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The best systems for machine translation of natural language are based on statistical models

learned from data. Conventional representation of a statistical translation model requires substan-

tial offline computation and representation in main memory. Therefore, the principal bottlenecks

to the amount of data we can exploit and the complexity of models we can use are available mem-

ory and CPU time, and current state of the art already pushes these limits. With data size and

model complexity continually increasing, a scalable solution to this problem is central to future

improvement.

Callison-Burch et al. (2005) and Zhang and Vogel (2005) proposed a solution that we call

translation by pattern matching, which we bring to fruition in this dissertation. The training data

itself serves as a proxy to the model; rules and parameters are computed on demand. It achieves

our desiderata of minimal offline computation and compact representation, but is dependent on

fast pattern matching algorithms on text. They demonstrated its application to a common model

based on the translation of contiguous substrings, but leave some open problems. Among these is

a question: can this approach match the performance of conventional methods despite unavoidable

differences that it induces in the model? We show how to answer this question affirmatively.

The main open problem we address is much harder. Many translation models are based on

the translation of discontiguous substrings. The best pattern matching algorithm for these models

is much too slow, taking several minutes per sentence. We develop new algorithms that reduce

empirical computation time by two orders of magnitude for these models, making translation by

pattern matching widely applicable. We use these algorithms to build a model that is two orders of

magnitude larger than the current state of the art and substantially outperforms a strong competitor

in Chinese-English translation. We show that a conventional representation of this model would be

impractical. Our experiments shed light on some interesting properties of the underlying model.

The dissertation also includes the most comprehensive contemporary survey of statistical machine

translation.
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1 Introduction

Computer Science is no more about computers than astronomy is about telescopes.

–Edsger Dijkstra

The purpose of computing is insight, not numbers.

–Richard Hamming

Machine translation is an old problem. Like many other computational problems it has been

largely reinvented in the last fifteen years through the incorporation of machine learning methods.

The machine learning approach to machine translation—called statistical machine translation—

requires considerable data and careful modeling. With available data increasing in size and the

best models increasing in complexity, efficient algorithms are central to continued progress. This

dissertation presents an algorithmic approach to statistical machine translation that enables scaling

to large data and complex models, and fosters the rapid experimentation needed to exploit them.

Most statistical machine translation systems implement a direct representation of the model.

This entails offline computation of the complete model and storage of this model in an efficient

data structure in main memory at runtime. In practice, these requirements restrict the size of

training data and the complexity of the model, since both factors can affect model size.

Callison-Burch et al. (2005) and Zhang and Vogel (2005) proposed an alternative that we

call translation by pattern matching, which we bring to fruition in this dissertation. This approach

relies on an indirect representation of the model. We store the training data itself in memory as

its proxy. Model parameters are then computed as needed at runtime. This representation is much

more compact than the full model and requires substantially less offline computation. It depends

crucially on the ability to quickly search for relevant sections of the training data and compute

parameters as needed. To perform this search, we need algorithms for fast pattern matching on text,

drawn primarily from the literature in bioinformatics and information retrieval. Although Callison-

Burch et al. (2005) and Zhang and Vogel (2005) resolve several problems in the application of

translation by pattern matching to a standard phrase-based model, they leave behind several open

problems. The first is whether their approach can equal the performance of direct representation,

a question that we answer affirmatively.

The next open problem we address is much harder. Callison-Burch et al. (2005) and Zhang

and Vogel (2005) applied their approach only to phrase-based translation models based on the

translation of contiguous strings. However, a variety of translation models are now based on the

translation of discontiguous phrases. This new wrinkle poses a difficult algorithmic challenge. Ex-

act pattern matching algorithms used for contiguous phrases don’t work and the best approximate

pattern matching algorithms are much too slow, taking several minutes per sentence. A major con-

tribution of this dissertation is the development of new approximate pattern matching algorithms

for translation models based on discontiguous phrases. Our algorithms reduce the empirical com-

putation time by two orders of magnitude, making translation by pattern matching feasible for

these models.
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With these tools in hand, we address the problem of scaling our translation model. We

then explore several scaling axes—some obvious and some novel—and show that we can signifi-

cantly improve on a state-of-the-art hierarchical phrase-based translation system. Our experiments

highlight interesting characteristics of the model and interactions of various components. Finally,

we conclusively demonstrate that reproducing our results with a direct representation would be

extremely impractical.

1.1 Outline of the Dissertation

To set the stage for our research, Chapter 2 surveys the current state of the art in statistical

machine translation. This is the most extensive contemporary survey of the field. It serves as a

foundation on which the remaining chapters build.

Chapter 3 introduces translation by pattern matching. We first review previous work that

serves as inspiration for our approach. We then identify some limitations of this work and describe

how we overcame these, transforming a clever idea into a practical solution. We establish for the

first time that translation by pattern matching is a viable replacement for direct representation in a

state-of-the-art phrase-based translation model.

In Chapter 4 we apply translation by pattern matching to models based on the translation

of discontiguous strings. This requires the invention of new pattern matching algorithms. We de-

scribe our algorithms in detail and analyze them theoretically and empirically. Our algorithms al-

low us to apply translation by pattern matching to hierarchical phrase-based translation, a stronger

baseline than the model used in 3. It matches the state of the art achieved by direct representation.

In Chapter 5 we apply translation by pattern matching to the problem of scaling translation

models. We describe a number of axes along which we can scale the models and investigate each

of these empirically. We then show that our scaling methods improve translation quality over

our strong baseline. Our experiments illuminate some interesting qualities of these models and

their interaction with aligned bilingual texts. Finally, we demonstrate that our results would be

extremely difficult to replicate using a direct representation.

Chapter 6 contains conclusions and future work. We also relate our work to other develop-

ments in the field, and describe future research plans.

1.2 Research Contributions

The dissertation contains several important research contributions.

• We describe a complete algorithmic framework for machine translation by pattern matching

that enables scaling to large data, richer modeling, and rapid prototyping.

• We identify unanswered questions in the prior work that provides the foundation of our

framework, and describe how we answer them to give state-of-the-art performance in stan-

dard phrase-based translation models.

• We introduce a novel approximate pattern matching algorithm that extends our framework to

a variety of important models based on discontiguous phrases. Our algorithm solves an em-

pirically difficult algorithmic problem. It is two orders of magnitude faster than the previous

state of the art, and enables a number of previously difficult or impossible applications.

• We show how our framework can be applied to scale statistical translation models along

several axes, leading to improvement in translation accuracy over a state-of-the-art baseline.

2



• We show that our method can scale to extremely large models, at least two orders of mag-

nitude larger than most contemporary models.

• We include the most comprehensive survey of the field of statistical machine translation to

date.
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2 A Survey of Statistical Machine Translation

It is very tempting to say that a book written in Chinese is simply a book written in

English which was coded into the “Chinese code.” If we have useful methods for solv-

ing almost any cryptographic problem, may it not be that with proper interpretation

we already have useful methods for translation?

–Warren Weaver

We begin with a tutorial overview and survey of statistical machine translation.1 It is the

most comprehensive contemporary survey of this rapidly growing field. Additionally, it introduces

many of the concepts and definitions that are used throughout the remainder of the dissertation.

The organization is horizontal—we show that the creation of a statistical translation system re-

quires making a number of important decisions, but that many of these decisions are in fact or-

thogonal. Two systems that are radically different in one aspect may nonetheless share a common

basis in several other aspects. We believe that this type of organization is beneficial to continued

progress of the field since it encourages cross-pollination of ideas.

The goals of this chapter are to characterize the core ideas of SMT and provide a taxonomy

of various approaches. We have tried to make the survey as self-contained as possible. However,

SMT draws from many fundamental research areas in computer science, so some knowledge of

automata theory, formal languages, search, and data structures will be beneficial. Familiarity with

statistical theory and mathematical optimization techniques used in machine learning will also be

helpful, but we will focus on the main ideas and intuitions behind the mathematics rather than full

mathematical rigor, which is in any case beyond the scope of this work. We will touch briefly on

a few linguistic concepts, but for our purposes SMT can be understood in pure computer science

terms.

2.1 Previous Work

Knight (1997, 1999b) has written excellent tutorial introductions, but they do not cover

many later developments in the field. Knight and Marcu (2005) briefly survey the recent landscape,

while Ayan (2005, chapter 2) provides a longer treatment, focusing primarily on word alignment

(§2.5.2). At the time of this writing, other materials in preparation include Koehn (2008) and

a chapter in a planned future edition of Jurafsky and Martin (2000). For greater coverage of

related fundamental research, refer to textbooks on natural language processing (NLP; Jurafsky

and Martin, 2000; Manning and Schütze, 1999), artificial intelligence (Russell and Norvig, 2003)

machine learning (Mitchell, 1997), or formal language theory (Hopcroft and Ullman, 1979; Sipser,

2005).

1This chapter has been accepted to appear in ACM Computing Surveys (Lopez, 2008).

4



2.2 Background and Context

Machine translation (MT) is the automatic translation from one natural language into an-

other using computers. Interest in MT is nearly as old as the electronic computer—popular ac-

counts trace its modern origins to a letter written by Warren Weaver in 1949, only a few years

after ENIAC came online.2 It has since remained a key application in the field of natural language

processing (NLP). A good historical overview is given by Hutchins (2007), and a comprehensive

general survey is given by Dorr et al. (1999).

Statistical machine translation (SMT) is an approach to MT that is characterized by the use

of machine learning methods. In less than two decades, SMT has come to dominate academic

MT research, and has gained a share of the commercial MT market. Progress is rapid and the

state-of-the-art is a moving target. However, as the field has matured, some common themes have

emerged.

SMT treats translation as a machine learning problem. This means that we apply a learn-

ing algorithm to a large body of previously translated text, known variously as a parallel corpus,

parallel text, bitext, or multitext. The learner is then able translate previously unseen sentences.

With an SMT toolkit and enough enough parallel text, we can build an MT system for an new

language pair within a very short period of time— perhaps as little as a day (Al-Onaizan et al.,

1999; Oard and Och, 2003; Oard et al., 2003). For example, Oard and Och (2003) report con-

structing a Cebuano-to-English SMT system in a matter of weeks. Workshops have shown that

translation systems can be built for a wide variety of language pairs within similar time frames

(Callison-Burch et al., 2007; Koehn and Monz, 2005, 2006). The accuracy of these systems de-

pends crucially on the quantity, quality, and domain of the data, but there are many tasks for which

even poor translation is useful (Church and Hovy, 1993).

Interest in SMT can be attributed to the convergence of several factors.

1. The growth of the Internet has strongly affected two constituencies of translation con-

sumers. The first of these is interested in the dissemination of information in multiple languages.

Examples are multilingual governments and news agencies and companies operating in the global

marketplace. The Internet enables them to easily publish information in multiple languages. Due

to this widespread dissemination, SMT researchers now have access to Biblical texts (Resnik et al.,

1997), bilingual government text (Koehn, 2005), bilingual news text, and other data mined from

the Internet (Resnik and Smith, 2003). These data are the fundamental resource in SMT research.

Because they are the product of day-to-day human activities, they are constantly growing. Multi-

lingual governments interested in dissemination, such as the European Union, have increased MT

research funding to further their domestic policy interests.

2. The other consumers of translation are those interested in the assimilation of information

not in their native language. These include intelligence agencies, researchers, and casual Internet

users. The Internet has made such information much more readily accessible, and increasing

demand from these users helps drive popular interest in MT. The United States government is

interested in assimilation, and has increased MT research funding to further its international policy

interests.

3. Fast, cheap computing hardware has enabled applications that depend on large data and

billions of statistics. Advances in processor speed, random access memory size, secondary storage,

and grid computing have all helped to enable SMT.

4. The development of automatic translation metrics—although controversial—has enabled

rapid iterative development of MT systems and fostered competition between research groups.

2 This letter is reproduced as Weaver (1955).
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However , the sky remained clear under the strong north wind .

}6 � Î |x , F )z �6 A� �� �
Although north wind howls , but sky still extremely limpid .

Figure 2.1: An example of translationally equivalent sentences. We give an English gloss for each

Chinese word.

Objective measurable goals have naturally led to objective measurable progress. The National In-

stitute of Standards has used these metrics since 2002 in a yearly competition at its MT Evaluation

conference.3 Academic workshops coordinate similar evaluations (Callison-Burch et al., 2007;

Koehn and Monz, 2005, 2006).

5. Several projects have focused on the development of freely available SMT toolkits (Al-

Onaizan et al., 1999; Burbank et al., 2005; Germann et al., 2001; Koehn, 2004a; Koehn et al.,

2007; Och and Ney, 2003; Olteanu et al., 2006). Many are open-source. These implementations

help lower the barrier for entry into SMT research.

2.2.1 Formal Description

Formally, our task is to take a sequence of tokens in the source language with vocabulary

VF , and transform it into a sequence of tokens in the target language with vocabulary VE .4 We will

assume that tokens are words and sequences are sentences. Agglutinative languages such as Ger-

man and Inuktitut, or languages with no clearly marked word boundaries, such as Chinese, may

require special preprocessing. The most important consideration is that all data are preprocessed

consistently, since statistical systems are sensitive to discrepancies. There is often no special

treatment of morphological variants—for instance, the English words translate and translation

are treated as unrelated, indivisible tokens. Therefore, it is possible for the size of the vocabu-

laries VE and VF to reach into the tens or hundreds of thousands, or even millions in the case of

morphologically complex languages such as Arabic.

We denote a sequence of J source words as f1 f2... fJ or f J
1 ∈VF

J , and a sequence of I target

words as e1e2...eI or eI
1 ∈ VE

I . The goal of a translation system, when presented with an input

sequence f J
1 , is to find a sequence eI

1 that is translationally equivalent.

An example of translationally equivalent sequences is shown in Figure 2.1. An exercise

familiar to those who have learned a foreign language is to draw a line between the words in

the sentence that are translations of each other. For instance, we can see that Chinese word �
is translated as the English word north, and we could draw a line between them. We say that

such words are aligned. An example word alignment is shown in Figure 2.2. This illustrates that

translational equivalence can be decomposed into a number of smaller equivalence problems at

the word level.

Word translation is often ambiguous. For instance, we might reasonably translate � as

northern without loss of meaning. However, it is not uncommon for the different possible transla-

tions of a word to have very different meanings. Often, the correct choice will depend on context.

Therefore, our system will need some mechanism to choose between several possible options for

3These evaluations are described at http://www.nist.gov/speech/tests/mt.
4We follow the widely used notation of Brown et al. (1993), who use E for English and F for French (or foreign).
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However , the sky remained clear under the strong north wind .

}6 � Î |x , F )z �6 A� �� �
Although north wind howls , but sky still extremely limpid .

Figure 2.2: An alignment of the the sentence in Figure 2.1.

each translation decision.

In addition to word translation, the other main problem that can be seen from the figure is

that words with equivalent meanings do not appear in the same order in both sentences. Therefore,

our system will need some mechanism to correctly reorder the words. Reordering is typically

dependent on the syntactic structure of the target language. For instance, in English sentences, the

typical sentence order is subject-verb-object (SVO). In Japanese, it is subject-object-verb (SOV).

As with word translation, reordering decisions often entail resolving some kind of ambiguity.

Translation can therefore be thought of as making a sequence of word translation and re-

ordering decisions. We rewrite the source sentence one decision at a time, until we have replaced

it completely with a target sentence. At each decision point, a large number of possible rules may

apply. We will need some mechanism to disambiguate these rules. Furthermore, both rules and

methods of disambiguation must be learned from our parallel data.

Following these core ideas, there are four problems that we must solve in order to build a

functioning SMT system.

1. First, we must describe the series of steps that transform a source sentence into a target

sentence. We can think of this as creating a story about how a human translator might perform this

task. This story is called a translational equivalence model, or more simply a model. All of the

translational equivalence models that we will consider derive from concepts from automata and

language theory. We describe them in §2.3.

2. Next, we want to enable our model to make good choices when faced with a decision to

resolve some ambiguity. We need to develop a parameterization of the model that will enable us

to assign a score to every possible source and target sentence pair that our model might consider.

We describe parameterization in §2.4. Taken together, translational equivalence modeling and

parameterization are often combined under the rubric of modeling.5

3. The parameterization defines a set of statistics called parameters used to score the model,

but we need to associate values to these parameters. This is called parameter estimation, and it is

based on machine learning methods. We describe parameter estimation in §2.5.

4. Finally, when we are presented with input sentence, we must search for the highest-

scoring translation according to our model. This is called decoding. We describe decoding in

§2.6.

In addition to these four problems, we will discuss the important topic of evaluation in §2.7.

The article concludes with notes on current directions in §2.8.

5Although these two steps are conflated under this term in the literature, following Brown et al. (1990), for didactic

reasons we find it helpful to separate them.
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2.3 Modeling Part I: Translational Equivalence

Broadly speaking, a model is simply the set of all rules employed by an MT system to trans-

form a source sentence into a target sentence. In principle these rules may come from anywhere.

In most SMT systems they are automatically extracted from a parallel corpus. The extraction

process is described in more detail in §2.5.2. In this section, we describe the various types of

models.

Most popular models can be described by one of two formalisms: finite-state transducers

(FST) or synchronous context-free grammars (SCFG).6 These formalisms are generalizations of

finite-state automata (FSA) and context-free grammar (CFG), respectively. Rather than producing

single output strings as in those formalisms, they produce two output strings, and define an align-

ment between them.7 Translational equivalence models are important in decoding, where they

constrain the search space in which we will attempt to find translations.

The remainder of this section discusses translational equivalence models. FST models are

described in §2.3.1, and SCFG models are described in §2.3.2. We briefly touch on other model

types in §2.3.3.

2.3.1 Finite-State Transducer Models

Finite-state transducers are extensions of finite-state automata (FSA). Recall that we can

define a finite-state automaton (S,L,D) as a set of states S, a set of labels L, and a set of transitions

D. Each transition in D⊆ {S×S×L} is defined as a pair of states and a label that must be output

(or read, depending on the use of the FSA) as we move from the first state to the second. Finite-

state methods are widely used in NLP for problems such as automatic speech recognition and

part-of-speech tagging.

Finite-state transducers extend FSAs with a second label set. Each transition includes a

label from both sets. We can imagine that the transducer operates on an input string and an output

string. When a label from the first set is read from the input while traversing the transition, the

label for the other is written to the output. A transition labelled with x from set L1 and y from

set L2 therefore signifies a correspondence between x and y. Additionally, either or both labels

may consist of the empty string ε, which indicates that there is no change in that output for that

particular transition. We can compose FSTs by making the output of one FST the input to another,

giving us a useful modeling tool. For each of the model types that we describe in this section, we

will show how it can be implemented with composed FSTs.

We first describe word-based models (§2.3.1.1), which introduce many common problems

in translation modeling. They are followed by phrase-based models (§2.3.1.2).

6 This distinction may be confusing, since finite state transducers come to us from automata theory and synchronous

context-free grammars from formal language theory. Although concepts from each theory have dual representations in

the other, it is a historical accident that in the first case, the automata theory concept is generally used, and in the second

case, the language theory concept is generally used. We simply follow the prevailing terminology in the literature.

However, we note that there is growing interest in tree transducers, a class of objects in the automata literature with

computational properties similar (but not identical) to those of context-free grammar (Galley et al., 2006; Knight and

Graehl, 2005; Marcu et al., 2006).
7We can generalize these formalisms even further to handle an arbitrary number of dimensions (Melamed, 2003).

This is useful for multi-source translation, wherein we have a document already translated in multiple languages, and

we would like to translate into another language Och and Ney (2001).
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ε However , the sky remained clear under the strong north wind .

ε However However , sky remained clear strong north wind .

A� }6 F , )z �6 �� � Î |x �

1 2 1 0 1 1 1 0 0 1 1 1 1

}6 � Î |x , F )z �6 A� �� �
Although north wind howls , but sky still extremely limpid .

(1)

(2)

(3)

Figure 2.3: Visualization of IBM Model 4. This model of translation takes three steps. (1) Each

English word (and the null word) selects a fertility—the number of Chinese words to which it

corresponds. (2) Each English word produces a number of Chinese words corresponding to its

fertility. Each Chinese word is generated independently. (3) The Chinese words are reordered.

2.3.1.1 Word-Based Models

SMT continues to be influenced by the groundbreaking IBM approach (Berger et al., 1994;

Brown et al., 1990, 1993). The IBM Models are word-based models and represent the first gener-

ation of SMT models. They illustrate many common modeling concepts. We focus on a represen-

tative example, IBM Model 4.

For reasons that we will explain in §2.4.1, IBM Model 4 is described as a target-to-source

model—that is, a model that produces the source sentence f J
1 from the target sentence eI

1. We

follow this convention in our description.

The model entails three steps (Figure 2.3). Each step corresponds to a single transducer in

a composed set (Knight and Al-Onaizan, 1998). The transducers are illustrated in Figure 2.4.

1. Each target word chooses the number of source words that it will generate. We call this

number φi the fertility of ei. One way of thinking about fertility is that when the transducer

encounters the word ei in the input, it outputs φi copies of ei in the output. The length J of

the source sentence is determined at this step since J = ∑
I
i=0 φi. This enables us to define a

translational equivalence between source and target sequences of different lengths.

2. Each copy of each source word produces a single target word. This represents the translation

of individual words.

3. The translated words are permuted into their final order.

These steps are also applied to a special empty token ε, called the null word—or more

simply null—and denoted e0. Null translation accounts for source words that are dropped in

translation, as is often the case with function words.

Note that the IBM Model 4 alignment is asymmetric. Each source word can align to exactly

one target word or the null word. However, a target word can link to an arbitrary number of
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source words, as defined by its fertility. This will be important when we discuss word alignment

(§2.5.2.2).

The reordering step exposes a key difficulty of finite-state transducers for translation. There

is no efficient way to represent reordering in a standard finite-state transducer. They are designed

to represent relationships between strings with a monotonic alignment —in other words, if an input

label at position i is aligned to an output label at position j, then an input label at position i′ > i

will be aligned to an output label at position j′ > j. This is fine for problems such as automatic

speech recognition, optical character recognition, and part-of-speech tagging, where monotonicity

is the natural relationship between two sequences. However, as we have seen, words are typically

reordered in real translation.

One solution to this discrepancy is to simply ignore the reordering problem and require

monotonic alignments (Banchs et al., 2005; Tillmann et al., 1997; Zens and Ney, 2004). This en-

ables very fast decoding, but generally leads to less accurate translation, particularly for languages

with naturally different word orders.

At the other end of the spectrum is full permutation of the J source words. An FST rep-

resentation of a permuted sequence contains O(J!) paths and O(2J) states (Och and Ney, 2003).

However, search for the best permutation is NP-complete, as Knight (1999a) shows by reduction

to the Traveling Salesman Problem.

Most models take a middle ground, using a mostly monotonic approach but allowing any

of the k leftmost uncovered words to be translated. The setting k = 4 is sometimes called the

IBM constraint, following Berger et al. (1996a). This method enables local reordering, which

accounts for much language variation. However, it still prevents long-distance reordering, such

as the movement of “north” (�) in our example. Accounting for long-distance reordering with-

out resorting to arbitrary permutation requires additional modeling. For instance, Tillman and

Ney (2003) describe targeted long-distance reordering for verb movement in German to English

translation, using language-specific heuristics.

As we can see, a dominant theme of translation modeling is the constant tension between

expressive modeling of reordering phenomena, and model complexity.

2.3.1.2 Phrase-Based Models

In real translation, it is common for contiguous sequences of words to translate as a unit.

For instance, the expression “�Î” is usually translated as “north wind”. However, in word-based

translation models, a substitution and reordering decision is made separately for each individual

word. For instance, our model would have to translate� as “north” and Î as “wind”, and then

order them monotonically, with no intervening words. Many decisions invite many opportunities

for error. This often produces “word salad”— a translation in which many words are correct, but

their order is a confusing jumble.

Phrase-based translation addresses this problem (Koehn et al., 2003; Marcu and Wong,

2002; Och and Ney, 2004; Och et al., 1999). In phrase-based models the unit of translation may

be any contiguous sequence of words, called a phrase.8 Null translation and fertility are gone.

Each source phrase is nonempty and translates to exactly one nonempty target phrase. However,

we do not require the phrases to have equal length, so our model can still produce translations of

different length. Now we can characterize the substitution of “north wind” with “� Î” as an

atomic operation. If in our parallel corpus we have only ever seen “north” and “wind” separately,

we can still translate them using one-word phrases.

8In this usage, the term “phrase” has no specific linguistic sense.
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However : ε ε : However ε : However ε : However

ε : ε

ε : ε

ε : ε

ε : ε

(1)

However : }6

However : F

sky : )z

remained : �6
(2)

A� }6 F , )z �
6 �� � Î |x � : ε

ε : A�

ε : }6

ε : F

ε : F
ε : }6

ε : A�

ε : F

ε : }6
ε : )z

(3)

Figure 2.4: Visualization of the finite-state transducer conception of IBM Model 4. We show

only a portion of each transducer. Transducer (1) copies the input word to its output a number of

times according to its fertility; (2) corresponds to word-to-word translation, and (3) corresponds to

reordering. Transducer (3) is the most complex, because it must represent all possible reorderings.

We can compose these transducers to represent the process shown in Figure 2.3.

The translation process takes three steps (Figure 2.5).

1. The sentence is first split into phrases.

2. Each phrase is translated.

3. The translated phrases are permuted into their final order. The permutation problem and its

solutions are identical to those in word-based translation.

A cascade of transducers implementing this is shown in Figure 2.6. A more detailed imple-

mentation is described by Kumar et al. (2006).

The most general form of phrase-based model makes no requirement of individual word

alignments (Marcu and Wong, 2002). Explicit internal word alignments are sometimes assumed

for the purposes of parameterization (Koehn et al., 2003; Kumar et al., 2006).

A variant of phrase-based models is the alignment template model (Och and Ney, 2004;

Och et al., 1999). In this model explicit phrase-to-phrase translations are not used. Instead, each

phrase is first associated with an alignment template, which is a reordering of the words in the

phrase based on word categories rather than specific word identities. The words in the phrase are

then translated using word-to-word translation, and the alignment templates are reordered as in

phrase-based models.
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However , the sky remained clear under the strong north wind .

However , the sky remained clear under the strong north wind .

}6 , F )z �6 A� �� � Î |x �

}6 � Î |x , F )z �6 A� �� �
Although north wind howls , but sky still extremely limpid .

(1)

(2)

(3)

Figure 2.5: Visualization of the phrase-based model of translation. The model involves three steps.

(1) The English sentence is segmented into “phrases”—arbitrary contiguous sequences of words.

(2) Each phrase is translated. (3) The translated phrases are reordered.

Simard et al. (2005) present another variant of phrase-based translation in which phrases

can be discontiguous, and gaps must be filled in with other phrases.

Phrase-based translation is implemented in the Pharaoh toolkit (Koehn, 2004a) and its open-

source successor Moses (Koehn et al., 2007).9 They are widely used in the SMT research com-

munity.

Phrase-based models produce better translations than word-based models and they are

widely used. They successfully model many local reorderings, and individual passages are often

fluent. However, they cannot easily model long-distance reordering without invoking the expense

of arbitrary permutation. This sometimes leads to phrase salad. It is sometimes argued that lin-

guistic notions of syntax are needed to adequately model these phenomena (Burbank et al., 2005).

However, incorporation of syntax into phrase-based models has had mixed results, with some fail-

ures (Koehn et al., 2003; Och et al., 2004b) and some successes (Collins et al., 2005; Wang et al.,

2007). In general, phrase-based models seem to be a poor fit for syntax, which usually depends

on hierarchical models of string generation.

Formal language theory tells us that the set of regular languages that can be generated using

finite-state automata is a strict subset of the set of context-free languages that can be generated

using push-down automata. To gain modeling power, we will now look at synchronous formalisms

from this theoretically more powerful class.

