm </target>
 </trans-unit>
 <trans-unit id="t2">
 <source> Xml:tm is a revolutionary
technique for dealing with the problems of
translation memory for XML documents by using
XML techniques and embedding memory directly
into the XML documents themselves.
 </source>
 <target> Xml:tm es un técnica
revolucionaria que trata los problemas de
memoria de traducción en documentos XML usando
técnicas XML e incluyendo la memoria en el
documento mismo.
 </target>
 </trans-unit>
 <trans-unit id="t3">
 <source> It makes extensive use of XML
namespace.
 </source>
 <target> E sta técnica hace extensor uso
de XML namespace.
 </target>
 </trans-unit>
 <trans-unit id="t4">
 <source> The “tm” stands for “text
memory”. </source>
 <target> “tm” significa “memoria de
texto”. </target>
 </trans-unit>
 <trans-unit id="t5">
 <source> There are two aspects to text
memory: </source>
 <target> Hay dos aspectos de memoria de
texto: </target>
 </trans-unit>
 <trans-unit id="t6">
 <source> Author memory </source>
 <target> Memoria de autor </target>
 </trans-unit>
 <trans-unit id="t7">
 <source> Translation memory </source>
 <target> Memoria de traducción </target>
 </trans-unit>
 </body>
 </file>
</xliff>

When the translation has been completed the target

language text can be merged with the original document
to create a new target language version of that document.
The net result is a perfectly aligned source and target
language document.

61

The following is the translated xml:tm document in
Spanish:

<?xml version="1.0" encoding="UTF-8" ?>
<office:document-content
 xmlns:text="http://openoffice.org/2000/text"
 xmlns:tm="urn:xmlintl-tm-tags"
xmlns:xlink="http://www.w3.org/1999/xlink">
 <tm:tm>
 <text:p text:style-name="Text body">
 <tm:te id="e1" tuval="2">
 <tm:tu id="u1.1"> Xml:tm es un
 técnica revolucionaria que trata los
problemas de memoria de
 traducción en documentos XML usando
técnicas XML e
 incluyendo la memoria en el documento
mismo. </tm:tu>
 <tm:tu id="u1.2"> E sta técnica hace
extensor uso de XML namespace. </tm:tu>
 </tm:te>
 </text:p>
 <text:p text:style-name="Text body">
 <tm:te id="e2">
 <tm:tu id="u2.1"> “tm” significa
“memoria de texto”. </tm:tu>
 <tm:tu id="u2.2"> Hay dos aspectos de
memoria de texto: </tm:tu>
 </tm:te>
 </text:p>
 <text:ordered-list text:continue-
numbering="false" text:style-name="L1">
 <text:list-item>
 <text:p text:style-name="P3">
 <tm:te id="e3">
 <tm:tu id="u3.1"> Memoria de
autor</tm:tu>
 </tm:te>
 </text:p>
 </text:list-item>
 <text:list-item>
 <text:p text:style-name="P3">
 <tm:te id="e4">
 <tm:tu id="u4.1"> Memoria de
traducción</tm:tu>
 </tm:te>
 </text:p>
 </text:list-item>
 </text:ordered-list>
 </tm:tm>
</office:document-content>

This is an example of the composed translated text:

Figure 3. The composed translated document.

The source and target text is linked at the sentence
level by the unique xml:tm identifiers. When the
document is revised new identifiers are allocated to
modified or new text units. When extracting text for
translation of the updated source document the text units
that have not changed can be automatically replaced with
the target language text. The resultant XLIFF file will
look like this:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE xliff PUBLIC "-//XML-INTL XLIFF-XML
1.0//EN" "file:xliff.dtd">
<xliff version="1.0">
 <file datatype="xml" source-language="en-USA"
target-language="es-ESP">
 <header>
 <count-group name="Totals">
 <count count-type="TextUnits"
unit="transUnits">40</count>
 <count count-type="TotalWordCount"
unit="words">416</count>
 </count-group>
 </header>
 <body>
 <trans-unit translate="no" id="t1">
 <source> xml:tm</source>
 <target state-qualifier="exact-matched">
xml:tm </target>
 </trans-unit>
 <trans-unit translate="no" id="t2">
 <source> Xml:tm is a revolutionary
technique for dealing with the problems of
translation memory for XML documents by using
XML techniques and embedding memory directly
into the XML documents themselves.
 </source>
 <target state-qualifier="exact-matched">
Xml:tm es un técnica revolucionaria que trata
los problemas de memoria de traducción en
documentos XML usando técnicas XML e incluyendo
la memoria en el documento mismo.
 </target>
 </trans-unit>
 <trans-unit translate="no" id="t3">
 <source> It makes extensive use of XML
namespace.
 </source>
 <target state-qualifier="exact-matched">
E sta técnica hace extensor uso de XML
namespace.
 </target>
 </trans-unit>

