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Abstract 

Producing machine translation (MT) for the many minority lan-
guages in the world is a serious challenge. Minority languages 
typically have few resources for building MT systems. For many 
minor languages there is little machine readable text, few 
knowledgeable linguists, and little money available for MT de-
velopment. For these reasons, our research programs on minor-
ity language MT have focused on leveraging to the maximum 
extent two resources that are available for minority languages: 
linguistic structure and bilingual informants. All natural lan-
guages contain linguistic structure. And although the details of 
that linguistic structure vary from language to language, lan-
guage universals such as context-free syntactic structure and the 
paradigmatic structure of inflectional morphology, allow us to 
learn the specific details of a minority language. Similarly, most 
minority languages possess speakers who are bilingual with the 
major language of the area. This paper discusses our efforts to 
utilize linguistic structure and the translation information that 
bilingual informants can provide in three sub-areas of our rapid 
development MT program: morphology induction, syntactic 
transfer rule learning, and refinement of imperfect learned rules. 

Introduction 
Speakers of minority languages could benefit from fluent 
machine translation (MT) between their native tongue and 
the dominant language of their region. But scarcity in 
capital and know-how has largely restricted machine 
translation to the dominant languages of first world na-
tions. To lower the barriers surrounding MT system crea-
tion, we must reduce the time and resources needed to 
develop MT for new language pairs. This paper discusses 
our application of two underutilized resource reduction 
techniques in three sub-areas of rapid MT system devel-
opment. By, first, incorporating linguistic structure into 
MT knowledge induction algorithms, and, second, strate-
gically employing minimally trained bilingual informants 
during system creation we: 1. learn morphological para-
digms without supervision, 2. induce syntactic transfer 
rules, and, 3. automatically correct transfer rules in an 
interactive fashion. 

Minor Languages 
The AVENUE project has developed prototype machine 
translation systems for several minor languages from the 
Americas. We have worked most extensively with 
Mapudungun, an indigenous language spoken by more 
than 900,000 people in central Chile and adjacent Argen-
tina. Our project has produced a prototype rule-based 
Mapudungun-Spanish MT system (Font Llitjós, Levin, 
and Aranovich, 2005). In addition to our work on 
Mapudungun, We have built a prototype Quechua to 
Spanish MT system. Quechua is spoken by several mil-
lion people in and around Peru and Bolivia. Currently we 
are working with the Alaska Native Language Center and 
the Inupiat community to build an MT system for In-
upiaq, the most northern indigenous language of Alaska. 
And we are collaborating with the Universidade de São 
Paulo to develop MT systems for indigenous languages of 
Brazil. 

Leveraging Linguistic Structure and            
Bilingual Informants to Learn Machine 

Translation Systems 
Our approach to machine translation seeks to leverage the 
structure of natural language to automatically induce MT 
systems; at times with deliberate input from bilingual 
informants. Our morphology learning system exploits the 
inherent organizational structure of natural language mor-
phology: the paradigm (Stump, 2001).  Similarly, we lev-
erage syntactic structure to automatically learn transfer 
rules for MT systems. Additionally, input from bilingual 
informants provides translations of key syntactic struc-
tures to seed rule creation. And informants’ corrections of 
translation mistakes facilitate automatic rule refinement. 



Morphology 
The syntactic-transfer methodology which forms the core 
of our MT system requires that words first be analyzed 
into constituent morphemes. Just as machine translation 
systems are not available for most minority languages, 
morphological analysis systems have not been developed 
for these languages either. For our Mapudungun and 
Quechua MT systems we hand built morphological ana-
lyzers. We are currently developing a language independ-
ent morphological analysis system that can learn to seg-
ment the word forms of a new language by examining a 
moderate sized monolingual text corpus of that language.  

Consider the morphological structure of Mapudungun. 
Mapudungun morphology is usually described as a slot 
system with as many as 35 slots (e.g. Smeets, 1989). Each 
slot is a paradigm, and either the presence or absence of a 
morpheme in any given slot fills a cell of the paradigm of 
that slot. Table 1 organizes the trailing paradigms of 
Mapudungun in slot order, giving the suffixes that can fill 
the cells of each paradigm. 