2.3.2 Synchronous Context-Free Grammar Models

Compared with the regular languages generated by FSAs, context-free grammars (CFG)

confer a couple of potential benefits that relate to our modeling problem. First, they are closely tied

to some linguistic representations of syntax. Second, in their synchronous form, they can easily

represent long-distance reordering without the exponential complexity of permutation. However,

added modeling power comes with added modeling challenges, and meeting these challenges is

currently an area of much active research. Indeed, there is some skepticism over the superiority

of synchronous grammar models over finite-state methods. For the remainder of this section, we

describe translation models based on synchronous context-free grammars (SCFG), and describe

9The Moses toolkit is available at http://www.statmt.org/moses.
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However : However

, : ,
the sky remained clear : the sky remained clear

under the strong north wind :

under the strong north wind

(1)

the sky remained clear : )z �6 A� ��

under the strong north wind : � Î |x

However : }6
, : , F(2)

}6 , F � Î |x )
z �6 A� �� � : ε

ε : }6

ε : , F

ε : � Î |x

ε : )z �6 A� ��

ε : �

(3)

Figure 2.6: Visualization of the finite-state transducer conception of phrase-based translation. We

show only a portion of each transducer. Transducer (1) segments the target sentence into phrases;

(2) performs word-to-word translation; (3) reorders the phrases in the same way that the reordering

transducer of Figure 2.4 reorders words.

some of their modeling challenges.

SCFGs are known in different guises as syntax-directed translation (Lewis and Stearns,

1968), inversion transduction grammar (Wu, 1995a), head transducers (Alshawi et al., 2000), and

a number of other names. A formalism that generalizes these is multitext grammar (Melamed,

2003). Chiang (2006) provides a good overview of SCFG and several variants. In the following

discussion, we will use the notation of SCFG, which is relatively easy to understand.

SCFG is a generalization of CFG to the case of two output strings. Recall that a CFG

(N,T,D) consists of a set of non-terminal symbols N, terminal symbols T , and productions D =
{N→ {N∗×T ∗}}. Each production describes the in-place replacement of the productions right-

hand side nonterminal with the left-hand side sequence of terminals and nonterminals. We begin

by writing a special root non-terminal symbol to the output. This symbol is rewritten using a rule

d ∈ D. Rewriting of non-terminal symbols continues recursively until the output contains only

terminal symbols. CFG is popular in natural language parsing, where terminal symbols are words

(i.e. T = E) and non-terminal symbols represent syntactic categories. Consider the following

fragment of a CFG grammar.10

10The nonterminal categories are borrowed from those used in an widely used syntactic annotation of several thou-

sand sentences from the Wall Street Journal (Marcus et al., 1993). They represent English syntactic categories such as
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NP−→ DT NPB (C1)

NPB−→ JJ NPB (C2)

NPB−→ NP (C3)

DT−→ the (C4)

JJ−→ strong (C5)

JJ−→ north (C6)

NN−→ wind (C7)

In this grammar, the syntactic category NP can be rewritten as “the strong north wind” via a series

of productions, as shown in Figure 2.7.

In SCFG, the grammar specifies two output strings for each production. It defines a corre-

spondence between strings via the use of co-indexed nonterminals. Consider a fragment of SCFG

grammar.

NP−→ DT 1 NPB 2 / DT 1 NPB 2 (S1)

NPB−→ JJ 1 NN 2 / JJ 1 NN 2 (S2)

NPB−→ NPB 1 JJ 2 / JJ 2 NPB 1 (S3)

DT−→ the / ε (S4)

JJ−→ strong / |x (S5)

JJ−→ north /� (S6)

NN−→ wind / Î (S7)

The two outputs are separated by a slash (/). The boxed numbers are co-indexes. When

two nonterminals share the same co-index, they are aligned. We can think of SCFG as generating

isomorphic trees, in which the non-terminal nodes of each tree are aligned. One tree can be

transformed into another by rotating its non-terminal nodes, as if it were an Alexander Calder

mobile (Figure 2.7). Note that if we ignore the source string dimension, the rules in this SCFG

correspond to the rules that appear in our CFG example. Also note that we can infer an alignment

between source and target words based on the alignment of their parent nonterminals. In this way

SCFG defines a mapping between both strings and trees, and has a number of uses depending on

the relationship that we are interested in (Melamed, 2004a; Wu, 1995a).

Normal forms and complexity analysis for various flavors of SCFG are presented in Aho

and Ullman (1969) and Melamed (2003). The number of possible reorderings is quite large.

Church and Patil (1982) shows that the number of binary-branching trees that can generate a

string is related to a combinatorial function, the Catalan number. Zens and Ney (2003) shows

that the number of reorderings in a binary SCFG are related to another combinatorial function,

the Shröder number. However, due to recursive sharing of subtrees among many derivations, we

can parse SCFG in polynomial time with dynamic programming algorithms (Melamed, 2003).

This makes SCFG models of translational equivalence less computationally expensive than full

permutation, even though they can model long-distance reordering (Wu, 1996).

Numerous different approaches to SMT can be expressed in the SCFG formalism. In the

following sections we will illustrate three applications of SCFG that are representative of their use

noun phrase (NP), adjective (JJ), preposition (IN), determiner (DT), and noun (NN).
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Figure 2.7: Visualization of CFG and SCFG derivations. Derivation happens in exactly the same

way in CFG (1) and SCFG (2). Each nonterminal symbol is replaced by the contents of the right-

hand-side of a rule whose left-hand-side matches the symbol. The difference in SCFG is that we

specify two outputs rather than one. Each of the non-terminal nodes in one output is linked to

exactly one node in the other; the only difference between the outputs is the order in which these

nodes appear. Therefore, the trees are isomorphic. Although terminal nodes are not linked, we

can infer a word alignment between words that are generated by the same non-terminal node. In

this illustration, the only reordering production is highlighted. Note that if we ignore the Chinese

dimension of the output, the SCFG derivation in the English dimension is exactly the same as in

(1).

in SMT. We will consider bracketing grammars used to constrain reordering (§2.3.2.1), syntax-

based translation that exploits linguistic syntax (§2.3.2.2), and hierarchical phrase-based transla-

tion that combines the insights of phrase-based models with formal syntactic models (§2.3.2.3).

2.3.2.1 Bracketing Grammars

One reason to use SCFG is efficient expression of reordering. In FST models, long-distance

reordering is difficult to model. The most permissive approach—arbitrary permutation—is expo-

nential in sentence length. In contrast, SCFG can represent long-distance reordering while remain-

ing polynomial in sentence length. This motivates the use of bracketing grammars. They represent

all possible reorderings consistent with a binary bracketing of the input string (Wu, 1996). Brack-

eting grammars use a single undifferentiated nonterminal symbol and three rules.

X−→ X 1 X 2 / X 1 X 2 (B1)

X−→ X 1 X 2 / X 2 X 1 (B2)

X−→ e / f (B3)

In Rule B1 we define symbols e∈VE∪ε and f ∈VF ∪ε. Instances of this rule model word-to-word

alignments.

The polynomial runtime of bracketing grammar comes at a cost. In contrast with permu-

tation, the bracketing grammar cannot represent certain reorderings. A canonical example is the

so-called inside-outside alignment (Figure 2.9). It was originally argued that this reordering does
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Figure 2.8: Visualization of a bracketing grammar derivation. Rules that involve reordering are

highlighted, and the order of the target language sentence is illustrated beneath the syntax tree.

A B C D

b d a c

A B C D

c a d b

Figure 2.9: Visualization of inside-outside alignments that are not possible using bracketing trans-

duction grammar. Due to the interleaving words in these configurations, we cannot construct a

binary-branching SCFG that is isomorphic for these strings, although a SCFG with four nontermi-

nals can produce them. These are the smallest impossible configurations in this grammar; as the

number of words in each string increases, so does the number of impossible configurations.

not occur in real translation (Wu, 1995b). However, Wellington et al. (2006b) provided counterex-

amples from real data. On the other hand, Zens and Ney (2003) show empirically that bracketing

grammars can model more of the reorderings observed in real data than a word-based model using

the IBM constraint.

One way to increase the reordering power of an SCFG is to increase the number of coin-

dexed nonterminal symbols in each rule. In general, any alignment can be expressed in a grammar

with enough coindexed nonterminals (Aho and Ullman, 1969). The tradeoff is increased complex-

ity. In particular, upper bound complexity is exponential in the maximum number of coindexed

nonterminals. As this number increases, the reordering power and the complexity of the grammar

approach those of permutation.

A lexicalized bracketing grammar, in which nonterminal symbols are annotated with words,

is described in Zhang and Gildea (2005). A related formalism is the head transduction grammar

(Alshawi et al., 2000). Xiong et al. (2006) adapted bracketing grammars to phrase translation.

2.3.2.2 Syntax-Based Translation

In addition to long-distance reordering, a perceived benefit of SCFG is that it allows us to

easily incorporate knowledge based on natural language syntax. This follows from developments

in syntactic modeling for ASR (Chelba and Jelinek, 1998).
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Often, we will have meaningful linguistic grammars only for one language.11 Monolingual

syntax resembles our example fragment CFG (Rules C1-C8). To use this monolingual syntax in an

SMT model, we construct an SCFG where productions mirror the known syntax. In the other lan-

guage, we allow arbitrary reorderings of these symbols (Wu and Wong, 1998; Yamada and Knight,

2001). The objective of such a SCFG is to keep linguistic phrases intact, a property that is often

(but not universally) observed in real translation (Fox, 2002; Wellington et al., 2006b). Collec-

tively, models that use linguistic syntax are called syntax-based models. The example derivation

from Figure 2.7 is an illustration of this.

The hypothesis investigated by syntax-based translation was that reorderings would respect

linguistic syntax in translation. Empirical evidence only partially supports this. Fox (2002) shows

that reordering tends to respect the boundaries of syntactic phrases, but also describes some sys-

tematic exceptions. Additional discrepancies are described by Wellington et al. (2006b). The

rigidity of full isomorphism at the level of SCFG productions harms syntax-based translation.

These difficulties have prompted investigation into more powerful formalisms for syntactic trans-

lation (Galley et al., 2004, 2006; Knight and Graehl, 2005).

2.3.2.3 Hierarchical Phrase-Based Translation

The SCFG models that we have described share a key weakness of word-based FST-models:

they enable only word-to-word translation, which requires a reordering decision for each word.

We know that phrase-based models solve this. Ideally, we would like to benefit from the insights

behind both hierarchical models and phrase-based models. This is accomplished in hierarchical

phrase-based translation (Chiang, 2005, 2007; Chiang et al., 2005).

In this grammar, no linguistic syntax is required. A single undifferentiated non-terminal X is

used in the main productions, and a maximum of two nonterminals are permitted in the right-hand

size of any rule, just as in bracketing grammar. However, unlike a bracketing grammar, the right-

hand side may also contain a number of terminal symbols in both languages. This corresponds to

the basic insight of phrase-based translation, in that each rule can represent a mapping between

sequences of words. Essentially, the rules represent phrases that may be reordered recursively.

Consider the following grammar fragment.

X −→However , X 1 X 2 . /}6 X 2 , F X 1 � (H1)

X −→under the strong north wind /�Î|x (H2)

X −→the sky remained clear /)z�6A��� (H3)

In this grammar, recursivity is captured in Rule H1. A derivation is illustrated in Figure 2.10.

Chiang (2005, 2007) showed that this model was competitive with a standard phrase-based

models, outperforming Pharaoh on standard test sets.

2.3.3 Other Models of Translational Equivalence

FST and SCFG models represent a good cross-section of popular models. However, a

number of models do not fit these characterizations.

11Usually this is the target language (Wu and Wong, 1998; Yamada and Knight, 2002). This imbalance reflects the

fact that many of the translation systems reported in the literature are designed to translate into well-studied languages,

such as English, for which we already have high-quality syntactic parsers.
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Figure 2.10: Visualization of hierarchical phrase-based translation.

2.3.3.1 More Powerful Formalisms

Moving up the hierarchy of formal languages, there are synchronous models based on lan-

guage formalisms more powerful than context-free languages. A good example is tree-adjoining

grammar (Joshi and Schabes, 1997), which we can generalize to synchronous tree-adjoining gram-

mar (Shieber and Schabes, 1990). Formally, tree-adjoining grammars are part of a large class of

formalisms known as linear context-free rewriting systems (Joshi et al., 1991; Vijay-Shanker et al.,

1987). These formalisms can parse a restricted subset of context-sensitive languages in polyno-

mial time. Much of the work in this area is currently theoretical. However, generalized multitext

grammar (Melamed et al., 2004), which is equivalent to a linear context-free rewriting system, is

the basis of an SMT system (Burbank et al., 2005).

2.3.3.2 Syntactic Phrase-Based Models

Much active research aims to combine the advantages of hierarchical reordering, syntax,

and phrases (Galley et al., 2006; Marcu et al., 2006; Quirk et al., 2005). Most of these models

employ syntactic reordering models more complex than those that can be described with SCFG.

The formal description for several of these models is based on tree transducers, which describe

operations on tree fragments rather than strings. SCFG translation can be modeled with tree

transducers, although in general they are strictly more powerful than SCFG. Systems described

using tree transducers are increasingly common, though many of these are equivalent to SCFG

(Galley et al., 2006; Graehl and Knight, 2004; Marcu et al., 2006). For a good introduction to tree

transducers, refer to Knight and Graehl (2004).

2.3.3.3 Alternative Linguistic Models

A wide variety of linguistic theories are computationally equivalent to CFG, and these can

be used as the basis for translation using SCFG. Head transducers may be seen as a form of

synchronous dependency grammar (Alshawi et al., 2000). In dependency grammar, the nodes

of the rooted tree which describes the sentence structure are also the words of the sentence. It

is possible to derive transformations that will convert many dependency grammars to context-

free grammars, and vice versa (Collins et al., 1999). Therefore, we can construct SCFGs that

correspond to dependency grammar (Melamed, 2003). Dependency grammar translation models

18



are described by Gildea (2004) and Quirk et al. (2005).

2.4 Modeling Part II: Parameterization

Translational equivalence models allow us to enumerate possible structural relationships

between pairs of strings. However, even within the constraints of a strict model, the ambiguity of

natural language results in a very large number of possible target sentences for any input source

sentence. Our translation system needs a mechanism to choose between them.

This mechanism comes from our second topic in modeling: parameterization. We design

a function that allows us to assign a real-valued score to any pair of source and target sentences.

The general forms of these models are similar to those in other machine learning problems. There

are a vast number of approaches; we will only briefly describe the most common ones here. For

more detail, the reader is referred to a general text on machine learning, such as Mitchell (1997).

In typical machine learning problems, we are given an input y∈Y , and the goal is to find the

best output x∈X . Note that x and y may be multidimensional. We introduce a function f : X×Y→
R that maps input and output pairs to a real-valued score that is used to rank possible outputs. We

introduce the random variables x and y which range over the sets X and Y , respectively. Let x ∈ X

and y ∈Y be specific values drawn from these sets. The model may be probabilistic, meaning that

we constrain it in one of two ways. In a joint model, denoted P(x,y), we introduce two constraints.

∑
(x,y)∈{X×Y}

P(x = x,y = y) = 1

∀(x,y)∈{X×Y}P(x = x,y = y) ∈ [0,1]

The value P(x = x,y = y) is the joint probability of the assignments x = x and y = y occurring,

out of all possible combinations of assignments to these variables. We will often abbreviate this

as P(x,y).
In a conditional model, denoted P(x|y), we introduce the following constraints.

∀y∈Y ∑
x∈X

P(x = x|y = y) = 1

∀(x,y)∈{X×Y}P(x = x|y = y) ∈ [0,1]

The conditional probability P(x = x|y = y), abbreviated P(x|y), is simply the probability of the

assignment x = x, given that the assignment y = y is fixed. In this case, we assume that knowledge

of the value assigned to y will help us determine the assignment to x.

These constraints represent the distribution of finite probability mass across all combina-

tions of assignments to x and y. In many machine learning problems, it is not unusual for the

input set Y to be complex. Often, the set X of possible outputs is a small, finite set of labels or

classes and our goal is simply to find the best classification of the input. This is not the case in

SMT, where our input f ranges over VF
∗ and our output e ranges over VE

∗. We will usually expand

our definition of the output to include the decisions made by our translational equivalence model

defining the relationship between f = f J
1 and e = eI

1. We denote this structure using the variable

d = dM
1 ⊂ D. Recall that D is a set of transitions in the case of FST models (§2.3.1) and a set

of grammar productions in the case of SCFG models (§2.3.2); in other words, D is simply a set

of rules. In the SMT problem, we are given an input f J
1 and we are interested in finding multidi-

mensional “class” (eI
1,d

M
1 ) drawn from a domain that is exponential in the size of the input. This
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problem is known as structured classification or structured prediction (Taskar, 2004). Note that

the set dM
1 of derivations exactly defines eI

1 for a given input f J
1 , and we could simply denote the

label using dM
1 ; we use (eI

1,d
M
1 ) to remind us of our ultimate goal. For notational purposes we also

define a predicate Y (eI
1,d

M
1 ) that is true when the derivation dM

1 yields eI
1, and false otherwise.

The mathematical function that we are truly interested in is P(e|f). This function ignores the

derivation of the output. However, these models usually define multiple structures that can relate

the same pair (eI
1, f J

1 ). The value of P(e|f) is therefore obtained by summing the probabilities of

all derivations that yield e.

P(e|f) = ∑
d:Y (d,e)

P(e,d|f) (2.1)

Unfortunately, computation of this sum involves exponential complexity in both FST (Brown et al.,

1993) and SCFG models (Melamed, 2004a). Therefore we will use the simpler function P(e,d|f)
for classification. We can view the classification problem as one in which the decoder produces

candidate labels according to our translational equivalence model, and the parameterization of the

model determines the rank of candidates. Usually these tasks are integrated, but not necessarily

(see §2.6.3).

Although the function P(e,d|f) ranges over discrete sets, these sets are very large or even

infinite. This poses both practical and theoretical problems. There is no efficient way to enumerate

the function. Furthermore, we will never have enough training data to reliably learn what its values

should be. The goal of mathematical modeling, then, is to parameterize the function in such a way

that we can efficiently and reliably learn it. There are a number of ways to accomplish this. We

describe generative models in §2.4.1 and discriminative models in §2.4.2.

2.4.1 Generative Models

We begin our discussion of generative models by introducing some statistical machinery.

Later in the section, we will illustrate this with an example.

One method of manipulating probabilistic models is through use of the chain rule.

P(x,y) = P(x|y)P(y) (2.2)

Generative models decompose P(x|y) using Bayes’ rule, which we derive using the chain rule and

a bit of algebra as shown in Equation 2.3.

P(x|y) =
P(x,y)
P(y)

=
P(y|x)P(x)

P(y)
(2.3)

Applying Bayes’ rule to our structured classification problem, we arrive at the following decom-

position:

P(e,d|f) =
P(f,d|e)P(e)

P(f)
(2.4)

In decoding we can ignore the denominator P(f) because it is constant for any input f J
1 . Therefore,

we do not need to consider this model any further and we can focus on P(f,d|e) and P(e). The

decomposition was inspired by its successful use in automatic speech recognition (Brown et al.,

1990).

In SMT we call P(e) the language model and P(f,d|e) the translation model. Note that

while our objective is to discover eI
1 given f J

1 , we actually model the reverse. This originated

20
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1P(f|e)

source noisy channel

Figure 2.11: The noisy channel model of sentence pair generation. The source model P(e) pro-

duces eI
1, which is then transformed by the channel model P(f|e) to produce f J

1 . If we are given

only f J
1 , we can try to deduce an eI

1 using our knowledge of both models.

with the IBM system, and it is for this reason that IBM Model 4 is described as a translation

from eI
1 to f J

1 as we saw in §2.3.1.1. The advantage of this over modeling P(e,d|f) directly is that

we can apply two independent models to the disambiguation of e (Brown et al., 1990). This is

beneficial because our estimates for each model are errorful. By applying them together we hope

to counterbalance their errors.

In fact, we can think of the language model P(e) as a stochastic model that generates tar-

get language sentences, and the translation model P(f,d|e) as a second stochastic process that

“corrupts” the target language to produce source language sentences. This idea was suggested by

Weaver.

One naturally wonders if the problem of translation could conceivably be treated as a

problem in cryptography. When I look at an article in Russian, I say: “This is really

written in English, but it has been coded in some strange symbols. I will now proceed

to decode.” (Weaver, 1955)

Weaver makes analogy to information theoretic work on signal transmission over a physical

medium, called the noisy channel problem. It is illustrated in Figure 2.11. Following Weaver,

the process to recover eI
1 is called decoding.

2.4.1.1 Language Models

In language modeling, our goal is to find a tractable representation of the function P(eI
1).

Generative models use probabilistic tools for this. One of these is chain rule, which allows us to

write the following.

P(eI
1) =

I

∏
i=1

P(ei|ei−1
1 ) (2.5)

This equation tells us that the conditional probability of the sentence eI
1 is simply the product of

many small probabilities, each of which corresponds to a single word.

Equation 2.5 helps to simplify our problem, but not completely. For instance, the dis-

tribution P(eI|eI−1
1 ) assigned to the last word of the sentence contains nearly as many terms as

P(eI
1) itself. In order to simplify the model even further we introduce the idea of conditional

independence. When we say that a variable x is conditionally independent of y, we mean that

P(x|y) = P(x). In other words, conditional independence means that knowing the value of y does

not affect the probability distribution of x. By making independence assumptions about our data,

we can drop enough terms from our functions that they become tractable. The obvious danger, of

course, is that if we make too many or wrong independence assumptions, our resulting probability
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distributions will be incorrect. This is a constant danger in SMT modeling. In general, nearly any

independence assumption will be unrealistic; our hope is that they are approximately close enough

to that it will not harm our results. Making conditional independence assumptions is a matter of

art and pragmatism.

In language modeling, the simplest assumption we can make is that the probability of word

ei is conditionally independent of all but the n−1 preceding words ei−1
i−n. We call ei

i−n an n-gram

and the language model based on this independence assumption is an n-gram language model.

We assume without loss of generality that the first word e1 is preceded by n−1 distinguished start

symbols not in VE .

We will use the notation Pδ(x|y) to represent the distribution P(x|y) that has been rewritten

to include only elements of y on which x is conditionally dependent. Using this notation, we can

rewrite Equation 2.5 as an n-gram model.

P(eI
1) =

I

∏
j=1

Pδ(ei|ei−1
1 ) =

I

∏
j=1

P(ei|ei−1
i−n) (2.6)

Most language models take this form, inherited from SMT’s roots in speech recognition. The

discussion of n-grams barely scratches the surface of language modeling, which is a full topic in

its own right, well beyond the scope of this paper. For a good overview, refer to a text on speech

recognition, such as Jelinek (1998).

Language modeling has not received much special attention in the SMT community, which

has preferred to focus on the more specialized translation models. However, it continues to be

an active area of research, especially in the speech recognition community. Most SMT systems

simply borrow models that were popularized for speech. However, there is little doubt that better

language modeling leads to better translation (Brants et al., 2007; Eck et al., 2004; Kirchhoff and

Yang, 2005; Och, 2005; Zhang et al., 2006b). A few syntax-based models are constructed to take

advantage of syntactic language models based on context-free grammars (Charniak et al., 2003;

Marcu et al., 2006; Wu and Wong, 1998).

2.4.1.2 Translation Models

Taking advantage of the statistical machinery that we have introduced, we now turn to the

translation model P( f J
1 ,dM

1 |eI
1). As we have seen, we can use the chain rule to decompose this

into a series of smaller models.

P( f J
1 ,dM

1 |eI
1) =

J

∏
j=1

P( f j| f j−1
1 ,dM

1 ,eI
1)×

M

∏
m=1

P(dm|dm−1
1 ,eI

1) (2.7)

This equation tells us that the conditional probability of the pair ( f J
1 ,dM

1 ) with respect to eI
1 is

simply the product of many small probabilities, each of which corresponds to a single action taken

by our translational equivalence model. Thus, in our FST model, there is a probability for each

transition in each transducer; in our SCFG model, there is a probability for each production. Using

our notation for conditional independence, we can now rewrite Equation 2.7.

P( f J
1 ,dM

1 |eI
1) =

J

∏
j=1

Pδ( f j| f j−1
1 ,dM

1 ,eI
1)×

M

∏
m=1

Pδ(dm|dm−1
1 ,eI

1) (2.8)
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Assuming that we have made strong enough independence assumptions, each distribution on the

right side of this equation contains a sufficiently small number of terms that we can actually learn

them. At runtime, we will simply look up the values associated with the terms and use them

to compute the function. Each of these values is a parameter of our model. In other words, a

parameter is an element of the smallest distribution that we represent in our models—a distribution

that we do not represent as a function of other distributions. We will use p(x,y) or p(x|y) to denote

parameters. We already saw a parameter in the section on language modeling: p(ei|ei−1
i−n) was a

parameter.

We do not have space to describe all of the parameterizations that have been proposed for

even the small selection of translational equivalence models we described in §2.3. However, we

will use a slightly simplified version of IBM Model 4 as an example to illustrate parameterization

of generative models. Recall the steps of this model.

1. Each target word ei selects a fertility φi and copies itself φi times.

2. Each copy of each target word is translated to a single source word.

3. The source words are reordered into their final positions.

Let us now take a look a parameterization of this model. We know that we want to assign a

probability to each step taken by the model. Therefore, we will need a fertility probability, a word

translation probability, and some probability to control the reordering, which we call a distortion

probability.

Fertility is simple. We can make it conditionally dependent on the word identity. We define

the fertility probability for word ei by the parameter p(φi|ei). We can think of this as the probability

that a human translator would choose φi source words to translate the target word ei.

Word translation is equally simple if we limit ourselves to the identities of the words being

translated. Let τi,k ∈VF be the translation of the kth copy of ei. The word translation probability is

then p(τi,k|ei). This is quite intuitive. We can think of it as the probability that a translator, when

presented with word ei, will choose to translate it using word τi,k.

Let T denote the set of all random variables T = {τi,k : 0 ≤ i ≤ I,0 ≤ k ≤ φi} representing

target word translations.

Modeling the reordering step is a bit more complicated. We will use two parameters to

control this. The first parameter controls the placement of the first word generated by ei, τi,1.

Let random variable πi,1 ∈ [1,J] denote its final position. IBM Model 4 models this according

to the distribution p(πi,1−�i−1|CE(ei−1),CF(τi,1)). Here, πi,1 ∈ [1,M] represents the final abso-

lute location of the translated word and �i−1 = 1
k
d∑φi−1

k=1 πi−1,ke represents the average location of

all translations of ei−1. In other words, we make its position dependent on the positions of the

previously translated word. The functions CE : E → [1,K] and CF : F → [1,K] partition the vo-

cabularies VE and VF onto suitably small sets of K classes to avoid the sparseness that would arise

from conditioning on the words themselves (Brown et al., 1992; Och, 1999).

Just as we condition the positioning of the first translated word τi,1 on the position of the

translations of the adjacent target word, we condition the positioning of τi,k on πi,k−1. Let this be

controlled by the distribution p(πi,k− πi,k−1|C(τi,k)). We use Π to denote the set of all random

variables Π = {πi,k : 0≤ i≤ I,0≤ k ≤ φi} representing word positions.

We can now show the complete parameterization of the IBM Model 4.12

12For simplicity, we leave out the parameterization of null translation.
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P(f|e) = ∑
T,Π

I

∏
i=0

p(φi|ei)× fertility

I

∏
i=0

φi

∏
k=1

p(τi,k|ei)× translation

I

∏
i=0

p(πi,1−�i−1|CE(ei−1),CF(τi,1))× distortion for τi,1

I

∏
i=0

φi

∏
k=2

p(πi,k−πi,k−1|C(τi,k))× distortion for τi,k,k > 1

As we can see from this discussion, the parameterization of generative models is closely tied

to the form of the underlying translational equivalence model. However, many of these parameters

have obvious analogues in other models. For instance, phrase-based models are parameterized us-

ing phrase translation probabilities, which apply to pairs of phrases, and are analogous to word

translation probabilities (Koehn et al., 2003; Marcu and Wong, 2002). Numerous other param-

eterizations of distortion have been proposed for FST models (Al-Onaizan and Papineni, 2006;

DeNero and Klein, 2007; Lopez and Resnik, 2005; Och and Ney, 2000; Toutanova et al., 2002;

Vogel et al., 1996). The parameterization of SCFG models follows a similar pattern of diversity.

2.4.2 Discriminative Models

Generative models are useful in decoding (§2.6) because they correspond so closely to the

translational equivalence models that define the search space. However, there are tradeoffs. As

we have seen, to make them both theoretically well-founded and tractable, we must make very

strong independence assumptions. This means that the information that we can bring to bear at

each individual decision point is very limited. For instance, we are generally limited to translation

between small numbers of words in each sentence, although we expect in principle that knowledge

of all words in a source sentence may help us translate any particular word. Using generative

models, there is no tractable mechanism to represent this.