62

http://openoffice.org/2000/text
http://www.w3.org/1999/xlink

 <trans-unit translate="no" id="t4">
 <source> The “tm” stands for “text
memory”. </source>
 <target state-qualifier="exact-matched">
“tm” significa “memoria de texto”. </target>
 </trans-unit>
 <trans-unit translate="no" id="t5">
 <source> There are two aspects to text
memory: </source>
 <target state-qualifier="exact-matched">
Hay dos aspectos de memoria de texto: </target>
 </trans-unit>
 <trans-unit translate="no" id="t6">
 <source> Author memory </source>
 <target state-qualifier="exact-matched">
Memoria de autor </target>
 </trans-unit>
 <trans-unit translate="no" id="t7">
 <source> Translation memory </source>
 <target state-qualifier="exact-matched">
Memoria de traducción </target>
 </trans-unit>
 </body>
 </file>
</xliff>

4.2. Exact Matching
The matching described in the previous section is

called “exact” matching. Because xml:tm memories are
embedded within an XML document they have all the
contextual information that is required to precisely
identify text units that have not changed from the previous
revision of the document. Unlike leveraged matches,
perfect matches do not require translator intervention, thus
reducing translation costs.

The following diagram shows how Exact Matching is

achieved:

Figure 4. Exact Matching.

4.3. Matching with xml:tm
xml:tm provides much more focused types of

matching than traditional translation memory systems.
The following types of matching are available:

1. Exact matching

Author memory provides exact details of any
changes to a document. Where text units have
not been changed for a previously translated
document we can say that we have a “Exact
match”. The concept of Exact Matching is an
important one. With traditional translation
memory systems a translator still has to proof
each match, as there is no way to ascertain the
appropriateness of the match. Proofing has to be
paid for – typically at 60% of the standard
translation cost. With Exact Matching there is no
need to proof read, thereby saving on the cost of
translation.

2. In document leveraged matching

xml:tm can also be used to find in-document
leveraged matches which will be more
appropriate to a given document than normal
translation memory leveraged matches.

3. Leveraged matching

When an xml:tm document is translated the
translation process provides perfectly aligned
source and target language text units. These can
be used to create traditional translation
memories, but in a consistent and automatic
fashion.

4. In document fuzzy matching

During the maintenance of author memory a note
can be made of text units that have only changed
slightly. If a corresponding translation exists for
the previous version of the source text unit, then
the previous source and target versions can be
offered to the translator as a type of close fuzzy
match.

5. Fuzzy matching

The text units contained in the leveraged memory
database can also be used to provide fuzzy
matches of similar previously translated text. In
practice fuzzy matching is of little use to
translators except for instances where the text
units are fairly long and the differences between
the original and current sentence are very small.

6. Non translatable text

63

In technical documents you can often find a large
number of text units that are made up solely of
numeric, alphanumeric, punctuation or
measurement items. With xml:tm these can be
identified during authoring and flagged as non
translatable, thus reducing the word counts. For
numeric and measurement only text units it is
also possible to automatically convert the
decimal and thousands designators as required by
the target language.

5. xml:tm and other Localization
Industry Standards

xml:tm was designed from the outset to integrate
closely with and leverage the potential of other relevant
XML based Localization Industry Standards.

In particular:

1. SRX[3] (Segmentation Rules eXchange)

xml:tm mandates the use of SRX for text
segmentation of paragraphs into text units.

2. Unicode Standard Annex #29[11] Text
Boundaries

xml:tm mandates the use of Unicode Standard
Annex #29 for tokenization of text into words.

3. XLIFF[5] (XML Localization Interchange File
Format)

xml:tm mandates the use of XLIFF for the actual
translation process. xml:tm is designed to
facilitate the automated creation of XLIFF files
from xml:tm enabled documents, and after
translation to easily create the target versions of
the documents.

4. GMX-V[4] (Global Information Management
Metrics eXchange - Volume)

xml:tm mandates the use of GMX-V for all
metrics concerning authoring and translation.

5. DITA[8] (Darwin Information Technology
Architecture)

xml:tm is a perfect match for DITA, taking the
DITA reuse principle down to sentence level.

6. TMX[1] (Translation Memory eXchange)

xml:tm facilitates the easy creation of TMX
documents, aligned at the sentence level.

6. Controlling Matching and Word
counts

You can use xml:tm to create an integrated and totally
automated translation environment. The presence of
xml:tm allows for the automation of what would
otherwise be labour intensive processes. The previously
translated target version of the document serves as the
basis for the exact matching of unchanged text. In
addition xml:tm allows for the identification of text that
does not require translation (text units comprising solely
punctuation or numeric or alphanumeric only text) as well
as providing for in-document leveraged and fuzzy
matching.

In essence xml:tm has already pre-prepared a
document for translation and provided all of the facilities
to produce much more focused matching. After
exhausting all of the in-document matching possibilities
any unmatched xml:tm text units can be searched for in
the traditional leveraged and fuzzy search manner.