Our unsupervised morphology induction system fol-
lows the lead of other morphology induction systems 
(Goldsmith, 2001; Snover, 2002) in leveraging the para-
digm structure of natural language to learn the morphol-
ogy of specific languages. Because our unsupervised 
morphology induction system relies on the paradigm 
structure of morphology, we christened our system Pa-
raMor. ParaMor discovers the paradigm system of a new 
language by comparing surface word forms found in a 
corpus. ParaMor is a two stage algorithm. In the first 
stage, ParaMor creates paradigm models, while in the 
second stage ParaMor segments words into morphemes 
by matching words against the paradigm models. The first 
stage, paradigm creation, is further broken down into 
three steps. First, ParaMor greedily and aggressively 
searches for sets of contrastive word-final strings. Many 
of the initially selected sets of strings do not represent 
true paradigms. Of those that do represent paradigms, 
most capture only a portion of a complete paradigm. Sec-
ond, ParaMor merges candidate paradigm pieces into lar-
ger groups covering more of the affixes in a paradigm. 
And the third step of paradigm model creation filters out 
the poorer candidates.  

ParaMor placed strongly in Morpho Challenge 2007 
(Kurimo, Creutz, and Varjokallio, 2007), a competition 
pitting unsupervised morphology induction algorithms 
head to head. Systems participating in Morpho Challenge 
2007 were evaluated in two ways: first, in a linguistically 
motivated assessment of morpheme identification; sec-
ond, in a task-based evaluation that augmented an infor-
mation retrieval system with morphological segmenta-
tions. Systems competing in Morpho Challenge 2007 seg-
mented wordforms from up to four languages: English, 
German, Turkish, and Finnish. ParaMor officially com-
peted in the English and German language tracks. In the 
linguistic assessment of the English track, ParaMor iden-
tified morphemes with more accuracy than a state-of-the-
art unsupervised morphology induction algorithm which 
served as a baseline, Morfessor (Creutz, 2006). ParaMor 
placed fourth among all submitted algorithms in the Eng-
lish linguistic evaluation. In the German linguistic as-
sessment, a system combining the output of ParaMor with 
output from Morfessor tied for first place. For additional 
details on ParaMor’s algorithms and further analysis of 
performance in Morpho Challenge 2007 please see Mon-
son et al. (2007a; 2007b). 

Following the Morpho Challenge deadline, we adapted 
ParaMor’s algorithms to recognize agglutinative se-
quences of suffixes and submitted morphological analyses 
of all four language tracks to the Morpho Challenge com-
mittee for evaluation. ParaMor’s performance on mor-
pheme identification in Finnish is statistically indistin-
guishable from the best placing system in Morpho Chal-
lenge 2007; in Turkish, ParaMor achieves much higher 
morpheme recall than any officially competing system, 
significantly outperforming the highest placing system at 
F1 over morpheme identification, 52.0% vs. 24.7%. The 
adapted version of ParaMor also performs well in the in-
formation retrieval (IR) evaluation. An IR system aug-
mented with morphological analyses from the adapted 
version of ParaMor consistently improves the average 
precision of retrieved newswire documents over an un-
augmented IR system. In the English and German tracks, 
ParaMor’s IR performance is as good as the performance 
of the top systems that were officially submitted to the 
Morpho Challenge. Particular results covering ParaMor 
adapted for agglutination will appear in Monson (2008, In 
Press). 
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-(ü)n -la- -a- -pa- -tu- 
-li -ke- -pe- -(ü)rke- 

-ki- -fu- 
-fi- 

-chi 
-pu- -ka- 

-yu -nu- -afu- 
-liu 

Stem … 

-Ø- -Ø- 
-Ø- -Ø- -Ø- 

-Ø- -Ø- 
-Ø- 

… 

 Table 1: A portion of the verbal morphology of Mapudungun. Each column headed by one or more morphosyn-
tactic feature categories is a paradigm. Each paradigm consists of at least two cells, the boxes beneath the fea-
ture heading. Each cell marks a verb for a specific value of the feature category heading that paradigm. This 
figure is adapted from Smeets (1989) with personal experience. 