We can bring additional context into modeling by moving from generative to discriminative

models. In SMT, a popular form for this is log-linear modeling (Berger et al., 1996b; Och and

Ney, 2002).13 The introduction of log-linear models to SMT follows from their increasing use in

NLP (Berger et al., 1996b; Ratnaparkhi, 1998; Smith, 2006), and reflects general trends in machine

learning.

Log-linear models define a relationship between a set of K fixed features hK
1 (e,d, f) of

the data and the function P(e,d|f) that we are interested in. A feature can be any function h :

E∗×D∗×F∗ −→ [0,∞), that maps every pair of input and output strings to a non-negative value.

An example of a feature might be the number of times a particular word pair (ei, f j) appears in the

data (Och and Ney, 2002); the number of phrases in a segmentation of eI
1 (Koehn, 2004c); or the

logarithm of the probability defined by a generative model (or even one of its distributions) from

the previous section. Most features used in SMT to date have taken the latter form. Log-linear

models take the form of Equation 2.9.

P(e,d|f) =
exp∑

K
k=1 λkhk(e,d, f)

∑e′,d′:Y (e′,d′) exp∑
K
k=1 λkhk(e′,d′, f)

(2.9)

13 In the more general literature this is often simply called a linear model.
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The daunting normalization factor in the denominator is required only to make the function a

well-formed probability. Fortunately, we can ignore it during decoding because it constant for any

given f J
1 . Its computation may or may not be required during parameter estimation, depending on

the algorithm.

The log-linear model defined in Equation 2.9 has K parameters, λK
1 .14 These are called

feature weights or model scaling factors. They determine the contribution of a feature to the

overall value of P(e,d|f). Ideally, each parameter would indicate the pairwise correspondence

between the feature and the output probability. A positive value λk should indicate that the feature

hK
1 (e,d, f) correlates with P(e,d|f); a negative value should indicate an inverse correlation; and a

value near zero should indicates that the feature is not a useful predictor of P(e,d|f). However,

in practice, if two features are highly correlated with each other, an estimator might distribute the

weight in any fashion between them. If a feature is uncorrelated with the output, then the estimator

might assign an arbitrary weight to it. This complicates parameter estimation and motivates the

task of feature selection, which seeks to identify the smallest set of the most predictive features.

Feature selection is a very open problem in SMT.

Note that Equation 2.4 corresponds to a special case of Equation 2.9 when the following

conditions hold.

K = 2

λ1 = λ2 = 1

h1(e, f) = logP(f,d|e)
h2(e, f) = logP(e)

Log-linear models discriminate between different possible values eI
1 when presented with a par-

ticular f J
1 . In contrast with generative models, there is no requirement that we assign a single

probability to every element of data. We may assign multiple probabilities to an element or none

at all. In fact, the values that we assign are not required to be well-formed probabilities at all— the

normalization factor in Equation 2.9 takes care of this for us. In particular, we are not required to

define probabilities for our input data as we do in generative models. Because we are freed from

the constraints of Bayes’ rule, features can be overlapping—we could, for instance, use several

of the generative models discussed previously, even though each of them will have a different

explanation of each word in the target language. In principle, any other model of P(e), P(f|e),
P(e|f), or P(e, f), or combination thereof, can be a feature.15 A popular technique is to simply

take the summed logarithm of all instances of a particular distribution in an underlying generative

model. This yields a small number of features, usually less than ten. Another important feature of

most models is the word count or word penalty feature, which is the number of words in the target

sentence. Its weight therefore controls target sentence length.16

Discriminative modeling is powerful because it frees us from the generative modeling re-

quirement that each term must conform to an event in our translational equivalence model, which

is often chosen for computational reasons rather than for its ability to distinguish between good

14Confusingly, in the general literature this is sometimes called a parameter-free model. It is also known as a

distribution-free model, which can be understood from the fact that the normalization is not strictly required.
15A justification for using log-linear models in this way was that a system based on P(e) ·P(e,d|f) worked nearly as

well as P(e) ·P(f,d|e) in empirical studies, even though the former cannot be theoretically motivated using Bayes’ rule

(Och and Ney, 2002; Och et al., 1999). Beginning with (Koehn, 2004a), many systems use both (Chiang, 2007; Marcu

et al., 2006; Simard et al., 2005). It is not clear if this is beneficial (Lopez and Resnik, 2006).
16Lopez and Resnik (2006) found this feature to be quite important. This is partly due to the use of evaluation metrics

that are very sensitive to length §2.7.
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translations. This allows us to define arbitrary features that may help to improve translation. The

primary art in discriminative modeling is defining useful features. However, with some exceptions

this area has not been fully explored (Liang et al., 2006a; Marcu et al., 2006; Och et al., 2004a,b;

Venugopal et al., 2007). Many models use little more than a word penalty feature and a small set

of generative features that can be traced directly to the IBM Models.

2.5 Parameter Estimation

Once we have defined P(e,d|f), we need to assign values to its parameters, the actual values

that are used to compute it. We call this parameter estimation. In SMT, we use a parallel corpus

as input to a machine learning algorithm in order to learn the parameter values. Broadly speaking,

we can say that SMT relies on supervised learning, because we are given samples of input/output

pairs.

Most SMT systems use a log-linear model of P(e,d|f) that incorporates generative models

as feature functions. Before we can learn the parameters of the log-linear model, we must fix

values of the feature functions, including any generative models used as features. This means

that we must first estimate any underlying generative models independently, and then separately

estimate the parameters of the log-linear models. An method for iteratively estimating both is

presented by Fraser and Marcu (2006).

We describe parameter estimation for generative models in §2.5.1. We will then discuss

the important concept of word alignment in §2.5.2. Finally, we describe parameter estimation for

log-linear models in §2.5.3.

2.5.1 Parameter Estimation in Generative Models

An example parameter from our generative models is the translation probability p(Î|wind).
Our model says that we will use this value whenever we translate the word “Î” as “wind”. To

estimate this parameter, we turn to our parallel corpus.

One way to capitalize on our data comes to us from statistical estimation theory. We assume

that the parallel corpus was produced by our model using the unknown, true parameter values. Our

goal, then, is to estimate those values so that our estimates are as close as possible to the true ones.

If we denote our training data as C ⊂ {E∗×F∗}, the complete set of parameters as Θ, and

the probability (or likelihood) of C under parameter set Θ as PΘ(C), then our goal is to choose Θ

that satisfies Equation 2.10.

Θ = argmax
Θ̂

P
Θ̂
(C). (2.10)

Parameter estimation, then, is equivalent to finding the maximum of a function (the objective func-

tion) —in this case, the likelihood function PΘ(C). We call this maximum likelihood estimation

(MLE). The parameter set Θ that satisfies the maximization problem in Equation 2.10 is the max-

imum likelihood estimate. This is not the only possible objective function, but it is the one that is

typically used for generative models. We will discuss a different objective function in §2.5.3.1.

2.5.1.1 Learning Word Translation Probabilities

Recall that in our generative models, each probability is tied to a single decision taken by the

model. MLE is easy when we can observe all of these decisions. Consider a very simple model,

the coin-flip model. In this model, we have a coin that comes up heads with probability p(h). We
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do not know p(h) and we would like to guess what it is. If we have access to the coin itself, we can

flip it a number of times and see how many times each side comes up. Suppose that we flip the coin

a number of times, and we count the number of times it comes up heads, which we denote #(h).
The total number of flips is the sum of the number of heads and tails, #(h+ t). Most people know

intuitively that the value for p(h) should be #(h)/#(h + t). In fact, we can show analytically that

this relative frequency estimate corresponds to the MLE. The accuracy of MLE depends crucially

on the number of examples—we can see that if we flip the coin only once, then the only possible

outcomes are p(h) = 1 and p(h) = 0, either of which is likely to be far from the true value of the

parameter. This issue has not received much attention in SMT, although Foster et al. (2006) show

that methods to smooth poorly estimated probabilities can improve performance.1718

Now suppose that we wish to estimate the parameters of a word-based generative translation

model. If we had access to an alignment—such as the one depicted in Figure 2.2—for every

sentence in our corpus, then it would be easy to count the fertility, substitution, and distortion

outcomes for each word, and we could estimate our parameters as easily as we did in the coin-

flipping model. For instance, if we saw the word “wind” #(wind) times, and it was aligned to the

word “Î” #(a(Î,wind)) times, then we would compute p(Î|wind) = #(a(Î,wind))/#(wind).
It is not that easy, however. The data that we collect from the real world contains only

sentence pairs, not alignments.19 So, while we can see that “wind” and “Î” both cooccur in

many of these sentence pairs, we cannot see how many times they are actually aligned to each

other. We can make some estimates based only on cooccurrence—for instance, we will estimate

p( f |e) = 0 for words f and e that never cooccur in our training data. How can we estimate the

probability for words that do cooccur?

One solution to this problem is to automatically generate an alignment, and then to use

this alignment as our training data for maximum likelihood estimation. We will describe word

alignment methods in §2.5.2. Alternatively, we need a method to estimate our parameters that will

work even when we cannot explicitly count all of the decisions that we are interested in. Since

we will not be able to directly observe the outcome of each decision made by our model, we can

view the learning of the associated parameters as a form of unsupervised learning. A method that

is commonly used to solve this problem in SMT is the Expectation-Maximization (EM) algorithm

(Dempster et al., 1977). It works by substituting observed counts of events with expected counts.

Although we cannot actually observe the number of times that “wind” aligns to “Î”, we can

compute the expected number of times that this happens if we have some initial value for Θ,

which we will call Θ0. Let Θ0 be random, uniform, or initialized from some simpler model. We

can then compute the expected count of the event E(a(Î,wind)) in any particular sentence pair

(e, f) as follows.

E(a(Î,wind)) =
PΘ0

(a(Î,wind), f J
1 |eI

1)
PΘ0

( f J
1 |eI

1)

In other words, we compute all possible alignments between f J
1 and eI

1, and their probabilities

under Θ0. We then sum the probability of those alignments that contain the decision that we are

interested in, and divide this by the summed probability of all possible alignments. This gives a

17A discussion of smoothing is highly relevant, as it is to most NLP problems, but well beyond the scope of this

paper. Chen and Goodman (1998), Manning and Schütze (1999), and Jurafsky and Martin (2000) and are good starting

points.
18In fact, the unsmoothed values used by most phrase-based models are so imprecise that they can be stored in four

bits without loss of performance (Federico and Bertoldi, 2006; Och, 2005).
19 In fact, we have even glossed over the conversion of raw text data to sentence pairs, which is not an entirely trivial

problem (Gale and Church, 1993; Smith, 2002).
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fractional expected probability that the event occurred. If we apply this method to all parameters

over the entire corpus, we can produce a new estimate, Θ1. Under certain conditions this offers the

minimal guarantee that PΘ1
(C) > PΘ0

(C). Thus, it works by hill-climbing, or constantly improving

its estimate of Θ. We can define EM according to the following recursion, for our observed training

data C and unknown alignment data D.

Θi = argmax
Θ̂

P
Θ̂
(C,EΘi−1

(D)) (2.11)

The EM algorithm does not, in general—and in particular for most SMT models— guarantee

convergence to a globally optimal value for Θ. In fact, it depends crucially on a good initial

estimate Θ0 to avoid a poor local maximum. A method for generating this estimate for the IBM

Models is sketched in §2.5.2. Despite the various difficulties in using EM, it has been applied to a

variety of other NLP problems (Lari and Young, 1990; Merialdo, 1994).

A full discussion of the EM algorithm is beyond the scope of this paper. For a more detailed

overview, refer to Dempster et al. (1977). For a full account of the analytical solution to the EM

algorithm in the case the IBM Models, refer to Brown et al. (1993).

2.5.1.2 Learning Phrase Translation Probabilities

In order to train the parameters of a phrase-based model we must have access to a phrase-

to-phrase alignment. EM for phrase-based models involves many approximations and tradeoffs

(Birch et al., 2006; DeNero et al., 2006; Marcu and Wong, 2002). A pragmatic solution is to gen-

erate a word alignment (§2.5.2), and then count all phrases that are consistent with the alignment

(Koehn et al., 2003; Och et al., 1999). We then compute the MLE using the hypothesized phrases

as our observed events. We say that a bilingual phrase is consistent with a word alignment if no

word inside the phrase is aligned to any word outside the phrase—in other words, the phrase con-

tains the transitive closure of some set of nodes in the bipartite alignment graph. This is illustrated

in Figure 2.12.

2.5.1.3 Learning Parameters of Generative SCFG Models

As we have seen, SCFG models usually contain a word translation probability, which can be

learned using EM under the specific model (Wu, 1996; Yamada and Knight, 2001), or using word-

translation probabilities learned from other alignments (§2.5.2) and a supervised learning method.

Melamed (2004a) presents a series of steps whereby parallel corpora and parsing statistics can

be coordinated to learn the parameters of an arbitrary SCFG, using MLE (including EM) where

necessary. Hierarchical phrase-based grammars can be learned using a supervised method similar

to the one used for finite-state phrase-based models (Chiang, 2005, 2007).

2.5.2 Interlude: Word Alignment

We need a method for word alignment as a precursor to most of our learning methods in

generative models. Word alignment is a microcosm of translation: we need a model, parameter

estimation, and a search algorithm. The word alignment task can be viewed as a warm-up for

decoding, since it is more constrained—in word alignment, we need only find a correspondence

between sequences, whereas in decoding we will be required to find both the correspondence and

the target sequence.

Over the past decade, a number of additional uses have been proposed for word alignment,

including the automatic acquisition of bilingual dictionaries (Melamed, 1996) which can be used

28



However
,

the

sky

remained

clear

under

the

strong

north

wind
.

}
6

(A
lth

o
u
g
h
)

�
(n

o
rth

)

Î
(w

in
d
)

|
x

(h
o
w

ls)

,
(,)

F
(b

u
t)

)
z

(sk
y
)

�
6

(still)

A
�

(ex
tre

m
e
ly

)

�
�

(lim
p
id

)

�
(.)

Figure 2.12: Supervised learning of phrases from word alignments. Here, we view each sentence

pair on a grid. Word alignment is indicated by the presence of dark circles in the grid point

corresponding to the word pair. The rectangles outline bilingual phrase pairs that are consistent

with this word alignment.

in cross-language information retrieval (Wang, 2005); and cross-lingual syntactic learning (Hwa

et al., 2005; Smith and Smith, 2004; Yarowsky et al., 2001). For this reason, word alignment has

become a topic of significant study in its own right. The remainder of this section provides a

brief overview of the word alignment task. We will return to the more general topic of parameter

estimation in §2.5.3.

2.5.2.1 Formal Definition

Formally, we say that the objective of the word alignment task is to discover the word-to-

word correspondences in a sentence pair (eI
1, f J

1 ). The alignment A of this pair is simply a set of

these correspondences. We say that A⊂ [1, I]× [1,J]. If (i, j) ∈ A, then word ei is aligned to word

f j. Models for word alignment depend on the way in which they decompose this problem.

2.5.2.2 Asymmetric Models

Recall that in our word-based translational equivalence model (§2.3.1.1) an asymmetry ex-

ists in the alignment between eI
1 and f J

1 . In particular, each source word f j corresponds to one

and only one target word (or null). The target words are unconstrained, and each can link to an

arbitrary number of words (even zero), defined by its fertility. When we are generating an initial

alignment to train this model, we must observe the same constraints.

In fact, we can exploit this asymmetry to produce an efficient alignment algorithm by mod-
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eling the alignment directly. To do this we introduce the alignment variable a to which we must

assign a value aJ
1. In this representation each element a j is a value in the range {0,1, ..., I}. The

value of a j represents the position of the target word ea j
to which f j corresponds. By making the

very strong assumption that each variable a j is independent, we arrive at Equation 2.12, which

tells us how to find the optimal alignment a.

a = argmax
aJ

1

J

∏
j=1

p(a j) · p( f j|ea j
) (2.12)

This is the form of IBM Model 1 (Brown et al., 1993). If we make the additional simplifying

assumption that the distribution p(a j) is uniform, the only parameters that are required in order

to compute the optimal alignment are the word translation parameters p( f j|ei). Note that our

independence assumptions reduce the model to a set of J independent decisions each with I + 1

possible outcomes. In this simple form, the space of all possible alignments can be compactly

represented, and the EM search is guaranteed to converge to a single solution (Brown et al., 1993).

Although this convergence will guarantee an optimal value for PΘ(C), this optimal value may

not produce the best alignments in practice, because maximizing likelihood does not necessarily

guarantee a reduction in error. This is particularly true if the model makes too many indepen-

dence assumptions, as Model 1 does. Moore (2004) proposes an alternative method of Model 1

parameter estimation that produces better results in practice.

Note that we can compute P(f|e) as a sum over Model 1 alignments as follows:

P(f|e) =
J

∏
j=1

I

∑
a j=0

p(a j) · p( f j|ea j
) (2.13)

Thus Model 1 is a translation model, although it will not produce very good translations on its

own (Knight, 1999a). However, it is useful as a feature function in log-linear models, most likely

because it computes a correspondence between all source and target words (Lopez and Resnik,

2006; Och et al., 2004b).

We obtain better alignments when we move to a first-order dependency between the align-

ment variables, as in Equation 2.14 (Vogel et al., 1996).

a = argmax
aJ

1

J

∏
j=1

p(a j|a j−1) · p( f j|ea j
) (2.14)

Equation 2.14 is in the basic form of a Hidden Markov Model (HMM). HMMs have been applied

to numerous problems in NLP, such as part-of-speech tagging (Merialdo, 1994). A key benefit of

HMMs is that standard algorithms for EM parameter estimation (Baum, 1972) and maximization

(Viterbi, 1967) are widely known. HMMs have been the subject of several studies in word align-

ment (DeNero and Klein, 2007; Lopez and Resnik, 2005; Och and Ney, 2000; Toutanova et al.,

2002). In general, they are very accurate, significantly outperforming IBM Models 1, 2, and 3 in

detailed empirical studies (Och and Ney, 2000, 2003). HMMs are a common form of a sequence

model that assigns a label to each element of a sequence. In the case of alignment, the sequence

is the source sentence and the labels are the target words to which each source word corresponds.

HMMs are generative models. A discriminative relative, the conditional random field has also

been used for alignment (Blunsom and Cohn, 2006).

Finally, we can use IBM Model 4 itself to perform alignment. Search is done by first

generating a good alignment with a simpler model, and then modifying it using hill-climbing

techniques in conjunction with the IBM Model 4 parameters (Brown et al., 1993; Och and Ney,
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2003). The translation parameters can also be imported from a simpler model; this makes IBM

Model 4 highly dependent on the models used to bootstrap it (Lopez and Resnik, 2005; Och and

Ney, 2003). Och and Ney (2003) note that the likely reason for the good performance of Model 4

is the first-order reordering dependence in the distortion parameters, and proposes combining it

with the HMM, which has a complementary first-order dependence. This is accomplished by

using both models as features in a log-linear framework.

The IBM Models for alignment are implemented in the open-source toolkit GIZA and its

successor GIZA++ (Al-Onaizan et al., 1999; Och and Ney, 2003).20 They are widely used in

the SMT research community for a variety of purposes, including parameter learning for other

models (Koehn et al., 2003; Och et al., 1999; Smith and Smith, 2004; Yarowsky and Ngai, 2001).

Various improvements to Model 4 have been proposed (Dejean et al., 2003; Fraser and Marcu,

2006, 2007b).

2.5.2.3 Symmetric Alignment Models

The alignment models that we have described so far are asymmetric, following IBM Model 4.

This is a necessity if we plan to train a translation model with a corresponding asymmetry. How-

ever, many models are symmetric. We would like symmetric alignments as well.

One approach to symmetric alignment is to align our training corpus twice using an asym-

metric method, applying the asymmetry to each side in turn. We symmetrize by combining these

two alignments. This is done via set union, set intersection, or a number of heuristic methods,

which usually begin with the intersection and proceed by iteratively adding links from the union

(Koehn et al., 2003; Och et al., 1999). Matusov et al. (2004) present a symmetric word alignment

method based on linear combination of complementary asymmetric word alignment probabilities.

Ayan and Dorr (2006a) investigate the effect of various symmetrization heuristics on the perfor-

mance of phrase-based translation.

An alternative is to simply use an alignment algorithm that explicitly generates symmetric

alignments. In this case, the alignment task corresponds to solving I · J binary decision problems:

one for each potential link in the set A. The complexity of this space depends on any constraints

we put on the links. With no constraints, the problem reduces to a set of binary decision problems

and is tractable under a wide variety of models and learning algorithms (Ayan and Dorr, 2006b;

Ayan et al., 2005a,b; Liang et al., 2006b). A common constraint is to require that each word in

either sentence be linked exactly once, or to null (Melamed, 2000). This constraint produces an

exponential space of allowable alignments because decisions are not independent of each other. A

solution to this is to use a greedy search algorithm called competitive linking (Melamed, 2000).

A number of cooccurrence-based correlation metrics have been used to score each link in this

algorithm (Cherry and Lin, 2003; Gale and Church, 1991; Melamed, 2000; Moore, 2005b).

Fraser and Marcu (2007b) extended the IBM Models to produce symmetric many-to-many

alignments that can be viewed as phrase alignments.

2.5.2.4 Supervised Learning for Alignment

Although the alignment learning methods that we have described so far depend on unsuper-

vised learning of the alignment model parameters, it is possible to learn alignment models using

supervised learning. Callison-Burch et al. (2004) construct an experiment showing that alignment

with the IBM Models could be significantly improved with supervised learning. However, a pri-

mary limitation of supervised learning for alignment is that the number of sentences that have been

20 GIZA++ is available from http://www.fjoch.com/GIZA++.html.
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aligned by human annotators is nearly always several orders of magnitude smaller than the number

of unannotated sentences. Supervised learning algorithms must learn from a few hundred or thou-

sand annotated sentences. Contrast with unsupervised learning, where we typically have access

to hundreds of thousands or millions of sentences. Therefore supervised learning of alignments is

highly dependent on models which are sufficiently general, with a compact set of parameters. The

solution to this is to use discriminative models with rich feature sets that do not depend heavily (or

at all) on the specific identities of the words being aligned. In particular, it is unrealistic to expect

such models to learn weights for word-to-word features, since we not have enough training data

to populate the tables. However, we can use probabilities learned using unsupervised methods as

features in a discriminative model.

Numerous discriminative alignment models have been proposed, based on a wide variety

of machine learning methods. Most of these methods depend on supervised training, and depend

on the availability of a small set of manually produced alignments. Learning methods include

transformation-based learning (Ayan et al., 2005b), neural networks (Ayan et al., 2005a), maxi-

mum margin estimation (Taskar et al., 2005), perceptron learning (Moore, 2005a), and log-linear

models (Fraser and Marcu, 2006; Ittycheriah and Roukos, 2005). When annotated alignments

are available, these methods outperform unsupervised methods according to common alignment

metrics, and sometimes in downstream translation results.

2.5.2.5 Evaluation of Word Alignment

The ultimate measure of word alignment is in its contribution to parameter estimation of

our translation models. If one alignment method produces a better translation system than another,

we might conclude that it is more accurate overall.

Word alignment is used for tasks other than SMT parameter estimation, so other task-based

evaluations might be applicable. Although this is preferable, it is common to evaluate word align-

ment intrinsically, by comparison with alignments prepared by human annotators. Most of these

test sets contain a few hundred sentences. They are available in several languages (Melamed,

1998; Mihalcea and Pedersen, 2003; Och and Ney, 2000). Ideally, each sentence is aligned by

multiple annotators and the results are combined in some way. In much of the reported literature,

the annotations contain two sets of links. The sure set S contains links about which all annotators

agreed. The probable set P is a superset of S that additionally contains links about which anno-

tators disagreed or expressed uncertainty about, such as “idiomatic expressions, free translations,

and missing function words” (Och and Ney, 2000). However, Fraser and Marcu (2007a) found that

the use of probable links reduced the ability of alignment metrics to predict translation accuracy.

They recommend an annotation style that does not contain them (Melamed, 1998).

Given the set of hypothesized alignment links A, we compute the precision |A∩ P|/|A|
corresponding to the fraction of accurate links in the hypothesized alignment, and the recall |A∩
S|/|S| corresponding to the fraction of “true” links were discovered by the alignment algorithm.21

A widely used metric that combines these statistics is the alignment error rate (AER) given in

Equation 2.15 (Och and Ney, 2000).

AER = 1− |S∩A|+ |P∩A|
|S|+ |A|

(2.15)

A similar metric was proposed by Ahrenberg et al. (2000).

Although intrinsic evaluation of word alignments is popular, the exact relationship between

alignment evaluations and SMT performance is not entirely clear. Several studies report poor

21Precision and recall metrics are common in NLP evaluation.
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correlation between alignment performance and MT performance (Callison-Burch et al., 2004; It-

tycheriah and Roukos, 2005; Koehn et al., 2003), and a number of researchers have investigated the

relationship directly (Ayan and Dorr, 2006a; Fraser and Marcu, 2007a; Lopez and Resnik, 2006).

In particular, Fraser and Marcu (2007a) advocate unbalanced F-measure as a better predictor of

SMT performance than AER. The F-measure is given in Equation 2.16.

F =
|S∩A|

α|S|+(1−α)|A|
(2.16)

The parameter α is used to move balance towards either precision or recall. Fraser and Marcu

(2007a) show that α can be tuned to more reliably predict translation accuracy.

2.5.3 Estimation in Log-Linear Models

We now return to the subject of estimating translation model parameters. One we have

estimated the parameters of all of our generative models, we can turn our attention to the estimation

of the log-linear feature weights λK
1 (§2.4.2). This is usually done on a training set separate from

the one used to learn underlying generative model probabilities.

As in generative models, the maximum likelihood objective (Equation 2.10) can be used to

train the feature weights. A nice property of log-linear models is the availability convenient objec-

tive function obtained via the maximum entropy principle (Berger et al., 1996b).22 It corresponds

to the maximum likelihood objective function and has a single optimum point, which we can find

using an iterative search method called generalized iterative scaling (Darroch and Ratcliff, 1972).

The training of log-linear SMT models is a supervised learning problem, since we are given inputs

and the corresponding best output, and all features are known. Unfortunately, the normalization

factor represented by the denominator of Equation 2.9 must be computed for the MLE, and this

is expensive to compute even in the supervised case because it involves a sum over all possible

translations. Och and Ney (2002) show that the N-best output of the previous parameter setting

can be used to approximate this sum.

2.5.3.1 Minimum Error-Rate Training

Automatic evaluation metrics for MT have become widespread (§2.7). They facilitate a

different method of parameter estimation: minimum error-rate training (MERT; Och, 2003). In

MERT, we assume that the best model is the one that produces the smallest overall error with

respect to a given error function. Unfortunately, determining the amount of error in a translation

is not a well-defined problem with an objective answer, and numerous error metrics have been

proposed. However, Och (2003) shows empirically that we achieve best results for any particular

error function when we use that function in our objective function under MERT. This suggests that

we can improve the accuracy of our SMT systems simply by devising an error function that more

closely corresponds to human judgements of translation error, or with some task-based notion of

accuracy. Ideally, this means that SMT researchers can focus on the question of what makes a good

translation, instead of what makes a good translation model (a task fraught with many orthogonal

considerations). With MERT, better evaluation functions should lead directly to better translation.

Formally, we say that if we are given an error function E(ê,e) defining the amount of error

in some hypothesized translation ê with respect to a known good actual translation e, then the

objective function is:23

22 For this reason, log-linear models are often called maximum entropy models in the NLP literature.
23As we will see in §2.7, we sometimes have access to multiple good translations of f. It is straightforward to modify
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Figure 2.13: Illustration of the MERT line minimization algorithm for optimizing a single parame-

ter. (1) For each candidate translation ê, compute Pλk
(ê|f) as a function of λk, and find the intervals

at which the optimal candidate changes. (2) Using these intervals, compute Eλk
(argmaxê P(ê|f),e)

as a function of λk. (3) and (4) Repeat this procedure for each sentence. (5) Add the single-

sentence error functions (2) and (4) to compute the aggregate error function for both input sen-

tences. To optimize, we simply walk along all intervals of the aggregate function until we deter-

mine the minimum.