The presence of xml:tm can be used to totally
automate the extraction and matching process. This means
that the customer is in control of all of the translation
memory matching and word count processes, all based on
open standards. This not only substantially reduces the
cost of preparing the document for translation, which is
usually charged for by localization service providers, but
is also much more efficient and cost effective as it is
totally automated. The customer now controls the
translation memory matching process and the word
counts.

In a study conducted in 2002 by the Localization
Research Centre the typical cost of the actual translation
accounted for only 33% of the cost of localization for a
typical project. Over 50% of the cost was consumed by
administrative and project management charges. With
xml:tm in an automated translation environment you can
substantially reduce the costs of translation.

Figure 5. The true costs of a traditional translation
process.

The output from the text extraction process can be
used to generate automatic word and match counts by the
customer. This puts the customer in control of the word
counts, rather than the supplier. This is an important
distinction and allows for a tighter control of costs.

64

Traditional translation scenario:

Figure 6. Traditional translation scenario.

In the xml:tm translation scenario all processing takes
place within the customer's environment:

Figure 7. xml:tm translation scenario.

7. On line translation.
xml:tm mandates the use of XLIFF as the exchange

format for translation. XLIFF format can be used to create
dynamic web pages for translation. A translator can access
these pages via a browser and undertake the whole of the
translation process over the Internet. This has many
potential benefits. The problems of running filters and the
delays inherent in sending data out for translation such as
inadvertent corruption of character encoding or document
syntax, or simple human work flow problems can be
totally avoided. Using XML technology it is now possible
to both reduce and control the cost of translation as well
as reduce the time it takes for translation and improve the
reliability.

Figure 8. An example of a web based translator
environment:

8. Benefits of using xml:tm
The following is a list of the main benefits of using the

xml:tm approach to authoring and translation:

1. The ability to build consistent authoring systems.
2. Automatic production of authoring statistics.
3. Automatic alignment of source and target text.
4. Aligned texts can be used to populate leveraged

matching tm database tables.
5. Exact translation matching for unchanged text

units.
6. In-document leveraged and modified text unit

matching.
7. Automatic production of word count statistics.
8. Automatic generation of exact, leveraged,

previous modified or fuzzy matching.
9. Automatic generation of XLIFF files.
10. Protection of the original document structure.
11. The ability to provide on line access for

translators.
12. Can be used transparently for relay translation.
13. An open standard that is based and interoperates

with other relevant open standards (SRX[3],
Unicode TR29[11], XLIFF[5], TMX[1], GMX-
V[4]).

9. Summary
xml:tm is a namespace based technology created and

maintained by XML-INTL based on XML and
Localization Industry Standards for the benefit of the
translation and authoring communities. Full details of the
xml:tm definitions (XML Data Type Definition and XML
Schema) are available from the XML-INTL web site
(http://www.xml-intl.com).

The xml:tm approach reduces translation costs in the
following ways:

1. Translation memory is held by the customer
within the documents.

65

http://www.xml-intl.com)

2. Exact Matching reduces translation costs by
eliminating the need for translators to proof these
matches.

3. Translation memory matching is much more
focused than is the case with traditional
translation memory systems providing better
results.

4. It allows for relay translation memory processing
via an intermediate language.

5. All translation memory, extraction and merge
processing is automatic, there is no need for
manual intervention.

6. Translation can take place directly via the
customer's web site.

7. All word counts are controlled by the customer.
8. The original XML documents are protected

from accidental damage.
9. The system is totally integrated into the XML

framework, making maximum use of the
capabilities of XML to address authoring and
translation.

10. References
[1] TMX - Translation Memory eXchange
format : http://www.lisa.org/tmx/
[2] TBX - TermBase eXchange format :
http://www.lisa.org/tbx/
[3] SRX - Segmentation Rules eXchange format
: http://www.lisa.org/oscar/seg/
[4] GMX - Global Information management
Metrics : http://www.lisa.org/standards/gmx/
[5] XLIFF - XML Localisation Interchange File
Format : http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=
xliff
[6] Translation Web Services :
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=
trans-ws
[7] W3C ITS :
html/www.w3.org/International/its
[8] DITA - Darwin Information Technology
Architecture : html/www.oasis-
open.org/committees/tc_home.php?wg_abbrev=
dita
[9] xml:tm - detailed specification :
http://www.xml-intl.com/docs/specification/xml-
tm.html
[10] The Localisation Research Centre (LRC) :
http://www.localisation.ie/
[11] Unicode Standard Annex #29 :
http://www.unicode.org/reports/tr29/

66

http://www.lisa.org/tmx/
http://www.lisa.org/tbx/
http://www.lisa.org/oscar/seg/
http://www.lisa.org/standards/gmx/
http://www.oasis
http://www.oasis
http://www.w3.org/International/its
http://www.xml-intl.com/docs/specification/xml
http://www.localisation.ie/
http://www.unicode.org/reports/tr29/