Syntax 
For minor languages there is often little if any machine 

readable text data from which to induce an MT system. 
This text shortage necessitates bilingual speakers creating 
new parallel data. We maximize the usefulness of the 
relatively few translation examples that a bilingual infor-
mant can produce, by adopting a syntactic transfer for-
malism. And we have specially designed a corpus to con-
tain sentences that are targeted to elicit common syntactic 
structures (Alvarez et al., 2006; Probst et al., 2001). The 
targeted elicitation corpus, in combination with the syn-
tactic nature of our MT rules, facilitates automatic induc-
tion of translation rules.  

An example of a syntactic transfer rule our MT engine 
can interpret is given in Figure 1. The transfer rule in Fig-
ure 1 is part of a hand-written grammar to translate 
Mapudungun into Spanish. Concepts that Spanish (and 
English) express with a copula and adverb, Mapudungun 
expresses with an inflected verb. For example, the Mapu-
dungun verb kümelen, from the adjective stem küme 
‘good,’ translates to Spanish as estoy bien ‘I’m fine’. The 
syntactic transfer rule in Figure 1 describes this transla-
tion mismatch between Mapudungun and Spanish. At the 
top of Figure 1 are two context-free phrase structure trees. 
The tree on the left breaks Mapudungun deadjectival 
verbs into a verb stem (V) and the verbal suffixes (Ten-
seGroup); the tree on the right captures the syntax for 
Spanish copula plus adverb constructions. The dotted line 
connecting the Mapudungun V to the Spanish ADV is our 
formalism explicitly aligning the Mapudungun verb to the 

Spanish adjective with the corresponding meaning. Be-
neath the phrase structure rules in Figure 1 are equations 
for manipulating feature structures associated with the 
phrase structure nodes. The feature equations in Figure 1 
unify the agreement features from the Mapudungun verb 
with the agreement features of the Spanish auxiliary—for 
in Spanish it is not meaning bearing adverb that inflects 
but the copula. 

By leveraging the syntactic structure that our translation 
formalism captures, we have developed two separate al-
gorithms that induce syntactic transfer MT systems. We 
have applied our first induction algorithm Probst (2005) 
to learn machine translation systems for Hebrew and 
Hindi and obtained encouraging translation results Lavie 
et al. (2004; 2003). This paper will focus on the our re-
cently designed second syntactic induction algorithm. Our 
second induction algorithm is intended to suit a variety of 
scenarios of Machine Translation including resource-rich 
to resource-poor language scenarios, with syntax informa-
tion for only one language, and resource-rich to resource-
rich scenarios, with syntax information for both lan-
guages. In this paper we concentrate on the approach 
taken for the resource-rich to resource-poor rule induc-
tion. 

Rule Induction by Projection 
Our rule learning algorithm takes as input a source and 
target sentence pair along with word level alignment in-
formation. We also require a full syntactic parse to be 
available for the resource-rich side of the parallel sentence 
pair, which is not difficult to obtain. Given this informa-
tion we start by traversing the source side syntax tree be-
ginning from the root. At each node of the source tree we 
calculate the smallest contiguous segment in the target 
side that is “consistently” aligned with all the words in the 
yield of this source node. Consistent alignment is the 
well-formedness constraint which requires all the words 
in a particular segment of the source side to align with a 
particular contiguous segment of the target sentence, as 
decided by the word-level alignment. For example, in 
Figure 2 the Urdu string ‘ek seb khaya’ is contiguously 
aligned to the yield of the English VP ‘ate an apple’. If a 
consistent alignment is found we mark the source node as 
a decomposition point. We then traverse further down the 
tree to identify all such points along all the children of 
every node until we reach the leaves of the tree. 