λ
K
1 = argmin

λ̂K
1

∑
(e,f)∈C

E(argmax
ê

P
λ̂K

1
(ê|f),e) (2.17)

The optimization contains an argmax operator, which precludes calculation of a gradient. Al-

though there is no way to find a guaranteed optimal solution under these circumstances, we can

find a good solution using the method sketched in Och (2003), which we describe in greater detail

here due to its widespread use. Pseudocode appears in Algorithm 1.

The MERT algorithm works by iteratively generating random values for λK
1 , which it then

tries to improve by minimizing each parameter λk in turn while holding the others constant. At

the end of this optimization step, the optimized λK
1 yielding the greatest error reduction is used as

input to the next iteration.

The single-parameter line minimization algorithm at the core of MERT is illustrated in

Figure 2.13. It is based on the observation that if we hold all but one parameter λk constant, then

P(e|f) for any given pair e and f is P(e|f) = λkhk(e, f)+(∑k′ 6=k λk′,mhk′(e, f)). Note that the second

term of the sum is constant, making the function linear in λk. Using the intersections of these lines

for all candidate translations in a decoder’s N-best list for a single input sentence, the algorithm

exhaustively computes a representation of the piecewise linear function E(argmaxê P(ê|f),e)).
Assuming that our error function is additive, we simply sum over all input (e, f) ∈C to compute

the complete function that we are trying to minimize.24 We then select the midpoint in the interval

which minimizes the function.

our functions to accommodate this and it has no impact on the mathematics.
24Sometimes this function is not additive, as is the case with the commonly used BLEU score (Papineni et al., 2002).

Usually, however, the function is computed in terms of aggregate values over the training set which are additive. If this

is the case, we simply keep track of all of the additive values which are used to compute the error function over each

interval, and then perform the computation once all intervals are known.
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Algorithm 1 Minimum Error Rate Training

1: Input initial estimate λK
1,0 . Uniform or random

2: Input training corpus C

3: λK
1 = λK

1,0

4: Ebest = ∑(e,f)∈C E(argmaxê PλK
1
(ê|f),e) . Decode

5: repeat

6: Generate M random estimates λK
1,1, ...,λ

K
1,M . To avoid poor local maximum

7: for m = {0,1, ...,M} do

8: for k = {1,2, ...,K} do

9: λ′k,m = LINE-MINIMIZE(k,λK
1,m,C)

10: Ek,m = ∑(e,f)∈C E(argmaxê P
λ

k−1
1,m λ′

k,mλK
k+1,m

(ê|f),e) . N-best list

11: if Ek,m < Ebest then

12: λK
1 = λ

k−1
1,m λ′k,mλK

k+1,m

13: Ebest = Ek,m

14: λK
1,0 = λK

1

15: Ebest = ∑(e,f)∈C E(argmaxê PλK
1
(ê|f),e) . Decode

16: until no change in λK
1

17: return λK
1,0

18:

19: function LINE-MINIMIZE(k,λK
1 ,C)

20: Eλk
(C) = 0

21: for all (e, f) ∈C do

22: for all ê ∈ DECODER-N-BEST(f) do

23: mê = hk(ê, f) . slope of Pλk
(ê, f)

24: bê = ∑
k−1
k′=1 λk′ ·hk′(ê, f)+∑

K
k′=k+1 λk′ ·hk′(ê, f) . intercept of Pλk

(ê, f)

25: i = 0

26: ∆[i] =−∞ . left interval boundary

27: e[i] = argminê mê . equivalent to argmaxê limλk→−∞ P(ê, f)
28: repeat

29: i = i+1

30: ∆[i] = minê X-INTERSECT(mê,me[i−1],bê,be[i−1]) > ∆[i−1]
31: e[i] = argminê X-INTERSECT(mê,me[i−1],bê,be[i−1]) > ∆[i−1]
32: until No more intersection points found

33: ∆i+1 = ∞

34: Eλk
(argmaxê P(ê|f),e) = {λk→ E(ê,e) : ê = e[i],∆[i]≤ λk ≤ ∆i+1}

35: Eλk
(C)+ = Eλk

(argmaxê P(ê|f),e)
36: return λk = argminEλk

(C)
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Figure 2.14: The flow of data, models, and processes commonly involved in the deployment of an

SMT system.

2.5.3.2 Purely Discriminative Training

Most current state-of-the-art SMT systems use log-linear models with a small number of

generative submodels and use MERT in order to optimize whatever error function is chosen for

evaluation. An overview of the architecture used in these systems is shown in Figure 2.14. This

approach is not purely discriminative; it uses generative model estimates as input to a discrimi-

native learner that optimizes a small number of feature weights. In pure discriminative learning,

features are usually binary or integral. For instance, we might define a word pair feature h(e, f ) as

follows:

h(e, f ) =
{

1 if the input contains f and the output contains e

0 otherwise

Under this definition, the weight given to this feature by the combined generative and discrim-

inative training procedure outlined above is λ log p( f |e). However, as we have noted, p( f |e) is

estimated to maximize likelihood, not translation performance. We might instead wish to assign

a weight to this feature that is estimated to directly optimize translation performance. This is

the goal of pure discriminative learning, which can be accomplished by a number of different

algorithms. Examples include the perceptron algorithm (Liang et al., 2006a), large margin learn-

ing (Tillmann and Zhang, 2006; Watanabe et al., 2007), decision tree learning (Wellington et al.,

2006a), and transductive learning (Ueffing et al., 2007). Pure discriminative learning is promising,

but there are still a number of significant obstacles to overcome, most notably the ability to scale

to the very large datasets and billions of parameters required for SMT. The present approaches are

quite slow compared to generative model estimation and MERT.

2.6 Decoding

Now that we have a model and estimates for all of our parameters, we can translate new

input sentences. This is called decoding. In principle, decoding corresponds solving the maxi-

mization problem in Equation 2.18.
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e = argmax
(ê:Y (ê,d))

P(ê,d|f) (2.18)

We call this the decision rule. Equation 2.18 is not the only possible decision rule, although it is

by far the most common. Alternative decision rules are presented in Kumar and Byrne (2004) and

Venugopal et al. (2005).

This is a difficult optimization. Recall that P(e,d|f) ranges over {E∗×D∗×F∗}. Even

though f is fixed, and even though the number of possible outputs (e,d) is finite due to the con-

straints of our translational equivalence model, there is still a very large number of them to con-

sider in order to maximize the function. Therefore, a primary objective of decoding is to search

this space as efficiently as possible.

There are two types of decoders, corresponding to our two broad types of translational

equivalence models: FST and SCFG.

2.6.1 FST Decoding

Nearly all approaches to finite-state decoding follow a general framework described by

Wang and Waibel (1997) and (Koehn, 2004a). It is a generalization of speech recognition algo-

rithms originating in information theory Jelinek (1969).

In this algorithm, search proceeds through a directed acyclic graph of states representing

partial or completed translation hypotheses, which are constructed from left-to-right in the target

language word order. An example graph is depicted in Figure 2.15. Each state consists of the

following elements.

1. A coverage set C⊆{1,2, ...,J} enumerates the positions of the source string f J
1 that have

been translated.

2. If using an n-gram language model, the n− 1 most recently generated target words are

kept for computing the n-gram language model component of the probability. These words and

the subset C constitute the state’s signature.

3. The cost h of our partial hypothesis is computed as the combination of model costs

associated with the hypothesis. This will be fairly straightforward for any generative model based

on the underlying translational equivalence model, since we will be reconstructing the events that

occur in that model, and we can simply apply the associated probabilities. It may or may not be

difficult for a discriminative model, depending on the specific feature functions.

4. The estimated cost g of completing the partial hypothesis is computed heuristically. Be-

cause this computation must be done quickly, we usually use only the single-best word-to-word

(or phrase-to-phrase) costs in this heuristic function (Koehn, 2004a).

Hypotheses in this space are extended by adding one or more source word indices to the

coverage set and appending one or more target words to the hypothesis string to produce a new

state. This corresponds to the translation of the newly covered source words by the newly gen-

erated target words. We apply model probabilities accordingly to update the partial cost h. We

implement model-specific extension operators to apply this algorithm to IBM Model 4 (Germann

et al., 2004; Tillman and Ney, 2003), phrase-based models (Koehn, 2004a), or any number of other

finite-state translation models (Nießen et al., 1998; Wang and Waibel, 1997).

In order to organize the search space, hypotheses may be stored in one or more priority

queues, usually corresponding to either the cardinality |C| of the coverage set, or to the coverage

sets themselves (Tillman and Ney, 2003).25 This is done to ensure that comparisons between

25This priority queue is often called a stack in literature, and the algorithm that we describe is called stack decoding,

although its central object is technically not a stack. The terminology dates back to Jelinek (1969).
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2: northern

2: north

2: northern

2: north
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Although north wind howls , but sky still extremely limpid .

1 2 3 4 5 6 7 8 9 10 11

(2)

(1)

Figure 2.15: Illustration of search in a finite-state decoder. The input sentence (1) generates a large

search graph, partially illustrated in (2). In this illustration, each arrow represents extension of a

hypothesis by appending the words on the arrow. To recover the best translation, we traverse the

highest scoring path. In each state, we show the coverage set and most recently generated target

word, which is needed for computation of a bigram language model. Note that states can only be

combined if the coverage set and the most recently produced words match. Items with the same

number of covered words are stored in the same stack.

hypotheses—used for sorting and pruning purposes within each priority queue— are done on

hypotheses of relatively equal depth in the search space. (Wang and Waibel, 1997) If we were to

compare hypotheses of unequal length, our heuristic functions, which favor shorter hypotheses,

will cause more complete hypotheses to be pruned from the priority queue prior to full evaluation.

Each hypothesis contains a backpointer to the hypothesis that generated it. If two hypothe-

ses have matching signatures, only the higher-scoring hypothesis is kept (Koehn, 2004a; Och et al.,

2001). This is a risk-free optimization because the set of all extensions to these two hypotheses

will be the same; therefore the higher-scoring partial hypothesis is guaranteed to generate a higher-

scoring completed hypothesis.

The search space defines a finite-state word lattice, in which we can find the score of any

particular hypothesis by traversing the lattice (Koehn, 2004a; Ueffing et al., 2002). We can use

standard finite-state methods for finding the best path (or paths) through this lattice. It is possible

to directly implement such decoders as a cascade of weighted finite-state transducers (Knight and

Al-Onaizan, 1998; Kumar et al., 2006). These transducers will differ from the ones we describe

in §2.3.1. However, the decoding algorithm we have described does, in principle, reverse the set

of transductions represented by those models; we can see, for instance, that it reconstructs the

English sentence in the order that it was fed into the transducer, at each step consuming the source

words that were created by transductions over the associated target word or words.

A variant algorithm allows the target language hypothesis to be extended to either left or

right (Watanabe and Sumita, 2002).
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2.6.1.1 Optimality and Pruning

Using A∗ heuristics, we can solve the optimization in Equation 2.18 exactly (Och et al.,

2001). Germann et al. (2004) illustrate how we can also do this by converting the problem to a

linear integer programming problem and using standard tools to solve it. Due to the large number

of translations for each word or phrase, even with limited reordering this can be very slow. For-

tunately, optimal search is not strictly necessary, because there are many good translations of any

sentence. If many of these receive high probability under our model, then we may safely permit a

certain amount of search error. Search error occurs when the decoder does not choose the globally

highest-scoring hypothesis according to the model, but rather some other high-scoring hypothesis

that can be found more quickly. We can optimize for speed by pruning the search graph (Koehn,

2004a; Tillman and Ney, 2003). In threshold pruning, any hypothesis with a probability less than

t times the probability of the best estimate in the same priority queue is removed. In histogram

pruning, only the n best hypotheses are kept in any priority queue. Search with pruning is some-

times called beam search, where t or n is the size of the beam. With a well-tuned beam size, we

gain large speedups with very little loss of accuracy (Germann et al., 2004; Koehn, 2004a; Tillman

and Ney, 2003; Zens and Ney, 2004).

2.6.1.2 Greedy Decoding

An alternative to standard finite-state decoding is greedy decoding (Germann, 2003; Ger-

mann et al., 2004; Marcu and Wong, 2002). In greedy decoding, we generate an initial hypothesis

by substituting each source word with the highest-probability target word, using the original target

word order. This gives us a complete word-for-word gloss of the source sentence. We then use

hill-climbing heuristics in an attempt to find higher-scoring hypotheses by considering neighbor-

ing translations produced by changing the order or translation of one or two words at a time, and

choosing the highest-scoring neighbor. This new hypothesis becomes the starting point for the

next iteration of the algorithm. The algorithm terminates when no higher-scoring hypothesis can

be found. With some optimizations, it algorithm runs in time nearly linear in target sentence length

(Germann, 2003). A tradeoff of is that the search error rate is much higher than stack decoding

(Germann et al., 2004).

2.6.2 SCFG Decoding

Decoding with SCFG models is equivalent to CFG parsing (Melamed, 2004a). The goal is

to infer the highest-scoring tree that generates the input sentence using the source side of the gram-

mar, and then read off the tree in target order. Most practical SCFG decoders are straightforward

extensions of dynamic programming algorithms for parsing monolingual context-free grammars

(Chiang, 2007; Marcu et al., 2006; Venugopal et al., 2007; Wu and Wong, 1998; Yamada and

Knight, 2002; Zens and Ney, 2003). A benefit of this is that the standard algorithms and optimiza-

tions that have been developed for CFG parsing can be applied to SMT (Melamed, 2004a).

SCFG decoding works by attempting to cover larger and larger spans of the input sentence.

A span is simply a contiguous sequence of words. States in the search space consist of a span,

a nonterminal symbol which covers the span, and any language model information needed to

combine spans (Chiang, 2007; Melamed, 2004b; Zhang et al., 2006a). In order to construct larger

spans, we find SCFG productions whose right-hand sides match a sequence of nonterminals that

we have already inferred to cover a set of smaller, adjacent spans. Once we have constructed the

full source language parse, we produce output using an in-order traversal based on target language

ordering of the tree. This is illustrated in Figure 2.16.
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Figure 2.16: Illustration of SCFG decoding. (1) Scan each source word and associate it with a

span. (2) Apply SCFG rules that match the target spans. (3) Recursively infer larger spans from

smaller spans. (4) Optionally infer any target language words with no matching span in the source

language. (5) Read off the tree in target-language order.

There are O(J2) possible spans in the source sentence, and they can be computed in poly-

nomial time. It is easy to see from this that SCFG decoding is, in principle, much less computa-

tionally expensive than FST decoding with full reordering. However, most practical FST decoders

allow only a limited amount of reordering, and in practice they are often much faster than SCFG

decoders.26 Search optimization for these models is therefore an active area of research.

Chiang (2007) describes a optimization called cube pruning that prevents excessive combi-

nation of hypotheses in adjacent subspans. Zhang et al. (2006a) describe a method for binarizing

rules containing more than two nonterminals, which helps reduce grammar constants for parsing

and simplifies n-gram language model integration. Venugopal et al. (2007) present a method based

on delayed language model integration, in which the parse graph is first constructed quickly with

simplified language model statistics, and then expanded in a second pass using a full language

26It is possible to apply reordering constraints of FST models to SCFG models. Chiang (2005, 2007) restricts

hierarchical reordering to spans that are shorter than ten words. Spans longer than this are required to be monotonic

orderings of smaller hierarchical phrases. This prevents some long-distance reordering.
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model, following only the most promising paths. A number of other optimizations have also been

investigated (Huang and Chiang, 2005, 2007)

2.6.3 Reranking

Even if there are no search errors and we produce the translation that exactly optimizes our

decision rule, the translations produced by our decoder may not be the actual best translations

according to human judgement. It is possible that the search space explored by the decoder con-

tained a better translation, and our decoder assigned a lower score for this hypothesis because its

estimate of P(e,d|f) was incorrect. This is called model error.

One approach to reducing model error is reranking or rescoring. In reranking, we first run

our decoder, and rather than merely returning the highest-scoring translation, we return N highest-

scoring translations for some value N. These translations are then input to an alternative model

with access to more feature functions than may be efficiently computed in our decoder, or which

are otherwise difficult to incorporate. Hopefully, this alternative model can give us more accurate

scores than the one used in decoding.

Reranking approaches to SMT are described in Och et al. (2004b) and Shen et al. (2004).

Och et al. (2004b) show using oracle studies on decoder n-best lists that large gains in accuracy

are possible with rescoring, although so far these are unrealized.

2.7 Evaluation

How can we know if the output of our SMT system is any good? Many methods have been

proposed to evaluate MT output. Hovy et al. (2002) attribute to Yorick Wilks the remark that

“more has been written about MT evaluation over the past 50 years than about MT itself”. In the

discussion that follows, we will narrowly focus on methods that have figured prominently in the

evaluation of statistical systems.

Traditionally accepted measures of MT evaluation have required examination of MT sys-

tem output by human judges, who rank the adequacy of the translation in conveying the source

language meaning and the fluency of expression in the target language (White et al., 1994). More

ideal than this are measures which determine how well some human task can be performed when

the human subject is provided with machine translated text. If possible, we would optimize for

task-related metrics directly. Unfortunately, human metrics require time and money. This usually

rules out their use in iterative system development, where we will need to perform regular eval-

uation to determine if changes are beneficial to performance. The next best thing is to develop

automatic metrics that closely correlate with human evaluations. The closer that these metrics are

to the real objective, the better our performance on that objective will be after we apply discrimi-

native training (§2.5.3).

A common element of automatic metrics is their use of a set of test sentences for which

we already have human translations, called reference translations. They can come from a parallel

corpus, although we must take care to use a separate set of sentences from the set we used for

training. The intuition behind metrics based on reference sentences is that MT must be good

if it closely resembles human translation of the same sentence (Papineni et al., 2002). These

metrics are based on partial string matching between the output and the reference translations, as

illustrated in Figure 2.17. However, the use of a single reference may bias the evaluation towards

a particular translation style. In order to mitigate against this and reflect the diversity of possible

good translations, we may use multiple references. This requires the use of human translators to

produce the additional references, but it is a one-time cost.
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Although the northern wind shrieked across the sky , but was still very clear .Although the wind the sky , was still very clear .

However , the sky remained clear under the strong north wind ., the sky clear the wind .

Although a north wind was howling , the sky remained clear and blue .Although wind , the sky clear .

The sky was still crystal clear , though the north wind was howling .The sky was still clear , the wind .

Despite the strong northerly winds , the sky remains very clear .the , the sky very clear .

Figure 2.17: Example of partial string matching used for most evaluation methods. Here we show

a single output hypothesis compared with four reference translations. Sequences of words in the

hypothesis that match sequences in any of the reference translations are highlighted. Likewise,

sequences of words in each reference that are found in the hypothesis are highlighted. Most

evaluation metrics are based on functions of counts of these matches.

One metric for evaluation is the well-known Levenshtein or edit distance, which is borrowed

from ASR evaluation, where it is known as the word error rate (WER) (Och et al., 1999). The

WER sums the number of insertions, deletions, and substitutions required to transform an output

sentence into the reference sentence. Unfortunately, this metric is less appropriate for MT than

ASR, because it does not recognize word reorderings. A word that is translated correctly but in

the wrong location will be penalized as a deletion (in the output location) and an insertion (in

the correct location). This problem motivates the use of position-independent word error rate

(PER), which is similar to WER but does not penalize reorderings, because it regards the output

and reference sentences as unordered bags of words rather than totally ordered strings (Och et al.,

1999).

The most widely used metric is the bilingual evaluation understudy (BLEU; Papineni et al.,

2002). BLEU considers not only single word matches between the output and the reference sen-

tence, but also n-gram matches, up to some maximum n. This allows it to reward sentences where

local word order is closer to the local word order in the reference. BLEU is a precision-oriented

metric; that is, it considers the number of n-gram matches as a fraction of the number of total

n-grams in the output sentence. Let #(g) be the count of an n-gram g in a particular hypothesis

sentence ê, and #clip(g) be the maximum number of times that g appears in any corresponding

reference sentence. We can compute the n-gram precision pn for a set of hypothesis translations

H.

pn =
∑ê∈H ∑g∈ngrams(ê) #clip(g)

∑ê∈H ∑g′∈ngrams(ê) #(g′)

To get a better idea of the accuracy, we combine multiple n-gram precisions, up to some maximum

n, by taking the geometric average ∑n log pn. This biases the metric towards translations with

fewer words, because denominator contains the total number of hypothesis n-grams. To correct

this defect, the metric includes a brevity penalty, which penalizes output sentences that are much

shorter than the reference. It compares the overall number of words h of the entire hypothesis set

with effective reference length r, created by summing the lengths of the closest reference sentences

to each candidate sentence.27 This gives us BLEU.

27 The NIST evaluation uses an alternative definition of effective reference length, always choosing the shortest

reference.
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BP =
{

1 if h > r

e(1−r/h) otherwise

BLEU = BP · exp

(
∑
n

log pn

)
Automatic evaluation is an active research area. A number of other metrics based on word

matching include precision and recall (Melamed et al., 2003), and length of the longest common

subsequence (Lin and Och, 2004). METEOR enhances token matching with weighted matching

based on morphological or semantic similarity (Banerjee and Lavie, 2005). Translation edit rate

(TER; Snover et al., 2006) computes an edit distance between hypotheses and human-corrected

versions of those hypotheses. The intuition is that it corresponds to “the amount of work needed

to correct the translations.” It is an fully automatic approximation to human TER (hTER), a true

task-based metric which measures the amount of work done by human post-editors.

It is important to note when interpreting metrics such as BLEU that they can be used to

rank systems relative to each other, but the scores are generally uninterpretable as absolute mea-

sures of correctness. A key element of most research in this area is the identification of metrics

that correlate with human rankings of systems in controlled studies (Callison-Burch et al., 2007;

Papineni et al., 2002). Since this correlation is important, a natural line of research involves the

use of machine learning to optimize metrics for correlation (Albrecht and Hwa, 2007; Kulesza and

Shieber, 2004; Lita et al., 2005; Liu and Gildea, 2007; Russo-Lassner et al., 2005).

It is not always clear when a difference in scores between two systems represents a signif-

icant difference in their output. Koehn (2004b) describes a method to compute statistical confi-

dence intervals for most automatic metrics using bootstrap resampling.

BLEU has been highly influential in SMT research. It is extensively used SMT literature,

and it has been used as the basis for a number of comparative evaluations (Callison-Burch et al.,

2007; Doddington, 2002; Koehn and Monz, 2005, 2006). It is commonly used in the objective

function for minimum error-rate training (Och, 2003).

Use of BLEU is controversial. Turian et al. (2003) and Callison-Burch et al. (2006b) pro-

vide counterexamples to its claimed correlation with human judgement. Other problems have

been illustrated by construction (Callison-Burch et al., 2006b). Despite controversy, automatic

evaluation has had a profound impact on progress in SMT research, and it is likely to continue.

With the proliferation of available metrics, it is not always clear which one to use. Practical

considerations such as comparison with previous benchmarks encourages continued use of BLEU,

despite criticism. The use of discriminative training depends on computationally simple metrics,

including BLEU, METEOR, and TER. Correlation with human judgement is also a desirable

characteristic. For a good contemporary evaluation of several metrics in this regard across several

language pairs, refer to Callison-Burch et al. (2007).

2.8 Current Directions and Future Research

There are many common elements in the best systems, although there is also growing di-

versity. Most can be characterized as follows: phrase-based models (in either the FST or SCFG

framework); log-linear models with a small set of generative features; and discriminative training.

The success of these methods is seen in academic workshops (Callison-Burch et al., 2007; Koehn

and Monz, 2005, 2006) and the yearly NIST evaluations.

All of these methods were popularized very quickly after their initial introduction. SMT

has made swift progress and there is great optimism for future success. Nonetheless, there are
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many hurdles and open questions in the field.

Most of the community evaluations in SMT focus the translation of news and government

texts. There is very little work on open-domain translation, particularly for informal genres—

which describes much of the information found on the Internet, and for which translation is in

demand. Although it is possible to mine data from the Web (Resnik and Smith, 2003), this resource

is underutilized. Since statistical methods are sensitive to both domain differences and noise, the

move to informal text and Internet data will present many interesting challenges.

Application of SMT to language pairs with very little parallel text presents an interesting

challenge. Bannard and Callison-Burch (2005) and Callison-Burch et al. (2006a) describe a novel

method for solving this problem by learning paraphrases of the source language using a parallel

text in a third language, and applying these paraphrases to generate sentences that can be translated

by an impoverished SMT system.

Another understudied problem is the translation of English into other languages. In the

United States, research focuses almost exclusively on translation from other languages into En-

glish. This is dictated by government funding, but has the effect of obscuring deficiencies in the

current approaches. For instance, it is easier to map morphologically rich languages such as Ger-

man and Arabic onto a relatively morphologically simple language such as English. This can be

seen as a movement from a higher-dimensional to a lower dimensional space, where some loss of

meaning and nuance is harmless. Translation in the other direction requires much more attention

to this issue (Goldwater and McClosky, 2005; Minkov et al., 2007; Nießen and Ney, 2004; Schafer

and Drabek, 2005). Koehn and Hoang (2007) and Koehn et al. (2007) describe factored models, a

framework for modeling with morphology and other annotations.

Evaluation of MT systems will continue to be a focus, since discriminative training illus-

trates the importance of metrics that correspond to human judgement. However, most popular

metrics provide very little insight into the typical errors made by any particular system, as they

only produce a single aggregate score over an entire test set. They are especially useless for iden-

tifying sentence-level errors since they provide only an aggregate measure of accuracy. For this

reason, the relative merits and drawbacks of different models with respect to different types of

translation error are not well understood. Error analysis techniques have not been substantially

explored, although it has recently been identified as an important task (Och, 2005). A few tech-

niques for error analysis (Chiang et al., 2005; DeNeefe et al., 2005; Popovic et al., 2006) and

confidence estimation (Ueffing and Ney, 2005) have been investigated, but in general this area

remains underexplored.

The fundamental issues in SMT will remain a focus of all future research. Refinements

to modeling techniques and parameter estimation methods will no doubt continue. New develop-

ments in machine learning will increasingly be applied to machine translation, although additional

work is needed to scale them up to data sizes commonly used in SMT. There is also increasing

interest in the incorporation of linguistic knowledge into models and parameter estimation. As

we described, syntactic modeling is an area of active research. There are also some steps toward

semantic modeling (Carpuat and Wu, 2005, 2007; Chan et al., 2007).

2.9 Conclusions

This chapter has presented a comprehensive tutorial overview of statistical machine trans-

lation. To cover a wide variety of approaches, some parts of the discussion have been left abstract.

In particular, we have ignored the practical details of efficient implementation of these models.

However, increasingly large knowledge sources and the increasingly complex models that exploit
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them place growing pressure on these algorithms to scale efficiently. The remainder of this dis-

sertation will describe an innovative solution to this problem, allowing current models to scale far

beyond the current state of the art.
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3 Machine Translation by Pattern Matching

Calvin: You can’t just turn on creativity like a faucet. You have to be in the right

mood.

Hobbes: What mood is that?

Calvin: Last-minute panic.

–Bill Watterson

Statistical MT models typically contain many millions of parameters. So far in our discus-

sion, the implications of this have been abstract. We now turn our attention to the implementation

of translation models. Our main concern will be efficient representation of and access to model

parameters.

The number of model parameters depends on training data size and model complexity.

Trends toward larger data and more articulated models place increasing pressure on implementa-

tions. If we rely on direct representation of a model trained on large data, it is already quite easy to

create a translation system that exhausts the main memory of the commodity hardware on which

most research systems are developed.

Callison-Burch et al. (2005) and Zhang and Vogel (2005) introduced an alternative that we

call translation by pattern matching. It relies on indirect representation of the translation model,

using the training data itself as its proxy. This representation is compact. More importantly, it is

independent of model size, enabling us to scale to arbitrarily large models (Chapter 5). Rather than

enumerate and compute all parameters of the model offline, translation by pattern matching works

by efficiently searching for relevant sections of the training data at runtime, and extracting and

computing the needed parameters from these sections. This efficient search is based on algorithms

for pattern matching.

Although Callison-Burch et al. (2005) and Zhang and Vogel (2005) lay the foundation

for pattern matching, there are some open problems. They did not demonstrate that they could

match—let alone exceed—the performance of a common baseline system. In fact, a few elements

of their approach appear to be incompatible with other methods used in the state of the art. There-

fore, it is unclear whether translation by pattern matching is even a viable replacement for direct

representation. In this chapter, we answer this question affirmatively.

This chapter is organized as follows. We first describe a standard baseline model (§3.1).

We describe direct representation of the model and illustrate its limitations (§3.2). We introduce

translation by pattern matching, a alternative to direct representation that generalizes previous

work (§3.3). We resolve some open problems in the previous work (§3.4), and show that translation

by pattern matching produces equivalent results to a direct representation (§3.5).
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3.1 Baseline Model

In §2.4.2, we loosely described some common model features. Here, we describe the exact

features of the widely used phrase-based system Pharaoh (Koehn, 2004a).1 They have been widely

replicated in several other related models (see, e.g. Chiang, 2005, 2007; Simard et al., 2005). There

are eight features.

1. We take a logarithm of the joint probability of all target-to-source phrase translation

probabilities used in the translation.

log ∏
(ẽ, f̃ )∈D

p( f̃ |ẽ) (3.1)

This feature is roughly equivalent to the translation model in a Bayesian framework (§2.4.1.2).

2. We also take the logarithm of the equivalent source-to-target phrase translation proba-

bilities.

log ∏
(ẽ, f̃ )∈D

p(ẽ| f̃ ) (3.2)

This feature is difficult to justify from a Bayesian perspective. However, Och et al. (1999) found

that it could be used interchangeably with the target-to-source probabilities. In the Pharaoh base-

line system, both features are used together. This combination is widely reproduced in other

models.

3. We use the logarithm of a target-to-source lexical weighting feature.

log
I

∏
i=1

[
∑

j:(i, j)∈A(D)
1

]−1

∑
j:(i, j)∈A(D)

p( fi|e j) (3.3)

This feature computes a word-to-word translation probability over aligned words in each phrase

pair. It was introduced by Koehn et al. (2003), and it has been suggested by Foster et al. (2006) that

it acts as a type of smoothing distribution for the target-to-source phrase translation probabilities,

which are estimated from sparse data.

4. We use the logarithm of the source-to-target lexical weighting, following the same logic

as for the target-to-source probabilities.

log
J

∏
j=1

[
∑

i:(i, j)∈A(D)
1

]−1

∑
i:(i, j)∈A(D)

p(e j| fi) (3.4)

5. We use the logarithm of a trigram language model.

6. We use a distortion count feature. To compute this feature, we simply count the num-

ber of intervening words between source phrases that are translated consecutively in the target

sentence (Koehn et al., 2003; Marcu and Wong, 2002).

7. We use a phrase count feature that counts the number of phrase pairs used.

8. We use a word count feature that counts the number of words in the target sentence.2

It enables the model to control the average length of translation output, which is important to the

BLEU evaluation criterion (Papineni et al., 2002, see also §2.7).

1 Moses (Koehn et al., 2007), the successor to Pharaoh, uses nearly identical features. The main difference is that

Moses uses a lexicalized distortion model (Koehn et al., 2005; Tillman, 2004). We examine the significance of this

difference in §5.2.2.
2In the literature, these last two features are sometimes called the phrase penalty and word penalty, respectively.
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f̃ ẽ log p( f̃ |ẽ) log lex( f̃ |ẽ) log p(ẽ| f̃ ) log lex(ẽ| f̃ )
� north 0.88 0.53 0.69 0.43

northbound 0.02 0.31 0.00 0.09

northern side 0.33 0.15 0.00 0.00

�Î north wind 0.33 0.16 0.16 0.05

�¦ nato 0.79 0.19 0.82 0.10

by nato 0.43 0.19 0.00 0.10

�6 remained strong 0.07 0.01 0.00 0.00

is still very 0.03 0.01 0.08 0.03

�6Eá is filled with 0.05 0.00 0.25 0.00

A� is still clear 1.00 0.00 0.11 0.00

is still very 0.05 0.00 0.22 0.01

Figure 3.1: Example phrase table. It represents each source phrase along with each possible

translation and the associated parameter values

We can easily eliminate the three count features (6–8) from further discussion. Each is a

monotonic function of the derivation with no probabilistic parameters. This leaves us with the

phrase translation, lexical weighting, and language model features, all requiring many parameters.

We can further delimit the five probabilistic models into two groups: those that depend only on

the phrase pair, and those that depend on additional context.

Of these features, only the language model probabilities depend on context outside the

phrase pair. Although efficient representation of language models is important and highly relevant

to our goal of scaling, large-scale language modeling is a separate body of research with applica-

tions beyond machine translation, including speech recognition, document classification, optical

character recognition, and many more (Rosenfeld, 2000). For the remainder of this dissertation,

we will focus on the four translation model features that depend only on the phrase pairs.3

3.2 Phrase Tables

In a phrase-based system, the set of translation rules is simply the complete set of bilin-

gual phrase pairs (§2.3). Because the phrase translation and lexical weighting probabilities are

dependent only on the rule identities, it is convenient to store them directly with the rules. All that

we then require is efficient access to any translation rules containing a source phrase of the input

sentence, which in turn gives us both its target phrases and the necessary parameters. The data

structure containing these rules and parameters is called the phrase table. Abstractly, we can think

of it as a table containing the source side and target side of each rule and all of their associated

probabilities (Figure 3.1).

The phrase table can be implemented as a prefix tree (or trie; de la Briandias, 1959; Fred-

ken, 1960) using the source side of each rule as a key. Formally, a prefix tree is an unminimized

deterministic finite-state automaton recognizing all of the patterns in a set. Each node in the tree

uniquely represents a prefix of one or more patterns. This prefix is identical to the concatenation

of edge labels along the path from the root to the corresponding node.

In the prefix tree implementation of a phrase table, the set of patterns is simply the set of

3In §6.2 we briefly discuss related work in language model scaling. We simply note here that some of those tech-

niques are similar to our techniques for translation models (e.g. Zhang et al., 2006b).
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remained strong 〈0.07,0.01,0.00,0.00〉
is still 〈0.03,0.01,0.08,0.03〉

is still clear 〈1.00,0.00,0.11,0.00〉
is still very 〈0.05,0.00,0.22,0.01〉

A�

is filled with 〈0.05,0.00,0.25,0.00〉
�

Eá

�6

north 〈0.88,0.53,0.69,0.43〉
northbound 〈0.02,0.31,0.00,0.09〉

northern side 〈0.33,0.15,0.00,0.00〉

nato 〈0.79,0.19,0.82,0.10〉
by nato 〈0.43,0.19,0.00,0.10〉

(

ý¶¦

north wind 〈0.33,0.16,0.16,0.05〉

Î

�

Figure 3.2: Prefix tree representation of the phrase table in Figure 3.1. Each unique source phrase

is represented by a single node of the tree, which is found by traversing the path from the root

that is labelled with the phrase. The node associated with a source phrase stores all of its possible

target phrases, and a vector of scores for the phrase pair.

all source phrases in the model (Figure 3.2). This exploits the fact that in most cases, the prefix of

a valid source phrase is itself a valid source phrase. To find an m-length source phrase in the tree,

we traverse the m edges that spell out the phrase. Target phrases and associated scores are stored

at the node.

This direct representation enables very fast lookup. A sentence of length J contains J2

possible source phrases and lookup for a length m source phrase starting at the root requires O(m)
time. However, if we begin the search at the node representing the phrase’s prefix, we need only

traverse a single edge, which reduces lookup to constant O(1) time. The upper bound on lookup

time for all rules is therefore O(J2). This is a loose upper bound, since many phrases will not be

found and we can terminate lookup as soon as any prefix of the phrase is not found. Since the

constant factors in these lookup times are very small, the overall effect is that lookup takes only a

very small fraction of the overall decoding time.

Fast lookup comes at a price. The space consumption of the prefix tree can be very high.

Consider extraction of rules from a single training sentence. If each substring of the sentence is a

valid source phrase, then we would extract up to J2 source phrases from a sentence with J words.

Since each source phrase corresponds to a prefix tree node, the prefix tree representation requires

much more space than the sentence that produced it. This is not the only source of redundancy, as
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Figure 3.3: Architecture of a simple table-based decoder. This architecture requires that the entire

model fit into main memory.

we can see from Figure 3.2. Target phrases at each node are represented independently, although

the target phrases of a source phrase and its prefix are highly correlated and overlapping.

To make matters concrete, we estimated the size of a phrase table extracted from the data

used in our experiments (see §3.5, below). The data contains over 27 million words of Chinese

in over one million sentences. Currently, this is among the largest in-domain training corpora for

newswire translation tasks. From this it is easy to compute counts and sizes of all unique source

phrases. We did not compute the size of a complete model based on arbitrary length phrases, for

reasons that will become apparent. Instead, we estimate the size of such a phrase table using the

following assumptions.

1. Each unique source phrase has exactly one translation.

2. All data types require four bytes of storage.

3. A node sans data requires twelve bytes of storage: four for a pointer to the node from

its parent node, four for the edge label, and four for a pointer to the variable-length data

contained in the node.4

4. Each source phrase translates to a target phrase of the same length. Therefore, the data

stored at the node representing an m-length source phrase requires 4m + 20 bytes: 4m + 4

bytes for the null-terminated target phrase and 16 bytes for the four scores associated with

the rule.

Assumption 1 is conservative, particularly for frequent short phrases which often have hun-

dreds or thousands of translations. The other assumptions assume a compact implementation

similar to one described by Zens and Ney (2007).5 Actual phrase table sizes also depend on

phrase extraction heuristics, which we don’t address.6 Nonetheless, our estimate seems reason-

able for illustrative purposes. Figure 3.4 shows the number of unique m-length source phrases and

4We assume a integerized representation of words.
5In fact, its compactness entails a slight tradeoff in speed, since a binary search is needed to find an outgoing edge

at each node.
6We will examine these heuristics empirically in §5.2.3.3.
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x = maximum phrase length

Figure 3.4: Number of unique source phrases of different lengths and their cumulative effect on

estimated phrase table size.

their cumulative impact on phrase table size. We estimate that a complete model extracted from

our data would require 46 gigabytes of space. This is large enough to be impractical for offline

computation, let alone storage in main memory.7

Obviously, a tradeoff is required. We need to reduce the number of unique phrases in the

model. To do this we either need to reduce the amount of training data, or reduce the number of

phrases that are extracted from the training data.

Figure 3.4 suggests an easy implementation of the latter option. We can reduce the number

of phrases by limiting the length of phrases rather than allowing any arbitrary-length substring to

be a phrase. This is the prevailing strategy in most systems. Obviously the phrase length limit

should be low, since the estimate shows that phrases of even a few words can consume gigabytes

of storage. Limits from anywhere between two and seven words are typically used (Ayan and

Dorr, 2006a; Koehn et al., 2003; Zens and Ney, 2007). As suggested by this range, there is some

debate over the best cutoff, a matter which we will examine empirically in Chapter 5. From a

practical perspective, it is acceptable to remove longer phrases from the model, since it is very

unlikely that they will ever be encountered. Although it is rare for test sentences to match a long

phrase, on those occasions we miss the opportunity to fully exploit the training data for what is

likely to be a very good translation.

If our training data grows large enough, setting a maximum phrase length might not be

enough to prevent our model from outgrowing available memory. Phrase table filtering is a popular

solution to this. It is used in batch translation, a common scenario occurring in optimization or

in translation of benchmark data such as those used in the NIST evaluations. After the model is

computed, source phrases that don’t appear in the test set are removed along with their translations

and parameters, and only parameters needed to translate the test data are loaded into memory

(Figure 3.5). Obviously, this method is limited to cases where we know the test data in advance,

such as translation of benchmark data for evaluation purposes. However, it does allow the system

to translate with a somewhat larger model than can reasonably be stored in main memory. To

alleviate test set dependency, we can also filter on other criteria (Johnson et al., 2007).

Figure 3.5 illustrates an inefficiency of filtering. Although we never require the parameters

of the complete model at runtime, our parameter estimation step still computes all of them. We

spend additional time removing many of them from the model. For the large corpora used in

contemporary systems, these steps take many hours.

Zens and Ney (2007) relax the dependence on main memory. They store their model in an

7A 46 gigabyte model might not seem unreasonable within a few years. However, we will show in Chapter 5 that a

combination of larger training data and more complex models can generate representations that are at least three orders

of magnitude larger than this. Considering the pace of corpus acquisition and model development, we don’t expect

hardware capacity to catch up with potential model sizes at any time in the foreseeable future.
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Figure 3.5: Architecture of a table-based decoder with filtering. Filtering is necessary when the

model becomes to big to fit into memory (cf. Figure 3.3).

external prefix tree. Portions of the tree that are needed at runtime are paged in from disk. This

allows the model to scale somewhat beyond the limits of memory. However, they still must make

tradeoffs in order to compute their model offline. They impose a strict maximum phrase length.

We now describe an architecture that requires neither offline computation of a full model

nor limitation to maximum phrase length.

3.3 Translation by Pattern Matching

An alternative to direct representation comes from work in example-based translation,

sometimes called memory-based translation (Nagao, 1984; Sato and Nagao, 1990; Somers, 2003).

Like statistical MT, example-based MT is a data-driven approach to translation. However, the two

approaches draw on largely separate research traditions. As we saw in Chapter 2, a unifying prin-

ciple in statistical MT is optimization. It draws largely on methods from machine learning. In

contrast, example-based translation draws from a number of different disciplines. These include

statistics, but example-based translation is typically not implemented as an exercise in optimiza-

tion. Wu (2005) argues that its distinguishing characteristic is treatment of the training data as

a runtime library and translation by analogy, making it similar to case-based reasoning. In fact,

practitioners of example-based MT are not agreed on a precise characterization (Hutchins, 2005),

and it is sometimes argued that it subsumes statistical MT (Somers, 2003).

Definitions aside, a clear characteristic of example-based translation is its view of the train-

ing corpus as a database of examples. To translate a sentence, the system searches for matching
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Figure 3.6: Translation by pattern matching. In this architecture, the complete model is no longer

bound by what we can fit in main memory, or even what we can efficiently compute offline.

fragments of text in this database at runtime. Subsequent steps are system-specific. However, we

are mainly interested in the idea of efficient search over a training corpus. For this, example-based

systems use data structures for efficient efficient pattern matching (Brown, 2004).

Callison-Burch et al. (2005) and Zhang and Vogel (2005) independently applied pattern

matching to phrase-based statistical MT. They employ a strategy in which the corpus itself is

stored in main memory, just as in example-based translation. To decode a new sentence, the

system employs pattern matching to search for each candidate source phrase in the source language

corpus. Matching phrases are extracted along with their aligned target phrases and scored. The

resulting sentence-specific phrase table is then used in the decoding algorithm, and subsequently

freed from memory. In this indirect representation, the training data itself serves as a proxy for the

complete model, and is queried for model parameters only as needed. We call this translation by

pattern matching. It is illustrated in Figure 3.6.

Translation by pattern matching has several potential advantages.

• It is possible to scale to large corpora without the tradeoffs required by direct representation.

• There is no need to filter the model for a specific test set. This makes translation by pattern

matching suitable for online settings where arbitrary input is expected.

• Where applicable, arbitrarily long phrases can be used, since we generate and discard phrase

pairs as necessary and do not need to keep them in memory all at once.

• Because there is no need to extract, score, and store a complete model, it becomes much

easier to experiment with grammar parameters and features. This is illustrated in Chapter 5.

These are all potentially valuable benefits. However, while Callison-Burch et al. (2005) and Zhang

and Vogel (2005) lay the foundation for translation by pattern matching, they leave some unan-

swered questions.

• It is difficult to include the target-to-source translation feature (Equation 3.1). To compute

the probability p( f̃ |ẽ) we need a count of all source phrases in the corpus that align to the
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target phrase ẽ. This implies that after searching for and extracting rules for a source phrase,

we must then search for and extract rules for all of its possible target phrases. As we will

see, the initial search and extraction for the source phrase is expensive. An additional search

for target phrases would be onerous, so we sacrifice the feature for efficiency. However, as

we saw in Chapter 2, this feature originated in the earliest Bayesian approaches to statistical

MT (§2.4.1), and has since been considered indispensable. It is not clear how a system will

fare without it.

• The models of Callison-Burch et al. (2005) and Zhang and Vogel (2005) were not opti-

mized for translation accuracy using minimum error rate training (Och, 2003, see §2.5.3.1).

In fact, as we will show, an optimization technique used by their approach has an unde-

sirable interaction with the MERT algorithm (Och, 2003, §2.5.3.1) used for optimization.

Therefore, paradoxically, although they can easily exploit very large corpora, neither paper

reports state-of-the-art results on benchmark data.8 It is therefore unclear whether transla-

tion by pattern matching is a viable approach for state-of-the-art results, or merely a clever

algorithmic curiosity.

• The algorithms could only be applied to phrase-based models based on contiguous phrases.

In Chapter 2, we described an increasingly complex progression of models. Several of these,

such as the model of Chiang (2005, 2007), allow translation of discontiguous phrases. The

pressures we described above for standard phrase-based models are much more acute for

these models. However, the method of Callison-Burch et al. (2005) and Zhang and Vogel

(2005) does not work for discontiguous phrases.

In this chapter and the next, we solve these problems. In order to gain a deeper understand-

ing of them, we first review the suffix array data structure used to implement translation by pattern

matching (§3.3.1). We also describe source-driven rule extraction (§3.3.2).

3.3.1 Pattern Matching and Suffix Arrays

A fundamental task in pattern matching is exact pattern matching on strings. We are given

a query pattern w and a text T , and our goal is to find all occurrences of w in T . Exact pattern

matching has a vast array of applications and many algorithms have been developed. Gusfield

(1997) gives an excellent introduction, with a focus on algorithms used in biological sequence

analysis.

In phrase-based translation, we are given an input sentence of length J. Each of its J2

substrings is a possible source phrase. We need to query the source side of the training bitext for

each of these substrings (Figure 3.7). If we have a fast enough exact pattern matching algorithm

for single query patterns, we can implement our framework by enumerating all substrings of the

input and searching the training text for each of them.

To implement fast lookup on the text, we use an indexing data structure called a suffix array

(Manber and Myers, 1993). It represents all suffixes of the text in lexicographical order. Formally,

the ith suffix of text T is the substring beginning at position i and continuing to the end of T

8Callison-Burch et al. (2005) evaluate on a unique test set, making their results difficult to situate in the litera-

ture. Zhang and Vogel (2005) evaluate on the NIST 2002 Chinese-English task achieving a BLEU score of 17.6. A

comparable phrase-based system achieves a score of 34.9 on the same task (DeNeefe et al., 2007). The latter score is

typical of the best models on this data. Under most circumstances, we caution that it is misleading to directly compare

self-reported BLEU scores. Differences in implementation, tokenization, and capitalization can lead to differences of

several BLEU points. However, due to the extreme difference in this case, we can confidently state these are extremely

poor results.
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Input Sentence: it persuades him and it disheartens him

Query Patterns: it, persuades, him, and, disheartens, it persuades, persuades him, him and,

and it, disheartens him, it persuades him, persuades him and, him and it, and it disheartens,

it disheartens him, it persuades him and, persuades him and it, him and it disheartens,

and it disheartens him, it persuades him and it, persuades him and it disheartens,

him and it disheartens him, it persuades him and it disheartens,

persuades him and it disheartens him, it persuades him and it disheartens him

Figure 3.7: Example input sentence and resulting query patterns for phrase-based translation. For

clarity, all of our pattern matching examples are in English, though in practice our source text is

Chinese.

(Figure 3.8). This suffix is uniquely identified by the index i of its first word. The suffix array SAT

of T is a permutation on the set of suffix identifiers [0, |T |−1] corresponding to the lexicographical

order of the suffixes (Figure 3.9).9

Suffix arrays enable fast exact pattern matching. Every substring of T is the prefix of a suffix

of T . Because SAT represents the suffixes in lexicographical order, we can find all occurrences of

a substring w with binary search. Every occurrence of w will correspond to exactly one suffix of

T , and they will all be found within a contiguous range of SAT . This range can be identified with

a pair of binary searches on the suffix array. Specifically, a length-m substring can be found in

O(m+ log |T |) time (Manber and Myers, 1993).10

3.3.2 Source-Driven Phrase Extraction and Scoring

Once we have found the occurrences of a source phrase, we need to extract its translations.

If we were computing a direct representation of the model, we would simply extract all viable

phrase pairs from the sentence in which the source phrase occurs. However, since we only need

the translation of the source phrase we are interested in, this is inefficient. Our goal is to extract

only the translation of the specific source phrase that we have found. We call this source-driven

phrase extraction.

Given a source phrase, its target phrase will be the minimal target span containing all words

that are aligned to at least one of its words. To find this span, we simply find the minimal and

maximal target word indices of all words aligned to any word in the source phrase.

We are not quite done. Recall that none of the words in a valid phrase pair can be aligned

to words outside the pair (§2.5.1.2). In order to extract the phrase pair, we must check to see

whether this condition is satisfied. To do this, we invert the previous step and find the minimal

source span that is aligned to the target span. If this source span does not match the original source

phrase, then the target phrase is aligned to words outside of the source phrase and extraction fails.

Otherwise, we extract the target phrase. Under a loose heuristic (Ayan and Dorr, 2006a), we

can also extract target phrases containing any unaligned target words immediately adjacent to the

target span. Phrase extraction is illustrated in Figure 3.10.

9Actually, any total ordering on the tokens can be used. In our implementation we use the natural order on a

integerized representation of words.
10This result requires a bit of algorithmic subtlety that we ignore here. In fact, this simple algorithm is not the most

efficient solution. Abouelhoda et al. (2004) show that lookup can be done in optimal O(m) time using some auxiliary

data structures. However, for our purposes O(m + log |T |) is reasonable. The latter term, which we can think of as a

corpus-specific constant, is fairly mild.
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it makes him and it mars him , it sets him on and it takes him off . #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

it makes him and it mars him , it sets him on and it takes him off . #

makes him and it mars him , it sets him on and it takes him off . #

him and it mars him , it sets him on and it takes him off . #

and it mars him , it sets him on and it takes him off . #

it mars him , it sets him on and it takes him off . #

mars him , it sets him on and it takes him off . #

him , it sets him on and it takes him off . #

, it sets him on and it takes him off . #

it sets him on and it takes him off . #

sets him on and it takes him off . #

him on and it takes him off . #

on and it takes him off . #

and it takes him off . #

it takes him off . #

takes him off . #

him off . #

off . #

. #

#

Figure 3.8: Example of a text and its set of suffixes. Note that each suffix can be uniquely identified

by its starting position in the text. In keeping with a common convention of the pattern matching

literature, the text ends with a special symbol (#) that is distinct from every other symbol in the

alphabet.
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it makes him and it mars him , it sets him on and it takes him off . #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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12
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1
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11

9

14

7

17

18

it makes him and it mars him , it sets him on and it takes him off . #

makes him and it mars him , it sets him on and it takes him off . #

him and it mars him , it sets him on and it takes him off . #

and it mars him , it sets him on and it takes him off . #

it mars him , it sets him on and it takes him off . #

mars him , it sets him on and it takes him off . #

him , it sets him on and it takes him off . #

, it sets him on and it takes him off . #

it sets him on and it takes him off . #

sets him on and it takes him off . #

him on and it takes him off . #

on and it takes him off . #

and it takes him off . #

it takes him off . #

takes him off . #

him off . #

off . #

. #

#

Figure 3.9: Suffix array for the example text of Figure 3.8. We also show the result of a query for

the pattern him. Note that each occurrence is the prefix of a suffix of the corpus, that there is a

one-to-one correspondence between the occurrences and the suffixes, and that all of the suffixes

occur in a contiguous stretch of the array, meaning that we can find them using binary search.
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6. Extract f2 f3 f4/e2e3e4e5

7. Extract f2 f3 f4/e1e2e3e4e5Phrase extraction using the loose heuristic

Figure 3.10: Examples of source-driven phrase extraction.

Once we have collected all of the target phrases that are aligned to a source phrase, we can

compute the source-to-target translation probabilities and lexical weightings. For the latter we rely

on a precomputed table of word-to-word translation probabilities computed from the word-level

alignment.

The complexity of extraction and scoring is linear in the number of occurrences of a source

phrase. In Figure 3.11, we see that the vast majority of source phrases occur only a handful of

times in our corpus. However, a small handful of source phrases occur hundreds of thousands of

times in our corpus. Extracting all of these examples would be extremely expensive. Callison-

Burch et al. (2005) and Zhang and Vogel (2005) counteract this problem with sampling. Rather

than extracting a translation for every occurrence of a source phrase, they place a cap on the

number of of examples. Both groups arrived at a sample size of 100 via experimentation.11 It is

unclear how sampling interacts with the minimum error rate training algorithm. We discuss this

11This sample is obviously small for the handful of phrases occurring tens or hundreds of thousands of times. It is

perhaps surprising that this should work as well as the full data. However, Och (2005) and Federico and Bertoldi (2006)

show that phrase translation probabilities can be stored in four bits without loss of precision, meaning that they are in

fact very crude even when computed from complete data.
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unigrams
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trigrams

Figure 3.11: Histogram of source phrase frequencies, up to length three (double logscale).

in more detail below.

3.4 Bringing Performance up to the State of the Art

We need to address two questions. The first is the importance of the target-to-source phrase

translation feature. This feature is often assumed to be important to the success of phrase-based-

systems. However, a feature selection experiment by Lopez and Resnik (2006) suggests that

several of the standard features were less important than previously thought. In particular, source-

to-target feature and target-to-source features appeared to be redundant. Since our system can

compute the former feature, we hope that it will not need the latter. This question is answered

empirically in §3.5.

A second concern is the application of minimum error rate training (MERT, Och, 2003,

§2.5.3.1). Neither Callison-Burch et al. (2005) nor Zhang and Vogel (2005) applied it to their

models.

A standard approach to sampling in statistical models, random sampling, interacts with

the MERT algorithm. Recall that the MERT algorithm works by iteratively collecting n-best

hypotheses and their feature values. These are used to compute an approximation to the error

surface. A problem with random sampling is that it causes the feature values for a hypothesis to

vary between different runs of the system. This is especially problematic if the system produces

the same hypothesis with different features during different iterations of the algorithm. In this case,

the algorithm views these as separate hypotheses. We found that, under this strict interpretation,

the algorithm would never converge, because it would never meet the convergence criterion that no

new hypotheses be added in an iteration. To solve this problem, we modified the algorithm so that a

hypothesis was not considered new if it had been seen before with different weights. However, this

leads to a new problem: which set of weights should we choose for the hypothesis? We decided

to take the first set of weights that had been seen with the hypothesis. Using this definition, the

algorithm eventually terminates. However, on average it took twice as many iterations as it did for

a standard decoder.

To resolve this issue, we used deterministic sampling. Whenever a source phrase occurs

more frequently than the maximum sample size, we take our samples at uniform intervals over

the set of locations returned by the suffix array. With this strategy in place, hypotheses receive the

same feature weights between different runs of the decoder, the results are deterministic, and the

MERT algorithm converges at the same rate as it does without sampling.
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Configuration BLEU

baseline with standard eight features 28.6

baseline without target-to-source translation feature 28.3

baseline without target-to-source translation or phrase count features 28.2

baseline without phrase count feature 28.1

Table 3.1: Baseline system results compared with systems missing one or more features.

3.5 Results

We experimented on Chinese to English translation in the newswire domain. Our train-

ing data consisted of over 1 million sentences compiled from various corpora provided by the

Linguistic Data Consortium. The corpus is roughly the same as the one used for large-scale exper-

iments by Chiang et al. (2005). To generate alignments, we used GIZA++ (Och and Ney, 2003).

We symmetrized bidirectional alignments using the grow-diag-final-and heuristic (Koehn et al.,

2003). Each configuration of the system was separately optimized on the NIST 2003 Chinese-

English test set (919 sentences) using minimum error rate training (Och, 2003, §2.5.3.1). We

measure translation accuracy using the NIST implementation of case-insensitive BLEU.12 We test

on the NIST 2005 Chinese-English test set (1082 sentences).

For our algorithms, we also measure the computational overhead required to search for,

extract, and score rules. We report the average time required per sentence on the NIST 2003 data.

All experiments were performed on identical time-shared cluster machines with 8 gigabytes of

memory and two dual-core 3GHz Xeon processors running Red Hat linux 2.6.9. To minimize

discrepancies caused by CPU load, we obtained exclusive use of the machines during timing runs.