Once the decomposition points and the corresponding 
target sub-sentential segments have been identified, we 
extract syntactic rules. For each source node we obtain the 
‘minimal’ tree segment that has only decomposition 
nodes and leaf notes at its frontier. Such a tree fragment 
can be flattened out on the source side to form a context 
free rule. For the target side context free rule we project 
the source side syntactic categories across the decomposi-
tion nodes of the minimal tree. An example tracing the 
rule extraction process is shown in Figure 2. 

The rule learning process outputs three kinds of pri-
mary resources. First, we obtain synchronous transfer 
rules that are responsible for the reordering in the transla-
tion process. Note that our induced rules do not currently 
contain feature unification equations. Second, we obtain 
syntactic phrasal lexicons or tables. An entry in the 
phrasal lexicon is the yield of a particular decomposition 
node in a source tree and its equivalent contiguous trans-

Figure 1: This syntactic transfer rule translates Mapu-
dungun deadjectival verbs into Spanish adverbial con-
structions, i.e. Mapudungun: kümelen becomes Span-
ish: estoy bien meaning I'm fine. 

VBarX0 VBarY0 

VX1 TenseGroupX2 AUXY1 ADVY2 

 (X1 lexicalaspect) =c (X2 myVerbLexAsp) 
 (X2 voice) = *UNDEFINED* 
 (X1 morph) =c deadv 

 (X0 morph) = (X1 morph) 
 (X0 person) = (X2 person) 
 (X0 number) = (X2 number) 
 (X0 mood) = (X2 mood) 
 … 

 (Y0 person) = (X0 person) 
 (Y0 number) = (X0 number) 
 … 

 (Y0 person) = (Y1 person) 
 (Y0 number) = (Y1 number) 
 … 

 (Y1 form) =c (Y2 AUX form) 
 



lation segment in the corresponding parallel target sen-
tence. Third, we also extract the leaves in the source tree 
wherever they are one-to-one aligned with a word in the 
target sentence. The extracted leaves form a word level 
lexicon annotated with part-of-speech information.  

Application of Rule Induction to Various Languages 
We have applied our algorithm to several language pairs 
including English-Urdu and English-Telugu. Although 
both of these are languages with millions of speakers, 

these languages have relative little readily available ma-
chine readable text and therefore constitute resource-poor 
languages for machine translation. Bilingual speakers 
translated our elicitation corpus from English into Urdu, 
and, separately, into Telugu. From the three thousand 
translated sentence pairs from each language we extracted 
syntactic transfer rules. Table 2 shows some details of the 
rules extracted. 

Our rule induction algorithm is generic and can be ap-
plied to not only resource-poor languages, but also re-
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Figure 2: Sample Urdu to English syntax rules our projection induction algorithm would obtain. Structures like that at 
the top of this figure are input to our induction system. The input consists of parsed English that has been translated and 
aligned with a second language. Our algorithm extracts sub-trees from the input structure that are consistent with  the 
word alignments. Two extracted sub-trees are pictured here, one headed by S, one by VP. The syntactic categories of 
English are then projected along word alignments to the second language. Finally, our algorithm produces synchronous 
context-free rules that capture word order differences between the aligned languages. 

 



source-rich languages like French, German and Chinese, 
which each have extensive parallel corpora with English. 
The challenging part of expanding to resource-rich lan-
guages from resource-poor languages is the computa-
tional complexity of extracting rules which number in the 
millions. Furthermore, the extraction algorithm must be 
adapted to account for the extra linguistic knowledge, 
including syntactic parses, that may be available for the 
second language. Since this is out of the scope of the cur-
rent paper, we skip detailed discussion, but provide rule 
extraction statistics for some languages in Table 2. 

Syntactic Refinement  
We are developing algorithms to automatically expand 
and improve translation rules that have been previously 
written or induced. Bilingual speakers who are not lin-
guists or MT experts may be the only source of knowl-
edge readily available for resource-poor languages. 
Hence, we have designed and implemented a user-
friendly online graphical interface called the Translation 
Correction Tool (TCTool), shown in Figure 3.  