Our decoder is Pyro, a clone of the Pharaoh decoder written by David Chiang in the in-

terpreted language Python. We implemented the suffix array extensions in Pyrex, a language for

writing compiled C extensions to Python. For speed, we compile our suffix array and other data

structures offline into memory-mapped files, which are then read at decoder initialization. This

takes only a few seconds, so the amortized cost over our data is negligible.13

3.5.1 Baseline System Results

Our first experiment measures the impact of losing the target-to-source translation feature

(Equation 3.1). We did this using a standard direct representation of the phrase table using prefix

trees, with a phrase length limit of four.

We noticed during development that the phrase count feature seemed to be minimally im-

portant. Therefore, we ran the experiments without this feature as well. This can be thought of

as a kind of manual model selection. The results are shown in Table 3.1. We see a slight drop in

accuracy when we lose the target-to-source translation feature, but it is not statistically significant.

This indicates that removing the feature is not harmful to translation accuracy.

3.5.2 Translation by Pattern Matching Results

Our next experiment was designed to see if translation by pattern matching was a viable

replacement for phrase tables. In order to make the comparison as fair as possible, we enforced

12ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
13 In fact, this is the same approach taken by Zens and Ney (2007) for their direct representation.
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Sample size % sampled time (s) BLEU

Baseline – – 28.6

0 – 0.0094 –

10 75 0.0543 25.0

25 67 0.0910 26.4

50 62 0.1447 27.6

100 56 0.2198 27.7

200 51 0.3476 28.0

300 48 0.5216 28.4

400 45 0.5557 28.6

500 44 0.6492 28.5

800 40 0.9139 28.4

Table 3.2: Effect of different sample sizes on translation speed and translation accuracy. We

show in column two the percentage of the ruleset that was computed by sampling. We include

a sample size of zero to show the time required for lookup without phrase extraction or scoring.

For comparison, we also show the baseline system using prefix trees and the full feature set from

Table 3.1.

the same length restriction on phrases as in the baseline model (Experiments with longer phrases

are in Chapter 5). Therefore, the translation model is nearly the same as in the baseline system.

The only differences are in the missing target-to-source feature and the fact that the source-to-

target feature is computed by sampling.

To measure the speed/accuracy tradeoff, we ran the system using several different sample

sizes. We limited the maximum sample size to 800, because larger sizes would have been pro-

hibitively slow. For each sample size we were curious about what fraction of the phrase table was

computed via sampling. We include the percentage of rules computed by sampling out of the total

number of rules computed. These statistics were measured on the development set.

Results are given in Table 3.2. Several conclusions are evident. The first is that transla-

tion by pattern matching is viable as a replacement for phrase tables. Neither Callison-Burch

et al. (2005) and Zhang and Vogel (2005) matched state-of-the-art performance on a standard

benchmark, but our careful consideration of sampling and minimum error rate training make this

possible. Although the results for the table-based system are slightly higher, the difference is not

statistically significant. A second result is that a surprisingly large fraction of the model is com-

puted by sampling, well over half even for sample sizes giving the best performance. Finally, we

see that accuracy plateaus once the sample size reaches about 300. This essentially confirms the

results of Callison-Burch et al. (2005) and Zhang and Vogel (2005), although our best sample size

is slightly larger than their suggested value of 100, which did not fare quite as well.

3.5.3 Analysis of Memory Use

Our implementation maps each source and target word to a unique 32-bit integer. To im-

plement the algorithms, we require several memory-resident data structures.

• The source text F is an array of integers. Its length is dependent on the number of tokens

in the source text. We also include special tokens representing both the end of sentence and

the end of the text.

61



• The target text E is represented in the same way as the source text.

• The suffix array SAF is an array of integers. Its length is identical to the length of the target

text.

• The alignment is an array of integers. Its length is identical to the number of alignment

links.

• We keep an array of target sentence numbers, allowing us to map from tokens to sentence

number in constant time.

• We keep a compact array of word-to-word translation probabilities in order to compute

lexical weighting scores.

These data structures are quite compact. On our data, they require a little less than 650

megabytes. In contrast a phrase table may require several gigabytes. We illustrated this using

estimates in §3.2, and we will describe a real example of a very large phrase table in §5.3.

3.6 Conclusions

We have introduced translation by pattern matching, an algorithmic solution to the problem

of translation model scaling. We have surveyed past work, identified shortcomings, and overcome

them to produce a system that reproduces state-of-the-art performance in phrase-based translation.

This exercise is a warm-up for more complex models that improve on the standard phrase-based

model. In the next chapter, we will show how translation by pattern matching can be applied to

these models.
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4 Pattern Matching for Phrases with Gaps

People who analyze algorithms have double happiness. First of all they experience the

sheer beauty of elegant mathematical patterns that surround elegant computational

procedures. Then they receive a practical payoff when their theories make it possible

to get other jobs done more quickly and more economically.

–Donald Knuth

Phrase-based translation is an important milestone in statistical machine translation, but as

we saw in Chapter 2, it is far from the final word in translation modeling. In the last few years,

statistical MT models have greatly diversified. Most new models are inspired in some way by

phrase-based translation, and motivated by a desire to overcome its weaknesses. Some notable

examples include non-contiguous phrase-based models (Simard et al., 2005), hierarchical phrase-

based models (Chiang, 2005, 2007, §2.3.2.3), dependency treelet models (Quirk and Menezes,

2006; Quirk et al., 2005), and syntax-based tree-to-string transducer models (DeNeefe et al., 2007;

Galley et al., 2004, 2006).

Given the heterogeneity of these models, it is notable that they all share three specific char-

acteristics. First, like phrase-based models, they can translate multi-word units. Second, unlike

phrase-based models, they can also translate phrases with gaps—that is, multi-word units com-

posed of words that are not contiguous in the source sentence. Finally, as a consequence of their

greater expressivity, they all require many more rules than standard phrase-based models. In gen-

eral, the ruleset extracted from a corpus by any of them is at least an order of magnitude larger

than the ruleset of a phrase-based model extracted from the same data. In fact, the vast size of

extracted rulesets is a recurring topic in the literature of these models (see, e.g. Chiang, 2007;

DeNeefe et al., 2007; Simard et al., 2005).

The size of these rulesets makes efficient scaling techniques even more relevant to these

models than it was to standard phrase-based models. However, the introduction of gaps poses

an algorithmic challenge for translation by pattern matching. The pattern matching algorithm

presented in Chapter 3 depended crucially on the fact that our query pattern was a contiguous

string. If we no longer enforce contiguity, we require new algorithms for pattern matching. To the

extent that phrases with gaps represent the future of statistical machine translation, the relevance

of translation by pattern matching depends on its applicability to these models. We therefore seek

to develop efficient pattern matching algorithms for models where source phrases contain gaps.

To make matters concrete, we will focus on hierarchical phrase-based translation (Chiang,

2005, 2007, §2.3.2.3). This model gives statistically significant improvements in BLEU score

over a standard phrase-based system trained on the same data. Although we consider this specific

model, we emphasize that our pattern matching algorithms are general enough to be applied to any

of the aforementioned models, with the proviso that the source-driven rule extraction algorithm is

model-specific and must be redeveloped for each case.

With this mind, we can now succinctly state the problem of this chapter: Given an input sen-

tence, efficiently find and extract all hierarchical phrase-based translation rules for that sentence

in the training corpus.
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We first review the relevant aspects of hierarchical phrase-based translation (§4.1). We

show that the obvious solution using state-of-the-art pattern matching algorithms is hopelessly

inefficient (§4.2). We then describe a series of algorithms to address this inefficiency (§4.3). Our

algorithms reduce computation time by two orders of magnitude, making the approach feasible

and enabling us to replicate state-of-the-art translation accuracy (§4.5).

4.1 Hierarchical Phrase-Based Translation (Redux)

Hierarchical phrase-based translation is based on synchronous context-free grammar (§2.3.2.3).

The lexicalized translation rules of this grammar may contain a single nonterminal symbol, de-

noted X . We will use a, b, c and d to denote terminal symbols, and u, v, and w to denote (possibly

empty) sequences of these terminals. We will additionally use α and β to denote (possibly empty)

sequences containing both terminals and nonterminals. A translation rule is written X → α/β.

This rule states that a span of the input matching α is replaced by β in translation. We require that

α and β contain an equal number (possibly zero) of coindexed nonterminals. An example rule with

coindexes is X → uX1 vX2 w/u′X2 v′X1 w′. When discussing only the source side of such rules,

we will leave out the coindexes. For instance, the source side of the above rule will be written

uXvXw.1

The pattern matching problem for this model is illustrated in Figure 4.1 (cf. Figure 3.7). If

arbitrary sequences of terminals and nonterminals may be rules, then the number of source phrases

that cover a sentence is exponential in sentence length. This is especially problematic for training

the model. Chiang (2007) employs several heuristics to limit the size of the extracted grammar.

• The span of any extracted rule in either the source or target text is restricted to some small

value (henceforth MaxPhraseSpan).

• The number of nonterminal symbols in a rule is restricted to some small value (henceforth

MaxNonterminals).

• The total number of terminal and nonterminal symbols in the source side of a rule is re-

stricted to some small value (henceforth MaxPhraseLength).2

Our algorithms are parameterized for these constraints so they don’t depend in any way on specific

values for them. We explore this in greater detail in Chapter 5.

Abstractly, translation by pattern matching can be applied using the same generic algorithm

that we used for the standard phrase-based model.

1. Enumerate all source phrases that are licensed by the model.

2. Query the source training text for each source phrase.

3. Extract and score the translations of each source phrase.

4. Decode using the scored translation rules.

Implementing these steps for the hierarchical phrase-based model requires new algorithms for

pattern matching and phrase extraction.

1In the canonical representation of the grammar, source-side coindexes always appear in numerical order, so source

phrases are unambiguous despite this simplification.
2Chiang (2007) does not explicitly restrict the number of target-side symbols, making MaxPhraseSpan the de facto

limit.
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Input Sentence: it persuades him and it disheartens him

Query Patterns: it, persuades, him, and, disheartens, it persuades, persuades him, him and,

and it, it disheartens, disheartens him, it persuades him, persuades him and, him and it,

and it disheartens, it disheartens him, it persuades him and, persuades him and it,

him and it disheartens, and it disheartens him, it persuades him and it,

persuades him and it disheartens, him and it disheartens him, it persuades him and it disheartens,

persuades him and it disheartens him, it persuades him and it disheartens him, it X him, it X and,

it X it, it X disheartens, it X him, persuades X and, persuades X it, persuades X disheartens,

persuades X him, him X it, him X disheartens, him X him, and X disheartens, and X him,

it X him and, it X and it, it X it disheartens, it X disheartens him, it persuades X and,

it persuades X it, it persuades X disheartens, it persuades X him, it X him X it,

it X him X disheartens, it X him X him, it X and X disheartens, it X and X him, it X it X him,

persuades X and it, persuades X it disheartens, persuades X disheartens him, persuades him X it,

persuades him X disheartens, persuades him X him, persuades X and X disheartens,

persuades X and him, persuades X it X him, him X it disheartens, him X disheartens him,

him and X disheartens, him and X him, him X it X him, it X him and it, it X and it disheartens,

it X it disheartens him, it persuades X it disheartens, it persuades X disheartens him,

it persuades him X disheartens, it persuades him X him, it X him X it disheartens,

it X him X disheartens him, it X him and X disheartens, it X him and X him, it X and it X him,

it persuades X and X disheartens, it persuades X and X him, it persuades X it X him,

it X him X it X him, persuades X and it disheartens, persuades X it disheartens him,

persuades him X it disheartens, persuades him X disheartens him,

persuades him and X disheartens, persuades him and X him, him X it disheartens him,

him and X disheartens him, him and it X him, it X him and it disheartens,

it X and it disheartens him, it persuades X and it disheartens, it persuades X it disheartens him,

it persuades him X it disheartens, it persuades him X disheartens him,

it persuades him and X disheartens, it persuades him and X him, it X him X it disheartens him,

it X him and X disheartens him, it X him and it X him, it persuades X and X disheartens him,

it persuades X and it X him, it persuades him X it X him, persuades X and it disheartens him,

persuades him X it disheartens him, persuades him and X disheartens him,

persuades him and it X him, it X him and it disheartens him,

it persuades X and it disheartens him, it persuades him X it disheartens him,

it persuades him and X disheartens him, it persuades him and it X him, .

Figure 4.1: Example input sentence and resulting query patterns for hierarchical phrase-based

translation. There are many more query patterns than for a standard phrase-based system on the

same sentence (cf. Figure 3.7).
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it makes him and it mars him , it sets him on and it takes him off . #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3
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6

0

4

..
.

it makes him and it mars him , it sets him on and it takes him off . #

him and it mars him , it sets him on and it takes him off . #

and it mars him , it sets him on and it takes him off . #

it mars him , it sets him on and it takes him off . #

him , it sets him on and it takes him off . #

...

him on and it takes him off . #

and it takes him off . #

him off . #

Figure 4.2: Matches in a suffix array fragment for the discontiguous query pattern him X it. For

discontiguous patterns, there is no guarantee of a one-to-one correspondence between occurrences

of the query pattern and suffixes in the same range of the suffix array (cf. Figure 3.9).

4.2 The Pattern Matching Problem for Hierarchical Phrases

As with standard phrase-based models, we can search for a contiguous source phrase α = u

using a suffix array (§3.3.1). However, source phrases in form α = uXv or α = uXvXw complicate

matters. We say that the contiguous sequences u and v are collocated because in order to form

a rule they must occur in the same sentence. However, they do not need to be adjacent. The

nonterminal symbol X can match an arbitrary (non-empty) sequence of text. Binary search will

not work for these patterns.

Consider a query pattern uXv. All instances of this pattern contain the prefix u. Therefore,

they all occur in the range of the suffix array containing suffixes with the prefix u. However, unlike

the case of contiguous query patterns, there is no guarantee of a one-to-one mapping between

suffixes in this range and occurrences of the query pattern (Figure 4.2). First, it is possible that a

single suffix prefixed by u contains multiple instances of the search pattern. For instance, the suffix

uavv# matches the query pattern twice. In the first match X spans a. In the second X spans av.

Second, it is possible that non-matching suffixes are interspersed with matching suffixes. Suppose

that our text has suffixes uav...#, ub#, and ucv...#. These suffixes are in lexicographical order, yet

only the first and third suffix contain the query pattern.

We will need another algorithm to find the source rules containing at least one X surrounded

by nonempty sequences of terminal symbols.

4.2.1 Baseline Algorithm

In the pattern-matching literature, words spanned by the nonterminal symbols of Chiang’s

grammar are called don’t cares and a nonterminal symbol in a query pattern that matches a se-
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quence of don’t cares is called a variable length gap. The search problem for patterns containing

these gaps is a variant on approximate pattern matching (Navarro, 2001), a fundamental algorith-

mic problem in string processing that is central to bioinformatics and information retrieval.

The best algorithm for pattern matching with variable-length gaps using a suffix array

is a recent algorithm by Rahman et al. (2006, henceforth RILMS). It works on a pattern α =
w1Xw2X ...wKα

consisting of Kα contiguous subpatterns w1,w2, ...wKα
, each separated by a gap.

We wish to find all occurrences of α in text T . The algorithm is straightforward. We first locate

each contiguous subpattern wk in the suffix array. This takes O(|wk|+ log |T |) time. The result

of the query is a set Mwk
of indices at which wk occurs in the source text. To find occurrences

of w1Xw2, we search for all pairs (m1,m2) ∈ Mw1
×Mw2

such that m1 and m2 are in the same

sentence and meet the phrase length restrictions. The result set Mw1Xw2
must be the complete list

of locations for w1Xw2. We repeat the computation for all pairs w1X ...Xwk−1 and wk.

Consider the pattern him X it. Lookup on the example suffix array (Figure 3.9) is illustrated

in Figure 4.3.

1. Look up all occurrences of him. These are enumerated in the suffix array range [2,5]. The

result is Mhim = {2,15,10,6}.

2. Look up all occurrences of it. These are enumerated in the suffix array range [6,9]. The

result is Mit = {0,4,8,13}.

3. Compare elements of the first set with elements of the second to find instances of the pat-

tern. In this simplified example, there is only one sentence, so the result set is Mhim X it =
{(2,4),(2,8),(2,13),(6,8),(6,13),(10,13)}. With a maximum span of ten, the instance

(2,13) would not qualify as a match.

Note that the result is a set of tuples. The kth element of each tuple is an index matching some

occurrence of the kth subpattern of the query pattern in the source text. The location of query pat-

tern α with Kα subpatterns is therefore a Kα-tuple. This is necessary to distinguish between cases

in which multiple matches share subpatterns. There are several examples of this in Figure 4.3,

including the matches (2,4), (2,8), and (2,13), which share a subpattern located at position 2.

The list Mw1X ...XwKα
of occurrences is a set of these Kα-tuples.

The comparison step of the algorithm (step 3) is difficult because the set of locations

that we find in the suffix array is not in numeric order—it is in lexicographical order. Per-

forming this step efficiently will be a key problem for our algorithms. A naı̈ve implementation

would simply compare all of the elements in each set, giving an overall lookup complexity of

O(∑Kα

k=1 [|wk|+ log|T |]+∏
Kα

k=1 |Mwk
|) for a single pattern α = w1X ...XwKα

. To perform the com-

parison efficiently, RILMS inserts the elements of Mwk
into an efficient data structure called a

stratified tree (van Emde Boas et al., 1977).3 This is a priority queue in which the operations IN-

SERT and NEXT-ELEMENT require O(log log |T |) time.4 To find collocations, the algorithm runs

the NEXT-ELEMENT query for each element of Mw1X ...Xwk−1
. This step is iterated until it returns a

value that is in a different sentence or outside the phrase length constraints. Therefore, the total

running time for an algorithm to find all contiguous subpatterns and compute their collocations is

O(∑K
k=1 [|wk|+ log|T |+ |Mwk

| log log |T |]).
We can improve on RILMS using a variation on the idea of hashing. We exploit the fact

that our large text is actually a collection of relatively short sentences, and that collocated patterns

3Often known in the literature as a van Emde Boas tree or van Emde Boas priority queue.
4Note that the dependence is on the size of the text, not the number of elements of the set. log log |T | is a very mild

term— on our corpus of 27 million words (§3.5) it is five. We can think of it as a very small corpus-specific constant.
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Mhim X it

1. Find all locations of him .

2. Find all locations of it .

3. Compare the elements of Mhim

and Mit to compute Mhim X it .

Figure 4.3: Illustration of baseline pattern matching algorithm for query pattern him X it.
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must occur in the same sentence in order to be considered a rule. Therefore, we can use the

sentence number (henceforth SentenceNum) of each subpattern occurrence as a kind of hash key.5

We create a hash table whose size is equal to the number of sentences in our training corpus.

Each location of the partially matched pattern w1X ...Xwk is inserted into the hash bucket with the

matching sentence number. To find collocated patterns wk+1, we probe the hash table with each

of the |Mwk+1
| locations for that subpattern. When we find a non-empty bucket, we compare the

element with all elements in the bucket to find matches licensed by the phrase length constraints.

Theoretically, the worst case for this algorithm occurs when all elements of both sets resolve to the

same hash bucket, and we must compare all elements of one set with all elements of the other set.

This leads to a worst case complexity of O(∑Kα

k=1 [|wk|+ log|T |]+∏
Kα

k=1 |Mwk
|). However, for real

language data the average complexity will be much closer O(∑K
k=1 [|wk|+ log|T |+ |Mwk

|]), since

on average any hash probes will return fewer than one match.

4.2.2 Analysis

It is instructive to compare the complexity of our baseline algorithm to the algorithm for

the contiguous case. For a contiguous pattern w, the complexity of lookup is O(|w|+ log|T |). For

a discontiguous pattern α = w1Xw2X ...wKα
, this complexity is O(∑Kα

k=1 [|wk|+ log|T |+ |Mwk
|]).

Note that the first two terms are analogous to the terms for the contiguous case. However, for

discontiguous lookup the complexity includes the additional term ∑
Kα

k=1 |Mwk
|, which depends on

the number of occurrences of each subpattern. This term dominates complexity if there is even

one moderately frequent subpattern.

To make matters concrete, consider our 27 million word training corpus (§3.5). The three

most frequent unigrams occur 1.48 million, 1.16 million and 688 thousand times—the first two

occur on average more than once per sentence. In the worst case, looking up a contiguous phrase

containing any number and combination of these unigrams requires no more than 25 comparison

operations. In contrast, the worst case scenario for a pattern with a single gap, bookended on either

side by the most frequent word, requires over thirteen million operations using RILMS and over

two million using our improved baseline based on hashing. A single frequent unigram in an input

sentence is enough to cause noticeable slowdowns, since it can appear as a subpattern of up to 84

hierarchical rules even using the tight grammar length restrictions of Chiang (2005, 2007), which

we enumerate in §4.5.

This is not our sole worry. The full pattern matching algorithm must take into account all

of the queries needed for a given model. As we’ve seen, the number of queries is quadratic in the

case of a phrase-based model, and exponential in the case of a hierarchical phrase-based model

with no length restrictions. Even with very tight length restrictions, the number of queries will

be much higher than for the standard phrase-based system. This only compounds the problem of

computationally expensive queries.

To analyze the cost empirically, we implemented an efficient version of our baseline algo-

rithm as compiled C code using Pyrex and measured CPU time on the NIST 2003 test set under

the grammar length restrictions of Chiang (2007, §4.5). The average per-sentence query time

was 221.4 seconds (3.7 minutes), excluding extraction, scoring, and decoding. By comparison,

per-sentence lookup time for the phrase-based model was 0.0094 seconds (§3.5)— four orders of

magnitude faster.

5Our current implementation encodes the sentence number in a distinct length-|T | array. This is an inefficient use

of memory but enables constant-time access. We are currently investigating alternative encodings that use less memory

while preserving constant-time access.
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x

∑
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time(x)

x = computations, ordered by time(x)

Figure 4.4: Cumulative time required for collocation computations.

y = log time

x = log(|Qw1X ...Xwk
|+ |Qwk+1

|)

Figure 4.5: Size of input sets (|Mk
1|+ |Mk+1|) compared with time required to compute collocation

from the two sets using the baseline algorithm (double logscale).

4.3 Solving the Pattern Matching Problem for Hierarchical Phrases

Clearly, looking up patterns in this way is not practical. A detailed analysis confirmed the

two predicted causes of computational expense.

1. The number of query patterns is large. With length restrictions, the hierarchical phrase-

based model generates an average of 2825 query patterns per sentence. By comparison, a

standard phrase-based model with an equivalent maximum phrase length (five) generates

only 137 query patterns per sentence.

2. Cumulative lookup time was dominated by a very small fraction of the queries (Figure 4.4).

As expected, further analysis showed that these expensive queries all involved at least one

very frequent subpattern (Figure 4.5). In the worst cases a single pattern lookup required

several tenths of a second.

Our solution addresses both of these problems. We introduce an algorithm for efficient enumer-

ation that performs lossless pruning of unnecessary queries (§4.3.1). We also introduce several

strategies to reduce the cost of individual queries (§4.3.2)

4.3.1 Efficient Enumeration

Although we found 2895 query patterns per sentence, the average sentence length is just

over 29 words. Obviously, the query patterns are highly overlapping. We can exploit this to

reduce computational expense.

4.3.1.1 The Zhang-Vogel Algorithm

Zhang and Vogel (2005) show an efficient algorithm for contiguous phrase searches in a

suffix array. It is based on the observation that the prefix u of any possible source phrase ua

is itself a possible source phrase. They exploit this fact to reduce the amount of work required
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to search for ua. The set of suffixes with prefix ua is a subset of the set of suffixes with prefix u.

Therefore, if we search for occurrences of u before searching for occurrences of ua, we can restrict

the binary search for ua to the suffix array range containing suffixes prefixed by u. If there are

no matches for u, we don’t need to search for ua at all. This optimization improves efficiency for

phrase search, although the improvement is modest since search for contiguous phrases is already

very fast (§3.5).6 However, the opportunity for improvement in discontiguous search is much

greater.

Extension to hierarchical phrases is straightforward. A hierarchical phrase αa can only

occur in T if its prefix α occurs in T . The actual pattern matching algorithm for hierarchical

phrases is not as simple as binary search in a suffix array, so this doesn’t enable an obvious search

improvement as it does for contiguous phrases. However, it does allow us to rule out the existence

of αa if the search for α fails. This prunes out many searches that are guaranteed to be fruitless.

4.3.1.2 Prefix Trees and Suffix Links

The Zhang-Vogel optimization is closely related to prefix trees. Recall that the prefix tree

implementation of a phrase table encodes all legal source phrases in an unminimized finite state

automaton (§3.2). We store target phrases and scores at the node associated with a source phrase.

Representing hierarchical rules in the prefix tree requires no special modification. Since our non-

terminal and terminal alphabets are mutually exclusive, we simply treat the nonterminal X as any

other edge label.7

We implement the Zhang-Vogel algorithm using a prefix tree, which we construct for each

source sentence. In fact, we can think of the pattern matching operation itself as an augmentation

of edge traversal in a prefix tree. Suppose that we are at a node representing source phrase α, and

we want to find translation rules for source phrase αa. If the node representing α does not have

an outgoing a-edge, we first query the source text for phrase αa. If the query succeeds, we add an

a-edge to a new node containing the newly extracted phrase pairs and scores. If the search fails,

we still add the a-edge, but we mark the new node as inactive, indicating that the text contains no

phrases with this prefix. In this way, the algorithm builds a prefix tree representing every query

pattern licensed by our grammar for the input sentence, except patterns whose prefixes were not

present in the training data (Figure 4.6). Now suppose that a source phrase occurs multiple times

in the sentence (this frequently happens with determiners for example). The first occurrence is

treated as described above, but for all subsequent occurrences we simply traverse the existing

edge. We check the flag on the node to see if it is active or inactive, telling us whether the previous

search was successful. Recall that the prefix tree is sentence-specific. We discard it and build

a new tree for each sentence, enabling our decoder to run indefinitely without exhausting main

memory.

We can improve on the Zhang-Vogel algorithm. The existence of phrase aαb in a text

guarantees more than the existence of its prefix aα. It also guarantees the existence of its suffix

αb. If αb doesn’t exist, we don’t need search for aαb at all. Furthermore, note that unless α = X ,

aα and αb must share at least one word. This means we can reduce the search to cases where aα

and αb overlap, and their starting indices will differ by exactly one. To see why this is useful,

consider a phrase abXcd. In our baseline algorithm, we would search for ab and cd, and then

6 In fact, the results reported in the previous chapter incorporate both this optimization and one we introduce in

§4.3.1.2.
7Conveniently, the decoder used in our experiments (Chiang, 2007) already encodes its grammars in a prefix tree.

The implementation is similar to one described by Klein and Manning (2001). We simply augment this representation

with information needed by our algorithms.

71



active node

inactive node

it persuades

disheartens

him
X

it

him

disheartens

Xand

disheartens

him
X

it
disheartens

him

X
him

disheartens

him
X

it

him

disheartens

X

and

disheartensX

Figure 4.6: Portion of the prefix tree for tree for our example input (Figure 4.1).
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perform a computation to see whether these subphrases were collocated within an elastic window.

However, if we instead use the locations of abXc and bXcd as the basis of the computation, we

gain two advantages. First, the number of elements in each set is likely to be smaller than in the

former case. This is not guaranteed to be true, but it will be true in the vast majority of cases.8

Second, the computation becomes simpler because there is no need to check whether the patterns

cooccur within a variable-length window. It is sufficient to see whether they match exactly, except

for the first index, which should differ by exactly one. For this to work, we need access to the

set of locations for both the prefix and the suffix. Note that any pattern α can be the prefix or

suffix of numerous source phrases. To facilitate reuse of the occurrence set Mα, we cache it at

the corresponding prefix tree node. The full algorithm for computing occurrences aαb given all

occurrences of aα and αb will be described in §4.3.1.5.

To access suffixes in constant time, we augment the prefix tree with suffix links. A suffix

link is a pointer from a node representing aαb to a node representing its suffix αb (Figure 4.7).

Via this connection, we can immediately check to see if the node has been marked inactive. If it

is, we know that a query for the αb (or recursively, one of its suffixes) previously failed, and we

don’t need to query for aαb at all, since we know that it will not be found.9

As we described above, the prefix tree acts as a cache for phrases that occur multiple times

in a source sentence. In these cases, we simply traverse the already-constructed edge, without

needing to query the text for the phrase or extract its translations. Depending on our usage sce-

nario and available memory, we could extend the caching behavior even further by retaining part

or all of the tree between sentences instead of building a new tree for each sentence. For instance,

a least recently used (LRU) strategy for cache pruning may improve translation speed for whole

documents without exhausting memory. Though impractical for online settings, in batch transla-

tion we could simply keep the entire tree for the duration of the decoding process. This allows us

to reuse queries that were already performed for previous sentences, potentially leading to further

speedups.