The TCTool allows non-experts to detect and remediate 
errors in MT output. The tool graphically presents the 
source language sentence and a target language automatic 
translation that needs correction. For example, given the 
Mapudungun sentence: pu püchükeche awkantuy kiñe 
awkantun (children played a game), our prototype hand-
written translation grammar for our MT system outputs 
the (incorrect) Spanish translation: *niños jugaron un 
juego (left snapshot in Figure 3). To make this translation 
acceptable in Spanish, a bilingual speaker clicked on the 
[New Word] button on the top right corner of the TCTool 
and typed in the missing determiner (los). The bilingual 
speaker then dragged the newly inserted word los into the 
correct position in the translation, the beginning of the 
sentence, as shown in the right snapshot of Figure 3. The 
resulting corrected translation is thus: los niños jugaron 
un juego. New syntactic structures that result from auto-
matic refinements  are correction-driven, and thus, rather 
than guaranteeing linguistic perfection, this automatic 
process guarantees wider coverage based on usage.  
Alignment information determines whether changes are 
done at the lexical level (collocations) or at the grammar 

level. ARR parameters can be set to only execute refine-
ments to the translation rules when sufficient information 
is available to reliably modify the grammar and lexicon.  

We conducted a user study to measure the accuracy 
with which bilingual speakers identify and correct ma-
chine translations. Ten bilingual speakers of Spanish and 
English corrected the translations of 32 sentences. A 
small hand-written English to Spanish grammar produced 
the sentence translations using our rule-based MT system. 
These ten non-expert bilingual speakers reliably corrected 
MT errors 90% of the time. 

The TCTool outputs correction instances, such as that 
shown in Figure 4. Correction instances are fed to the 
next stage of syntactic refinement, an automatic rule re-
finer (ARR). The ARR modifies the original grammar to 
account for each correction instance. The ARR can auto-
matically add missing lexical entries, perform structural 
modifications of existing grammar rules, and fix incom-
plete or incorrect rules that applied during the generation 
of MT output.  

We developed and tested our rule refinement approach 
on English to Spanish MT. And we have successfully 

Figure 3: Snapshots of the Translation Correction Tool, before and after correcting a Spanish sentence that was auto-
matically translated into Mapudungun. 

 

 
# of     

Sentences 
Structural 

Rules 
Rules with 

freq > 2 
Phrasal    
lexicon 

English-
Urdu 

3126 6824 640 12456 

English- 
Telugu 

3126 7543 721 13500 

English-
German 

300K 183K 16K 680K 

English-
French 

1200K 1.3M 45K 4.2M 

 
Table 2: Statistics of rule induction from MT in re-

source-rich to resource-poor language scenarios with 
limited corpora and in resource-rich to resource-rich 
language scenarios with large corpora 

 



applied our approach to Mapudungun-Spanish MT, show-
ing generality. Experiments with our English-Spanish MT 
system have demonstrated statistically significant im-
provements on unseen data, as measured by standard MT 
evaluation metrics. For an in depth description of our 
automatic rule refinement approach, see Font Llitjós 
(2007). 

Conclusions 
The paired aids of linguistic structure and strategic use of 
bilingual informants have guided our research efforts to 
develop methods for machine translation for minor lan-
guages. By applying these two aids to such MT sub-
problems as morphological analysis, syntax induction, 
and syntax refinement, we have begun to overcome the 
significant challenges of resource scarcity that minor lan-
guages pose. 
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Figure 4: The correction instance extracted from a 
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SL: pu püchükeche awkantu y kiñe awkantun 
TL : niños jugaron un juego       
AL : ((1,1),(2,1)),(3,2),(4,2),(5,3),(6,4)) 
 Action 1: add (W1=los) 

 
C_TL : los niños jugaron un juego     
CAL : ((1,2),(2,2)),(3,3),(4,3),(5,4),(6,5)) 
 