4.3.1.3 Special Cases for Phrases with Gaps

The model permits gaps at the beginning or end of a hierarchical phrase. For instance, it

permits source phrases Xu or uX or even XuX . However, even if our model disallowed such source

phrases, they would still be prefixes or suffixes of valid sources sources, and therefore must appear

in the prefix tree. Each of these phrases corresponds to a unique path in the prefix tree, although

for pattern matching purposes they are all identical to phrase u. An analogous situation occurs

with the patterns XuXv, uXvX , and uXv. There are two cases that we are concerned with.

Consider a pattern α = Xβ. The path to its prefix tree node contains the X-edge originating

at the root node. All paths containing this edge form a special subtree. Note that α occurs in

the text at the same locations as β, although from the perspective of the translation model it is a

different phrase. Therefore, we don’t actually need to query the training text to find α. If the node

representing β is active, we create an active node for α and set Mα = Mβ. If the node representing

β is inactive, we create an inactive node for α.

8 To see why this isn’t always the case, consider an example. Suppose that our subpatterns are ab and cd, and

the text contains the substring ababdcdcd. Although each subpattern occurs only twice, the combined pattern abXcd

occurs four times.
9Note that the suffix of a one-symbol phrase is the empty string ε, represented by the root node of the prefix tree.

The reader may notice that aα is undefined when the prefix pattern is ε. We define an auxiliary state ⊥, following

Ukkonen (1995). The suffix link from root points to ⊥, while ⊥ is connected to the root node by all symbols in the

alphabet. Therefore, when α = ε, aα =⊥. Following the a-edge from ⊥ returns us to the root. This simplifies much of

the following algorithmic discussion without requiring the enumeration of several corner cases.
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Now consider pattern α = βX . For pattern matching purposes, this pattern is identical to

its prefix β. Therefore, if we successfully find β, we automatically add an outgoing X-edge from

its corresponding node, provided that βX is licensed by the length restrictions. Again we set

Mα = Mβ.

Note that both special cases occur for a pattern in the form α = XβX .

4.3.1.4 Putting It All Together: Prefix Tree Generation Algorithm

Given an input sentence, our algorithm (Listing 2) generates the corresponding prefix tree

for its query patterns breadth-first. We maintain a queue of items, each consisting of a query

pattern, its span in the input, and a pointer to the node corresponding to its prefix. The queue

is initialized with all patterns containing a single terminal symbol. When we pop a pattern from

the queue, there are two cases. If the corresponding edge exists in the prefix tree, we traverse it.

Otherwise, we query the source text for the pattern. Irrespective of the query’s success, we create

a node for the pattern in the tree, and mark it active or inactive as appropriate. For found patterns,

we cache either the endpoints of the suffix array range containing the phrase (if it is contiguous),

or the full list of locations at which the phrase is found (if it is discontiguous).10 We add to the

queue any query patterns containing one more terminal for which the pattern is a prefix. This

guarantees that all patterns containing m terminals are processed before any patterns containing

m + 1 terminals, which is sufficient to guarantee that any pattern is processed after both its suffix

and prefix.

To query the text for pattern aαb, we call function QUERY (§4.3.1.5), providing the sets of

prefix and suffix locations Maα and Mαb as parameters. Maα is cached at the node corresponding

to the prefix aα, which is an element of the item popped from the queue. To find the node corre-

sponding to the suffix αb, we first follow the suffix link from the node representing the prefix, aα.

This leads us to a node representing α. From this node we follow the b-edge, which leads to the

node representing αb. This gives us constant-time access to both prefix and suffix information. If

the suffix node is inactive, we can mark the new node inactive without a query. Some common

cases are illustrated in Figure 4.6.

4.3.1.5 The Basic QUERY Algorithm

We need to define function QUERY called by the prefix tree algorithm (Listing 2). Its input

consists of set Maα representing all matchings of prefix aα and set Mαb representing all matchings

of suffix αb. From this it must compute all matchings Maαb of query pattern aαb.

Recall from §4.2.1 that a matching in the text for pattern α = w1X ...XwKα
is a Kα-tuple

mα = (mα,1, ...,mα,Kα
). The kth element mα,k of mα is the starting index of a substring in T

matching subpattern wk. If two patterns differ only by preceding or following nonterminal symbol

X , then their matchings in T are identical. More formally, if α = βX or α = Xβ then Mα = Mβ. If

α = X then Mα = (), the empty tuple.

For the discussion that follows, we will find it useful to define several formal properties of

matchings. First, we define an ordering. For matchings mα and m′α of pattern α, mα < m′α if and

only if ∃k∈{1,...,Kα}(mα,k < m′
α,k and ∀`∈{1,...,k−1}mα,` = m′

α,`). Thus, a set of Kα-tuples is ordered

on the first index, then the second, and so on.

The suffix matching s(maα) of matching maα is the embedded matching of suffix α. If α =
Xβ and mα = s(maα) then Kα = Kaα−1 and mα = (maα,2, ...,maα,Kaα

). If α = βc and mα = s(maα)
then Kα,1 = Kaα,1 +1, mα,1 = maα,1 +1 and ∀k∈{2,...,Kα}mα,k = maα,k.

10As a practical matter, we can also store the scored translation rules after we extract them (§4.4).

75



Algorithm 2 Prefix Tree Lookup

Function GENERATE PREFIX TREE

Input: source sentence f I
1 , prefix tree root node pε

1: children(pε)← children(pε)∪ pX

2: for i from 1 to I do

3: Add 〈 fi, i, i+1, pε〉 to queue . 〈pattern, span start, span end, prefix node〉
4: for i from 1 to I do

5: Add 〈X fi, i−1, i+1, pX〉 to queue

6: while queue is not empty do

7: Pop 〈α, i, j, paβ〉 from queue

8: if paβ f j
∈ children(paβ) then

9: if paβ f j
is inactive then

10: Continue to next item in queue

11: else

12: EXTEND QUEUE(aβ f j, i, j, f I
1)

13: else

14: children(paβ)← children(paβ)∪ paβ f j

15: pβ← suffix link(paβ)
16: if pβ f j

is inactive then

17: Mark paβ f j
inactive

18: else

19: Qaβ f j
← QUERY(aβ f j,Qaβ,Qβ f j

)

20: if Qaβ f j
= /0 then

21: Mark paβ f j
inactive

22: else

23: Mark paβ f j
active

24: EXTEND QUEUE(aβ f j, i, j, f I
1)

Function EXTEND QUEUE

Input: α, i, j, f I
1, pα

1: if |α|< MaxPhraseLength and j− i+1≤MaxPhraseSpan then

2: Add 〈α f j, i, j +1, pα〉 to queue

3: if arity(α) < MaxNonterminals then

4: children(pα)← children(pα)∪ pαX

5: Mark pαX active

6: QαX ← Qα

7: for k from j +1 to min(I, i+MaxPhraseLength) do

8: Add 〈α f jX fk, i,k,αX〉 to queue
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Figure 4.8: Illustration of several recursive cases in the prefix tree construction algorithm.
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· · · a ←− X −→ ←− β−→ b · · ·
i j1, · · · , jm

maαb = (i, j1, · · · , jm)

s(maαb) = ( j1, · · · , jm)

(1) α = Xβ

· · · a c ←− β−→ b · · ·
i i+1, j1, · · · , jm

maαb = (i, j1, · · · , jm)

s(maαb) = (i+1, j1, · · · , jm)

(2) α = cβ

Figure 4.9: Relationship between a matching maαb of pattern aαb and its suffix matching s(maαb)
for two cases, depending on whether the first symbol in α is a nonterminal or terminal. Note that

in both cases, there is only a single difference between the matchings. In case (1), there is an

additional index. In case (2), the first index of each matching differs by exactly one. The situation

for prefix matchings is analogous.

The relationship between a matching and its suffix matching are shown in Figure 4.9.

Analogously, the prefix matching p(mαb) of matching mαb of pattern αb is the embedded

matching of its prefix α. If α = βX and mα = p(mαb) then Kα = Kαb−1 and mα =(mαb,1, ...,mαb,Kα
).

If α = βc and mα = p(mαb) then Kα = Kαb and mα = mαb.

Note that p(s(maαb)) = s(p(maαb)). This gives a means to identify pairs (maα,mαb) that

imply a matching of aαb. Specifically, if s(maα) = p(mαb), then we say that maα and mαb are

partners and we can join (./) them to form maαb. If α = βX and maαb = maα ./ mαb then Kaαb =
Kaα +1, ∀k∈{1,...,Kaα}maαb,k = maα,k and maαb,Kaαb

= mαb,Kαb
. Otherwise, if α = βc then Kaαb = Kaα

and maαb = maα.

A special case occurs for query pattern aXb, since for any of its matchings maXb, s(p(maXb))=
p(s(maXb)) = (). In this case we compute the pure collocation of subpatterns a and b. We must

ensure that maX ∈MaX and mXb ∈MXb occur in the same sentence and are separated by the min-

imum gap length. Note that we don’t need to check these properties for longer patterns because

our enumeration strategy ensures that they are satisfied by this recursive base case.

For all candidate partners we must check to ensure that the resultant matching does not

exceed the maximum phrase span. With this and our other constraints in mind, we can now define

special comparison relations on Maα×Mαb. To distinguish them from comparison on items drawn

from the same set we use the decorated operators =̈ (partners), >̈ (precedes), and <̈ (follows).

Suppose that we have query pattern aαb = w1X ...XwKaαb
. Let maα be a matching of aα and mαb

be a matching of αb. There are two cases. First, suppose that the prefix and suffix do not overlap

on any words—that is α = X .

• If SentenceNum(maα) > SentenceNum(mαb) then maα>̈mαb.

• If SentenceNum(maα) < SentenceNum(mαb) then maα<̈mαb.

• If SentenceNum(maα) = SentenceNum(mαb) then:

– If maα,1 ≥ mαb,1−1 then maα>̈mαb.

– If maα,1 ≤ mαb,1−MaxPhraseSpan then maα<̈mαb.

– Otherwise maα=̈mαb.

Next, suppose that the prefix and suffix overlap on some words—that is α 6= X .

• If the prefix occurs after the suffix, s(maα) > p(mαb), then maα>̈mαb.

78



2

6

10

15

2,4

2,8

2,13

6,8

6,13

10,13

0

4

8

13

Mhim X

Mhim X it

MX it

Input

Output

Input
0,2

0,6

0,10

4,6

4,10

4,15

8,10

8,15

13,15

0,2,4

0,2,8

0,2,13

0,6,8

0,6,13

0,10,13

4,6,8

4,6,13

4,10,13

8,10,13

2,4

2,8

2,13

6,8

6,13

10,13

MX him X it

Mit X him X it
Mit X him X

Input

Output
Input

Figure 4.10: QUERY examples showing all input and output sets in sorted order and identifying

the pair of input matchings that contribute to each output matching.

• If the prefix and suffix matchings overlap, s(maα) = p(mαb), and the length of the com-

bined pattern does not exceed the maximum phrase length, maα,1 > mαb,Kαb
+ |wKaαb

| −
MaxPhraseSpan, then we have found a match, maαb=̈mα.

• If the prefix occurs before the suffix, s(maα) < p(mαb), or the combined pattern exceeds the

maximum phrase length, maα,1 ≤ mαb,Kαb
+ |wKaαb

|−MaxPhraseSpan, then maαb<̈mα.

Let’s turn to the design of the QUERY algorithm that finds these partners. First, consider a simple

algorithm INTERSECT on two sorted sets L1 and L2. It computes sorted output set L1∩2 containing

all elements common to both L1 and L2 by iteratively comparing the their topmost elements. At

each iteration, the lesser of the two elements is popped from its respective set and discarded.

If the elements are equal, both are popped and a copy is appended to L1∩2. The complexity of

INTERSECT is linear, O(|L1|+ |L2|).
We can implement QUERY using roughly the same logic as INTERSECT if Maα and Mαb are

sorted. For the moment, we will simply assume sortedness. Later, we will show how this property

is maintained. The comparison operators that we have defined for partners will stand in for the

comparisons in INTERSECT. However, we still need to address a few subtleties. An important

difference between QUERY and INTERSECT should be apparent from an inspection of example

inputs and outputs (Figure 4.10). It is possible that a matching from either input list partners with

multiple matchings from the other set. We don’t want to pop an item from the set until we are

certain that we have found all of its partners.

Let’s first consider a matching maα of prefix pattern aα. Let mα = s(maα). Any partner

mαb must satisfy the constraint p(mαb) = mα. From the definition of the prefix matching, we

see that if α = βc, then the only valid value for mαb is in fact mα. If α = βX , then mα completely

determines all elements of mαb except for the final one, mαb,Kαb
. In either case, since Mαb is sorted,

all matchings of αb meeting the constraint must occur in the same (possibly empty) contiguous

region of Mαb. Sortedness further guarantees that for all elements mαb ∈Mαb subsequent to this

region, maα<̈mαb by definition of the comparison operators. It likewise guarantees that for all
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Figure 4.11: Examples showing the division of Mαb into regions by maα ∈Maα.

elements mαb ∈ Mαb prior to this region, maα>̈mαb. Therefore, matching maα divides Mαb into

three distinct regions, any of which may be empty (Figure 4.11). This means that we can pop maα

when we encounter the first element mαb such that maα<̈mαb or when we reach the end of the set.

Now let’s consider a matching mαb of suffix pattern αb. Let mα = p(mαb). Any partner

maα must satisfy the constraint s(maα) = mα. From the definition of the suffix matching, we see

that if α = cβ, then there is only one valid value for maα. In this case, sortedness ensures that mαb

divides Maα into three regions, just as we saw for the prefix matchings. Matters are different if

α = Xβ. In this case, mα completely determines all elements of maα except for the first one, maα,1.

This element could take several values. Furthermore, each of these values can be the first element

of several matchings. Only one of these matching will meet our constraint, and thus the rest won’t

be partners with mαb. As a consequence, it is possible for partners of mαb to be interspersed with

non-partners (Figure 4.12). However, our definitions ensure that there is a contiguous range of

possible values for mαb,1. Sortedness ensures that the set of all matchings maα ∈Maα for which

mαb,1 is in this range must occur in a contiguous region of Maα. Furthermore, our definitions

ensure that for any value i, if maα>̈mαb for the first occurrence of a matching maα such mabα,1 = i,

then for all subsequent matchings maα ∈Maα, maα>̈mαb. An analogous case occurs for matchings

maα ∈Maα such that maα<̈mαb. Therefore, mαb divide Maα into three regions, each of which may

possibly be empty. However, it is possible for values in the central region to have any relationship

with mαb, and therefore we must check all of them. We can safely pop mαb when we encounter a

matching maα such that maα>̈mαb and whose first element maα,1 has not been seen before.

The full QUERY algorithm (Listing 3) is non-destructive – we advance a pointer rather

than popping matchings from each set. Its operation is similar to INTERSECT, though we take a

different approach to popping matchings from the stack. For each matching maα ∈Maα, we scan

downwards from the current top of Mαb, joining maα with any partners as we find them, until we

encounter mαb such that maα<̈mαb. We then pop maα. Elements mαb ∈Mαb are popped whenever

we uncover a new top matching maα ∈Maα such that maα>̈mαb and whose first element maα,1 has

not been seen before.

The upper bound complexity of QUERY is O(|Maα| × |Mαb|). However, most matchings
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Algorithm 3 The basic QUERY algorithm

Function QUERY INTERSECT

Input: sorted prefix matchings Maα and sorted suffix matchings Mαb

1: Maαb← /0

2: I← |Maα|
3: J← |Mαb|
4: j← 0

5: m1←−1

6: for i from 0 to I do

7: maα←Maα[i]
8: mαb←Mαb[ j]
9: if maα,1 6= m1 then

10: while maα>̈mαb and j < J do

11: j← j +1

12: mαb←Mαb[ j]
13: if maα>̈mαb and j = J then

14: Break

15: k← j

16: while not maα<̈mαb do

17: if maα=̈mαb then

18: Append maα ./ mαb to Maαb

19: if k = J then

20: Break

21: else

22: k← k +1

23: mαb←Mαb[k]
24: return Maαb
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Figure 4.12: Example showing the relationships of maα ∈Maα to an element mαb, and the subse-

quent delineation of Maα into regions by mαb.

can be popped from their respective sets after a single comparison, so the average case complexity

is closer to O(|Maα|+ |Mαb|). Both upper bound and average complexity are identical to that of

the baseline algorithm. As we’ve seen, though, our enumeration algorithm enables us to call it

much less frequently using smaller input sets than in the baseline.

We assume that Maα is sorted, and we process its matchings in order. Furthermore, for

any maα ∈ Maα, recall that its partners can only differ on their last element, and that these are

encountered in sorted order. Therefore, the output of QUERY is sorted. This means that if we call

QUERY using input sets that resulted from a previous invocation of QUERY, they will already be

sorted. We must still ensure sortedness in the base case, which occurs when either prefix aα or

suffix αb contains a single contiguous pattern. In this case, the set Maα or Mαb is the result of a

search in the suffix array. As we saw earlier, this set is not returned in sorted order. To solve this,

we explicitly sort the occurrences by inserting them into a stratified tree (van Emde Boas et al.,

1977) and reading the sorted sequence from the tree. Sort time is O(|Mα| log log |T |) for a pattern

α. This is superlinear, but we need to sort only once, since we cache the result at the corresponding

prefix tree node. Since we expect to query the text for many patterns containing this subpattern,

the cost is amortized over all computations. Overall, this means that ensuring sortedness adds

computational expense to our algorithm. This will be counterbalanced by additional strategies

that exploit sortedness, introduced in the next sections.

4.3.1.6 Precomputation of Inverted Indices for Frequent Subpatterns

Sorting the matchings of a contiguous pattern w adds an O(|Mw| log log |T |) term to query

complexity. This is fine for infrequent patterns. However, if |Mw| is large, this may be quite

expensive.

We can circumvent this problem by precomputing an inverted index (Zobel and Moffat,

2006). This is simply the list |Mw| in sorted order. It can be computed in one pass over the data.

The memory consumption of inverted indices for all n-grams up to some maximum n requires

82



n|T | space, so using this strategy for all n-grams is infeasible. Instead we precompute the inverted

index only for the most frequent n-grams.11 For less frequent n-grams, we continue to generate

the index on the fly using stratified trees as before.

4.3.2 Faster Pattern Matching for Individual Query Patterns

The complexity of the comparison step in both the baseline algorithm and our merge algo-

rithm is linear in the number of occurrences of each subpattern. Therefore, the main improvement

we have introduced so far is reduction in the number of unnecessary lookups. The cost of pattern

matching for a single query pattern is mostly unchanged, and as we have seen, it can be very

expensive whenever the query pattern contains a frequent subpattern. However, there is a silver

lining. Recall that patterns follow a Zipf distribution (Figure 3.11), so the number of pattern types

that cause the problem is quite small. The vast majority of patterns are rare. Therefore, our solu-

tion focuses on patterns with one or more frequent subpatterns. To simplify matters, we focus on

the intermediate computation for pattern w1X ...Xwk. This requires us to compute the collocation

of subpatterns w1X ...Xwk−1 and wk. There are three cases.

• If both patterns are rare, we use the QUERY algorithm (§4.3.1.5).

• If one pattern is frequent and the other is rare, we use an algorithm whose complexity

depends mainly on the frequency of the rare pattern (see §4.3.2.1, below). It can also be

used for pairs of rare patterns when one pattern is much rarer than the other.

• If both patterns are frequent, we resort to a precomputed intersection (see §4.3.2.2, below).

We are not aware of any algorithms to substantially improve the efficiency of this computa-

tion at runtime, but the result can be precomputed in a single pass over the text.12

4.3.2.1 Fast Intersection via Double Binary Search

For collocations of frequent and rare patterns, we use a fast set intersection method for

sorted sets called double binary search (Baeza-Yates, 2004). Suppose that we wish to intersect a

sorted set Q with a much larger sorted set Q′. Note that we can compute this intersection efficiently

by performing a binary search in Q′ for each element of Q. The complexity is Θ(|Q| log |Q′|),
which is better than the INTERSECT algorithm complexity of O(|Q|+ |Q′|) if Q� Q′. Note that

this is a tight bound.

Double binary search takes this idea a step further. It performs a binary search in Q′ for

the median element of Q. Whether or not the element is found, the result divides both sets into

two pairs of smaller sets that can be processed recursively. In many cases, one of the recursive

inputs will be empty, and we don’t need to do any work at all. This results in a loose bound

on complexity, O(|Q| log |Q′|), and the average case is often much better than this (Baeza-Yates,

2004; Baeza-Yates and Salinger, 2005). We can modify the algorithm to compute collocation

rather than intersection, just as we did for the merge algorithm (§4.3.1.5).

If |Q| log |Q′|< |Q|+ |Q′| then the performance is guaranteed to be sublinear in |Q|+ |Q′|.
Because the bound is loose, it is often sublinear even if |Q| log |Q′| is somewhat larger than |Q|+
|Q′|. In our implementation we simply check for the condition λ|Q| log |Q′|< |Q|+ |Q′| to decide

11We identify the most frequent patterns in a single traversal over the longest common prefix (LCP) array, an auxiliary

data structure of the suffix array (Manber and Myers, 1993). We only need the LCP array for this purpose, so we

compute it once offline using a fast algorithm due to Kasai et al. (2001).
12We combine this with the precomputation of inverted indices (§4.3.1.6).

83



it makes him and it mars him , it sets him on and it takes him off . #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Add frequent word and position to queue.

it

0

Queue: it, 0

it makes him and it mars him , it sets him on and it takes him off . #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Advance pointer, skipping infrequent words.

makes

1

Queue: it, 0

it makes him and it mars him , it sets him on and it takes him off . #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iterate through all words.

him

2

Queue: it, 0 him, 2

...

it makes him and it mars him , it sets him on and it takes him off . #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pop the first item from queue when

its distance to current word reaches

the maximum pattern length.

sets

9

Queue: it, 0 him, 2 it, 4 him, 6 it, 8

it, 0

MaxPhraseSpan = 10

it X him: 0,2 0,6 it X it: 0,4 0,8

Combine the popped item with each

remaining item in the queue, and

record the resulting pattern locations.

Figure 4.13: Illustration of the precomputation algorithm.

whether we should use double binary search or the merge algorithm. This check is applied in the

recursive cases as well as for the initial inputs. The variable λ can be adjusted for speed. We

explore possible values for it empirically in §4.5.1.

4.3.2.2 Precomputation of Collocations

Double binary search only helps if one subpattern is infrequent. If both subpatterns are

frequent, there is no clever algorithm to efficiently compute their collocation at runtime. Therefore,

we precompute these expensive collocations in a single pass over the text. As input, our algorithm

requires the identities of the k most frequent contiguous patterns. We then iterate over the corpus.
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Whenever a pattern from the list is seen, we push a tuple consisting of its identity and current

location onto a queue. Whenever the oldest item on the queue falls on the edge of the maximum

span window with respect to the current position, we pop it from the queue and compute its

collocation with all other items in the queue (subject to any gap length constraints) . We repeat

this step for every item that falls outside the window. At the end of each sentence, we compute

collocations for any remaining items in the queue and then empty it. The algorithm is illustrated

in Figure 4.13.

Our precomputation includes the most frequent n-gram subpatterns. Most of these are un-

igrams, though we found 5-grams among the 1000 most frequent patterns. We precompute the

locations of source phrase uXv for any pair u and v that both appear on this list. There is also a

small number of patterns uXv that are very frequent. We cannot easily obtain a list of these in

advance, but we observe that they always consist of a pair u and v of patterns from near the top of

the frequency list. Therefore we also precompute the locations of patterns uXvXw in which both

u and v are among these super-frequent patterns (all unigrams), treating this as the collocation of

the frequent pattern uXv and frequent pattern w. We also compute the analogous case for uXvXw

when v and w are super-frequent.

4.3.2.3 Putting it all Together: The Root QUERY algorithm

We’ve described several algorithms for pattern matching on text, including suffix array

lookup for contiguous patterns (§3.3.1) and multiple algorithms for discontiguous queries in-

cluding the QUERY algorithm (§4.3.1.5), double binary search (§4.3.2.1), and cache retrieval

(§4.3.2.2). To make clear when each of these algorithms is called, we include here the root QUERY

algorithm that dispatches to the appropriate algorithm for each case (Listing 4). This is the only

QUERY called for all phrase queries from the prefix tree algorithm (Listing 2).

4.4 Source-Driven Phrase Extraction

Our pattern matching algorithms are general. They can be used for many models that use

discontiguous source phrases. Once we find all occurrences of a source phrase, we are faced with

the task of extracting its translations. This is a model-specific problem, which we turn to in this

section with a focus on hierarchical phrase-based translation.

Chiang (2005, 2007) bootstraps hierarchical phrase extraction from standard phrase extrac-

tion using a simple algorithm. First, all phrases meeting the standard phrase extraction heuristic

are found (up to the maximum phrase span). Recall that this heuristic requires words in the phrase

pair to be unaligned to words outside the phrase pair. Next, phrase pairs that are completely

contained within larger phrase pairs are subtracted to form gaps.

We augment the source-driven extraction algorithm (§3.3.2) following the same principle.

We first find the smallest reflected source span containing our source phrase. This acts as the

main phrase from which smaller phrases are subtracted. We then take any parts of the source span

corresponding to gaps in our query pattern, and subtract them from the large phrase pair.

There are a few subtleties. Consider a query pattern α. This is not the only source phrase

that matches a given location in the text. Query patterns Xα, αX , and XαX also match the loca-

tion (provided that they are licensed by the length restrictions). We want to extract all of these

variants. This requires some modifications. Recall that in the basic algorithm, extraction failed

if the reflected source span did not match the original source span. Suppose that we have found

α in a particular span, and the reflected source span includes some words to the left of α. In the

basic algorithm, this prevents extraction. However, in the hierarchical model, we can interpret the
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Algorithm 4 The root QUERY algorithm

Function QUERY ROOT

Input: pattern aαb; one of the following: suffix array indices low `aα and high haα if α = uX ,

sorted prefix matchings Maα otherwise; suffix array indices low `αb and high hαb if α = Xu, sorted

prefix matchings Mαb otherwise.

1: if α = u then . α is a contiguous pattern

2: return SUFFIX-ARRAY-LOOKUP(SAF ,aαb, `aα,haα)

3: else . α is a discontiguous pattern

4: if α = uX then . prefix is a contiguous pattern

5: Maα← SORT MATCHINGS(aα, `aα,haα)

6: if α = Xu then . suffix is a contiguous pattern

7: Mαb← SORT MATCHINGS(αb, `αb,hαb)

8: if Maαb has been precomputed then

9: Retrieve Maαb from cache of precomputations

10: else

11: if |Maα|< |Mαb| and λ|Maα| log |Mαb|< |Maα|+ |Mαb| then

12: Maαb← QUERY DOUBLE BINARY(Maα,Mαb)

13: else if |Mαb|< |Maα| and λ|Mαb| log |Maα|< |Mαb|+ |Maα| then

14: Maαb← QUERY DOUBLE BINARY(Maα,Mαb)

15: else

16: Maαb← QUERY INTERSECT(Maα,Mαb)

17: return Maαb

Function SORT MATCHINGS

Input: pattern α, suffix array indices ` and h

1: if inverted index Mα has been precomputed then

2: return precomputed Mα from cache

3: else

4: Let S be a stratified tree

5: Mα← /0

6: for k from ` to h do

7: INSERT(SAF [k],S)

8: k← NEXT ELEMENT(−1,S)

9: while k 6=−1 do

10: APPEND(k,Mα)

11: return Mα
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Figure 4.14: Examples of hierarchical base phrase extraction.
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reflected source span as Xα, provided that the new words in the source span form a valid phrase

pair with words in the target span. Therefore, we modify the algorithm so that it adds these new

words as a gap. For each gap in the reflected source span, including those that were part of the

original query, we check to see whether they form a valid phrase under the previous definition

(Figure 4.14).

We are not quite done. For each occurrence of source phrase α, we must check to see

whether Xα, αX , and XαX can be extracted. This implies that a span of words adjacent to the

right or left of the phrase forms a valid phrase whose target span is adjacent to the target span of

α. The length of this span is unimportant, as long as the combined span is less than the maximum

phrase span. Therefore, we initialize the span to a length of one, expand away from α by iteratively

reflecting the span until a fixpoint is reached (Figure 4.15). If the final span combined with the

main span is less than MaxPhraseSpan, then we extract the new phrase pair. We repeat this step

for Xα, αX , and XαX .

In order to exactly replicate the grammars in Chiang (2007), we check several additional

constraints.

• That the number of nonterminal symbols in a rule is no more than MaxNonterminals.

• That the total number of terminal and nonterminal symbols in a rule is no more than

MaxPhraseLength.

• That the span of neither source nor target phrase is more than MaxPhraseSpan.

• That the source phrase contain at least one aligned terminal.

• That all phrases are tight, that is, the edge words of both the main phrase and the aligned

phrases must be aligned. Our implementation also allows us to relax this restriction (we will

examine this in §5.2.3.3).

One final detail is required to complete our algorithm. Chiang (2007) uses the following

strategy to count each extracted phrase: for each main phrase, a count of one is distributed uni-

formly over all possible phrases that can be formed from it via subtraction. We did not want to

enumerate all possible phrases for each span, as many of them would not be source phrases in the

current input sentence. Therefore our method diverges on this detail. We assign a count of one

to each source span. Note that under the loose heuristic, it is possible to extract multiple target

phrases for each source phrase. In this case we distribute the count uniformly over them.

4.5 Results

Our experimental decoder is Hiero (Chiang, 2007), an implementation of the hierarchical

phrase-based translation model written in a combination of Python and Pyrex. For our baseline

experiments using direct representation, we employ a modified version of this decoder (Dyer,

2007) that implements the grammar as an external prefix tree (Zens and Ney, 2007).

Our algorithms are implemented in Pyrex as extensions of our phrase-based implementation

(§3.5).13 This allows us to reuse much of the suffix array code. In fact, both our standard and

13Our implementation generates mostly compiled code, so it is substantially faster than initial results reported in

Lopez (2007), which were obtained using a pure Python implementation. In order to conduct a fair comparison, we

also reimplemented the baseline algorithm in the same way. It should be noted, however, that there is still room for

increased speed in all algorithms via an optimized native C implementation.
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hierarchical phrase-based decoders can be run from the same memory-mapped representation of

the training data and alignment, though the hierarchical decoder requires additional data files to

handle precomputation collocations and inverted indices.

As with the standard phrase-based model, we wished to see if hierarchical phrase-based

translation by pattern matching is a viable replacement for direct representation. For this purpose,

we adhere to the restrictions described by Chiang (2007) for rules extracted from the training data.

We emphasize again that our algorithms do not depend in any way on these specific values. We

will relax several of these restrictions in Chapter 5.

• Rules can contain at most two nonterminals.

• The source side of a rule can contain at most five symbols, which may be a mix of terminals

and nonterminals.14

• Rules can span at most ten words in either training or test data.

• Nonterminals must span at least two words.

• Adjacent nonterminals are disallowed in the source side of a rule.

Expressed more economically, we say that our goal is to search for a source phrase α in the form

u, uXv, or uXvXw, where 1≤ |α| ≤ 5, 1≤ |u|, 1≤ |v|, and 1≤ |w|.
Our experimental scenario is identical to the one for our phrase-based system, including

all data as well as optimization and evaluation scripts (§3.5). Therefore the results are directly

comparable. As before, we optimize every system configuration separately using MERT (§2.5.3.1;

Och, 2003).

4.5.1 Timing Results

Our work included several distinct algorithmic enhancements.

• A prefix tree-based enumeration strategy that prunes many unnecessary queries (§4.3.1).

• Precomputed inverted indices to avoid sorting lists of locations for frequent patterns (§4.3.1.6).

• Double binary search to compute collocations between frequent and infrequent patterns

(§4.3.2.1).

• Precomputed collocations for pairs of frequent patterns (§4.3.2.2).

For precomputation of both collocations and inverted indices, we chose to use the 1000 most

frequent patterns. For precomputation of collocations involving super-frequent patterns (§4.3.2.2),

we use the 10 most frequent patterns. For double binary search, the λ parameter (§4.3.2.1) was set

to one.

Double binary search and both precomputation optimizations were implemented as exten-

sions of the prefix tree algorithm, but are otherwise independent of each other. In order to measure

their respective contributions, we ran the system using several different combinations of optimiza-

tions. Per-sentence query time, excluding extraction and decoding, is reported in Table 4.1. The

14Lopez (2007) restricted the source side to five terminal symbols, irrespective of nonterminals. The differs from the

present restriction, which is identical to Chiang (2007) and results in a smaller grammar.
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baseline prefix tree +1 optimization +2 optimizations +3 optimizations

double binary

174.1

double binary

collocations

7.0

221.4 177.0

collocations

8.3

double binary

indices

43.6

double binary

collocations

indices

0.97

indices

47.2

collocations

indices

2.3

Table 4.1: Timing results for different combinations of algorithms (seconds per sentence), not

including extraction or decoding time.

λ 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0

seconds per sentence 1.00 0.97 0.97 0.97 0.97 1.02 1.05 1.08 1.10

Table 4.2: Effect of double binary λ parameter on per-sentence query time.

full complement of optimizations reduces the amount of computation from 221.4 seconds per sen-

tence in the baseline to a mere 0.97 seconds per sentence, an improvement of over two orders of

magnitude. We find from examining the various combinations that each algorithm is important to

achieving the overall result, though the most critical pieces seem to be the precomputed colloca-

tions and inverted indices. Adding double binary search to these optimizations reduces the query

time by 58% absolute. However, its contribution to overall time reduction is minor in all settings.

In contrast, preliminary results (Lopez, 2007) suggested that it played a more important role in

algorithmic improvements. This may reflect differences in the relative cost of operations in the

our implementation platforms (Python versus C/Pyrex). Sanders and Transier (2007) suggest that

the cost of recursive function calls in the double binary algorithm impede performance in efficient

compiled implementations.

To study the performance of the double binary algorithm more closely, we experimented

with the λ parameter used as a threshold to determine when the algorithm should be used. With the

previous implementation (Lopez, 2007), we found that tuning this parameter yielded substantial

differences in computation time. We turned on all optimizations and varied only this parameter.

The results, given in Table 4.2, show that this parameter had very little effect on performance in

this implementation.

Recall that our prefix tree could be used as a cache in the case of batch translations. To study

the impact of this, we ran the decoder using the prefix tree as a full cache. We found that this only

improved the per-sentence query time to 0.93 seconds versus 0.97 seconds without caching. It

is interesting to note that caching performs a very similar function to our precomputed indices

and collocations. We were curious to see whether caching could simulate these functions, so we

disabled them and ran using the cache instead. Results are in Figure 4.16. We found that query

91



y =
1

x

x

∑
i=1

time(x)

y = time(x)

y = memory

use (Gb)

x = sentence number in the development corpus
2 100 900

1.7
1.8

2.1

164

53
7.4

Figure 4.16: Effect of caching on average and per-sentence lookup time and memory use.

Number of frequent patterns memory use query time

1000 2.1G 0.97

100 1.1G 1.62

Table 4.3: Effect of precomputation on memory use and processing time. Here we show the

memory requirement of the entire system (sans language model), including all data structures on

the training data.

times were extremely slow for the first one hundred sentences, but afterwards, they converged

towards query times using our optimizations. We also found that memory consumption grew

over time. This highlights two important features of the precomputation optimizations. First,

they prevent slow processing of the early inputs. Second, their overall memory consumption

profile is stable. In contrast, with full caching memory consumption continues to grow indefinitely,

which is unsuitable for large batch or online scenarios. We conclude that our optimizations enable

more flexibility than a simple caching approach. However, we note that it may still be possible

to combine our optimizations with partial caching (such as an LRU strategy) to achieve further

speedups.

Finally, we observed that much of the gain from precomputation seemed to occur with very

frequent patterns. To test this, we ran experiments using precomputed collocations and inverted

indices for only the 100 most frequent patterns. We found that the cost in memory use was reduced

by nearly half. In trade, per-sentence query time increased by 67%, but in absolute terms the

increase was less than a second.

4.5.2 Translation Quality Results

We measured translation accuracy the same way that we did for our phrase-based system.

It is important to note that the baseline hierarchical model uses a slightly different feature set

(Chiang, 2007).

• A source-to-target phrase translation probability.

• A target-to-source phrase translation probability.

• A source-to-target lexical weight.

• A target-to-source lexical weight.

• A language model feature.

• A word count feature.
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Configuration BLEU

baseline with standard eight features 30.7

baseline without target-to-source translation feature 30.5

baseline without target-to-source translation or phrase count features 30.6

baseline without phrase count feature 30.7

Table 4.4: Baseline system results compared with systems missing one or more features.

sample size time BLEU

0 0.97 –

10 1.19 27.8

25 1.41 29.6

50 1.66 30.1

100 2.04 30.4

200 2.70 30.8

300 3.27 30.9

400 3.76 30.8

500 4.25 31.2

1000 6.25 30.9

Table 4.5: Effect of different sampling sizes on per-sentence times for query, extraction, and

scoring and translation accuracy.

• A phrase count feature only for nonlexicalized rules (i.e. a rule containing no terminal

symbols).

• A phrase count feature for lexicalized rules.

We did not use any special translation modules for numbers, dates, names, and bylines. Therefore,

we leave out the associated features used by Chiang (2007).

We again study the effect of sampling and the effect of losing the baseline target-to-source

feature, and we again noticed during development that the phrase count features did not correlate

with accuracy. Therefore, we tested the effect of leaving out these features. The results on a

baseline system using direct representation are given in Table 4.4. None of the differences were

statistically significant. This confirms that neither the the target-to-source translation probability

nor the phrase penalties are essential to the system. Therefore, we run the remaining experiments

without the phrase penalties. By design, we must leave out the target-to-source probability.

Results for translation by pattern matching are given in Table 4.5. As with the phrase-based

system, we find that we can match our baseline system results with a sampling size between two

and three hundred. Minor improvements obtained with larger sample sizes were not statistically

significant. For results reported in the remainder of this dissertation, we use a sample size of 300.

As before, we find that extraction adds significant time to the overall speed. This is partly

an artifact of our implementation, which scans all alignment links for a sentence in order to com-

pute the target span and its reflection. To improve efficiency, we could design an alignment data

structure that only stores the indices of the rightmost and leftmost aligned words for each source

and target word. This representation would enable random access, since the number of tokens

would be equal to the size of the text, and thus its indexes would correspond. However, we are
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able to replicate the results of a direct representation using quite a small sample size.

4.6 Conclusion

The innovations described in this chapter solve a computationally challenging puzzle of

efficient pattern matching with discontiguous phrases. We believe this is intrinsically interest-

ing from an algorithmic perspective. However, our main interest is that it enables us to apply

translation by pattern matching to practically any MT model, provided that model-specific rule

extraction algorithms are developed. In the next chapter, we will show that our algorithms facili-

tate streamlined experimentation with hierarchical models, and that we can improve hierarchical

phrase-based translation in a way that is not practical with a direct representation.
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5 Tera-Scale Translation Models

All models are wrong. Some models are useful.

–George Box

We’ve taken translation by pattern matching from a novel idea to a fully realized implemen-

tation and shown that it is a viable replacement for direct representation of models. Furthermore,

we’ve solved a difficult algorithmic challenge in applying it to hierarchical phrase-based transla-

tion. These results match the current state of the art. Now we seek to improve on this result. To

our knowledge, none of the past work in this area (Callison-Burch et al., 2005; Zhang and Vogel,

2005) has demonstrated improvement over a credible baseline.

The lack of prior positive results has encouraged skepticism. Zens and Ney (2007) specifi-

cally criticize the work of Callison-Burch et al. (2005). Their argument centers on two key points.

First, they claim that the primary advantage posited by that work— use of longer phrases—does

not lead to any improvements in translation quality. They cite both their own results and those

of Koehn et al. (2003). Second, they object to the memory requirements of the training data and

indices. Phrase tables can easily exceed these requirements, but they solve this by storing their

phrase table in an external prefix tree. This drastically reduces memory use.

The external prefix tree is certainly useful. However, the argument employed to promote

it overlooks some key points. First, though it may be true that longer phrases are not particularly

useful, there are many other axes along which models can be scaled up. Second, the memory

use of translation by pattern matching along these axes is constant. It supports very large models

from a single underlying representation. In contrast, an external prefix tree representation must

be generated for each model variant, and is proportional to model size. As model size increases,

this becomes a significant drawback. We will show that translation by pattern matching enables us

to use models that are impractical to implement using prefix trees. Since it computes parameters

on an as-needed basis, there is no need to compute or store the entire model. This enables us to

translate with arbitrarily large models.

There is an additional benefit. Since the underlying representation is static, it is possible to

experiment with new models simply by modifying algorithmic parameters or model features. We

never need to recompute a full model offline or design specialized extraction utilities. This makes

translation by pattern matching an ideal platform for model prototyping.

In this chapter we apply translation by pattern matching to the problem of translation model

scaling. Our experiments focus on hierarchical phrase-based translation, since it is superior to

standard phrase-based translation (cf. §3.5, §4.5). We first illustrate the rapid prototyping capabili-

ties of translation by pattern matching (§5.1). We then explore several scaling axes—some obvious

and some novel—and show that we can substantially improve on the baseline system (§5.2.3). Our

experiments highlight interesting characteristics of the model and interactions of various compo-

nents. Finally, we conclusively demonstrate that reproducing our results with phrase tables would

be highly impractical (§5.3).
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Figure 5.1: Experimental workflow for conventional architecture vs. translation by pattern match-

ing.

5.1 Rapid Prototyping via Pattern Matching

Translation by pattern matching shortens experimental cycles by removing time-consuming

offline model computation. Consider the conventional architecture illustrated in Figure 3.3. It

requires us to re-extract rules and recompute all model parameters for each new model variant.

This process can require several hours or even days. Translation by pattern matching enables us

to explore many model variants because all models use the same underlying representation. It is

generated once, often in a matter of minutes (Figure 5.1).

Generating a conventional system using an external prefix tree (Zens and Ney, 2007) takes

a few steps.

1. Extract all rule instances from the corpus.
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Method CPU time (seconds)

Phrase tables (external prefix tree) 39051

Phrase extraction 31771

Phrase table scoring 5322

External prefix tree generation 1958

Translation by pattern matching 445

Suffix array construction (source) 100

Array construction (target) 40

Precomputations 126

Array construction (alignments) 96

Lexical weight computation 73

Table 5.1: CPU time needed to generate the baseline model.

2. Sort and score the rule instances.

3. Write the prefix tree a memory-mapped file.

In many experimental scenarios, we must redo these steps for each system variant. For instance,

to experiment with different maximum phrase lengths, we must generate a new phrase table for

each length. Furthermore, complexity depends on the size of the model. The time needed to sort

and score rules increases with their number, so a model that generates more rules will take longer

to create. In contrast, generating a pattern matching system requires the following steps.

1. Write the source training data as a memory-mapped suffix array.1

2. Write the target training data as a memory-mapped array.

3. Write the alignment as a memory-mapped array.

4. Write the lexical weighting table as a memory-mapped data structure.

5. Write precomputed collocations and inverted indexes as memory-mapped data structures.

The complexity of this offline initialization is mostly model-independent. Even when it is not, its

modularity is a benefit. For instance, to use a different word alignment of the same corpus, we need

only generate a new alignment data structure. To move from a standard phrase-based model to a

hierarchical model, we only need to generate the precomputed collocations and inverted indices.

The cost of generating these modular components is minor.

To make matters concrete, we measured the generation time for both representations of our

baseline hierarchical model (§4.5). We generated a conventional system using an external prefix

tree and a pattern matching system (precomputing for the 100 most frequent patterns). The results

are given in Table 5.1. The size of each representation is illustrated in Table 5.2 The prefix tree

representation takes nearly 90 times as long to produce and requires over 7 times as much memory

as our indirect representation.

If we had a sufficiently large cluster, we might reduce the computation of phrase tables to

a few hours using distributed methods.2 However, this is still dependent on model complexity.

1For suffix array construction we use an algorithm due to Larsson and Sadakane (1999). Puglisi et al. (2007) identify

several faster algorithms.
2Chris Dyer, personal communication.
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Phrase Tables (external prefix tree)

Rule instances extracted 195 million

Unique rules 67 million

Compressed extract file size 1.4 GB

Uncompressed extract file size 9.3 GB

Representation size 6.1 GB

Translation by Pattern Matching

Source-side suffix array size 343 MB

Target-side array size 123 MB

Alignment size 119 MB

Lexical weight table size 27 MB

Precomputation size (top 100) 240 MB

Total representation size 852 MB

Table 5.2: Size of representations for the baseline model.

We now turn to the topic of scaling our models to a size that dramatically outstrips our ability to

represent them using phrase tables.

5.2 Experiments

We exploited the rapid prototyping capabilities of our system to run a large number of exper-

iments. Our experiments focus on scaling, but they also highlight some interesting characteristics

of the underlying model.

5.2.1 Relaxing Grammar Length Restrictions

Callison-Burch et al. (2005) and Zhang and Vogel (2005) focused on two specific scaling

axes for translation models: larger corpora and longer phrases. We generalize these ideas under the

rubric of adding more data, and generating more rules from available data. We examine the former

in §5.2.3 below. Here we are concerned with the latter. In hierarchical phrase-based translation, the

analogue to an increase in maximum phrase length is relaxation of the grammar length restrictions

(§4.1). We experimented with several such restrictions.

First, we considered the effect of the maximum phrase span (MaxPhraseSpan) for rules

extracted from training data. Recall that this parameter limits the span of phrases that can be

extracted from the training data. To see how this affects our ability to translate, suppose that an

input sentence contains a source phrase uXv. It is possible that subpatterns u and v are collocated

in a training sentence, but within a window longer than the maximum phrase span. In this case, the

restriction prevents us from learning a translation rule that translates the collocated patterns as a

single unit. Relaxing the span limit increases the chance of finding translation rules for collocated

source phrases, or for finding additional examples of such rules. The risk is an increased chance

of learning translation rules for otherwise meaningless collocations. Chiang (2007) fixes the limit

at 10. To paint a complete picture of the effect of this parameter, we considered all values between

1 and 15. Results are reported in Table 5.3 (a). We found that accuracy plateaus just below the

baseline setting.

Next, we considered the effect of the maximum phrase length (MaxPhraseLength), which

limits the number of symbols that can appear in a source phrase. This is the closest analogue of
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(a)

MaxPhraseSpan BLEU

1 16.1

2 23.8

3 25.5

4 28.1

5 28.5

6 30.3

7 30.3

8 30.5

9 30.8

10 30.9

11 31.1

12 31.0

13 31.2

14 31.2

15 30.8

(b)

MaxPhraseLength BLEU

1 16.9

2 25.4

3 29.7

4 30.4

5 30.9

6 30.9

7 30.8

8 30.8

9 30.9

10 30.7

Table 5.3: Effect of varying phrase span and phrase length parameters. Baseline values are in

bold.

the maximum phrase length in a standard phrase-based model. By increasing this parameter, we

increase the number of words (either contiguous or in collocated subpatterns) that can be translated

as a single unit. As with the span parameter, we also run the risk of translating words based on

purely coincidental collocation. We considered values between 1 and 10. Results are reported

in Table 5.3 (b). As with the previous experiment, we found that accuracy plateaus just at the

baseline setting.

The results here essentially extend the findings of Koehn et al. (2003) and Zens and Ney

(2007) to the hierarchical case. Though scaling along these axes is unhelpful, there is still a large

space for exploration and improvement.

5.2.2 Interlude: Hierarchical Phrase-Based Translation and Lexical Reordering

Along a related line of inquiry, we considered the effect of increasing the number of non-

terminals in translated rules. Although Chiang (2007) limits the number of nonterminals to two,

his decoder implementation can translate rules with arbitrary numbers of nonterminal symbols.

For completeness, we also consider the effect of reducing this parameter to one or zero. We also

extend this experiment to gain insight into the benefits of hierarchical model over a conventional

phrase-based model.

A popular hypothesis posits that hierarchical phrase-based translation is essentially equiv-

alent to lexicalized reordering in conventional phrase-based models (Al-Onaizan and Papineni,

2006; Koehn et al., 2005; Tillman, 2004).3 Lexicalized reordering models parameterize reorder-

ing decisions on the words or phrases being translated. Proponents of this hypothesis argue that,

since the synchronous grammar encodes reordering decisions along with lexical translations, it

performs the same function. However, this differs from the typical justification for models that

translate such phrases (Chiang, 2007; Quirk and Menezes, 2006; Simard et al., 2005, e.g.). They

3 This hypothesis was suggested to me independently in personal communications with several researchers, includ-

ing Chris Callison-Burch, Chris Dyer, Alex Fraser, and Franz Och.
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Subpatterns Nonterminals Max Pattern BLEU Remark

1 0 u 26.3 monotone (cf. Chiang, 2007)

– – – 29.4 Moses, no lexicalized reordering

– – – 30.7 Moses with lexicalized reordering

1 1 uX ,Xu 30.2 lexicalized reordering equivalent

1 2 XuX 30.0 lexicalized reordering equivalent

2 1 uXv 30.5

2 2 uXvX ,XuXv 30.8

3 2 uXvXw 30.9 Hiero (Chiang, 2005, 2007)

4 3 uXvXwXy 30.9

5 4 uXvXwXyXz 30.8

Table 5.4: Effect of varying the maximum number of nonterminals and subpatterns.

argue that the ability to translate discontiguous phrases is central to the power of these models. If

this is not true, then the focus on discontiguous phrases may be a dead end, since, as we have seen,

their rulesets are quite unwieldy. We can instead simply pursue phrase-based translation using

lexicalized distortion, since its representation is more compact.

To tease apart these claims, we make the following distinction. Hierarchical phrases con-

taining a single subpattern—that is, phrases in the form u, Xu, uX , or XuX—are interchangeable

with lexicalized reordering in a conventional phrase-based model. In contrast, hierarchical phrases

representing discontiguous units—minimally uXv—encode translation knowledge that is strictly

outside the purview of lexical reordering, specifically the translation of collocated patterns as a

single unit. This delineation is arguably too fine, but for scientific purposes it is good first approx-

imation, allowing us to cleanly interpret the results.

To test the lexical reordering hypothesis, we implemented a restriction on the number of

subpatterns that could appear in either the source or target side of a hierarchical phrase. With

a limit of one, only one subpattern can appear in a hierarchical phrase, though the phrase may

contain between zero and two nonterminals.4 We ran several experiments varying both the number

of subpatterns and the number of nonterminals. Results are in Table 5.4. For comparison, we also

include results of the phrase-based system Moses (Koehn et al., 2007) with and without lexicalized

reordering.5

Our results are consistent with those found elsewhere in the literature. The most strict

setting allowing no nonterminal symbols replicates a result in Chiang (2007, Table 7), with sig-

nificantly worse accuracy than all other models. The most striking result is that the accuracy of

Moses with lexicalized reordering is indistinguishable from the accuracy of the hierarchical sys-

tem. Both improve over non-lexicalized Moses by about 1.4 BLEU. However, the hierarchical

emulation of lexicalized reordering shows that the full hierarchical model owes its power only

partly to this effect. Additional improvement is seen when we add discontiguous phrases. That

the effect of lexicalized reordering is weaker in the hierarchical model is unsurprising, since its

parameterization is much simpler than the one used by the Moses, which includes several spe-

4 Note that this differs from a restriction on the number of nonterminals, which by definition must appear in equal

number in both the source and target. This is not so with subpatterns. For instance, the rule X ←− X
1

u/vX
1

w is a

legal SCFG rule, though it contains only one source subpattern and two target subpatterns. Therefore we apply the

restriction independently to both source and target phrases.
5This is a different decoder than the one we modified in §3.5, which does not support lexicalized reordering. The

results with the Moses decoder are slightly better overall.
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cialized features for this purpose. This suggests that the hierarchical model could be improved

through better parameterization, and still benefit from the translation of discontiguous phrases.

Finally, we observe that using more than two nonterminals does not improve the hierarchical

model.

5.2.3 Complementary Scaling Axes

So far, we have extended the results of Zens and Ney (2007) and Koehn et al. (2003) to

hierarchical phrase-based translation, confirming that longer phrases do not substantially improve

these systems. We have also shed some light on the interpretation of hierarchical phrase-based

translation. While these are interesting scientific findings, they don’t improve our baseline system.

We now investigate other axes along which we can scale our models, some obvious and some

novel.

Because we find these axes to be complementary, we present them together in this section,

along with results showing improved translation accuracy. Our improved system incorporates a

large amount of out-of-domain data (§5.2.3.1), sparse discriminatively trained word alignments

(§5.2.3.2), loose phrase extraction heuristics (§5.2.3.3), and a novel parameterization enabled by

our approach (§5.2.3.4). These factors represent a synthesis of recent trends in statistical machine

translation and lead to substantial improvement (§5.2.3.5). In §5.3 we will show that this synthesis

could not have been done without translation by pattern matching.

5.2.3.1 Out of Domain Data

Translation by pattern matching enables us to train from very large corpora. In our ex-

periments, we were not able to find corpora that were too large to comfortably fit in memory on

our research machines, each of which had 8GB RAM. To our knowledge, the training corpus of

Chinese-English system that we used in our baseline systems is among the largest corpora of pro-

cessed in-domain training data currently in use— that is, the genre of this training data is identical

to that of the test data.6 To move to larger corpora, we added a large quantity of out-of-domain

data —data drawn from a different genre than the test, though in the same language pairs. We

used a large parallel text of United Nations proceedings. It is almost three times the size of our

in-domain training corpus, and makes our full training corpus among the largest assembled for

Chinese-English translation tasks.7 Corpus statistics are reported in Table 5.5. The corpus was to-

kenized, aligned, and otherwise preprocessed separately from the newswire corpus using identical

tools.

Making the best use of out-of-domain data in statistical machine translation is a difficult

problem that has only recently received any attention (Foster and Kuhn, 2007). The simplest

strategy is to simply concatenate the out-of-domain data with the in-domain data. This raises a

concern. A source phrase with a different sense in the out-of-domain data may occur so frequently

that it outweighs the correct sense found in the in-domain data. Therefore, we treat each corpus

independently. From each corpus, we sample up to 300 rule occurrences, and compute both lexical

weighting and the source-to-target phrase translation probability separately on each sample. For

the UN corpus, the resulting probabilities are incorporated into three new features. These features

receive a value of zero for any rule computed from the newswire data. Likewise, the original

source-to-target phrase translation probability and lexical weighting features receive a value of

6This corpus contains nearly all of the parallel newswire data available from the Linguistic Data Consortium.
7Our corpus is over half the size of one used by Zens and Ney (2007) for a Chinese-English task, and comparable

in size to those used by Fraser and Marcu (2006) for Arabic-English and French-English tasks.
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Corpus Sentences Chinese tokens English tokens

Newswire 1.02 million 27 million 28 million

UN 2.53 million 82 million 79 million

Combined 3.55 million 107 million 107 million

Table 5.5: Sizes of experimental corpora.

zero for rules computed from the UN data. This is not as elegant as the model used by Foster and

Kuhn (2007) but is similar and easy to implement in our setting.

5.2.3.2 Discriminatively Trained Word Alignments

The second axis that we vary concerns the underlying word alignment. Two trends are

apparent in recent word alignment research. First, there has been substantial success in discrimi-

native training of word alignments as measured by intrinsic criteria. Second, there is considerable

debate over whether these improvements carry over to the translation task itself (Ayan and Dorr,

2006a; Fraser and Marcu, 2007a; Lopez and Resnik, 2006).

A discriminative aligner that improves in both intrinsic measures and translation tasks is

the maximum entropy aligner of Ayan and Dorr (2006b). Their alignment improves translation

accuracy from 24.0 to 25.6 BLEU over a standard aligner on the NIST 2003 Chinese-English

task. This is a significant improvement. However, both the baseline and the improved system

are far from state-of-the-art due to the relatively small training set of 107 thousand sentences.8

The newswire corpus used in our experiments is ten times larger, and the full corpus including

out-of-domain data is 35 times larger. Experience has shown that improvements found in small

data conditions often do not hold in large data conditions (Fraser and Marcu, 2007a; Lopez and

Resnik, 2006), so we believe this is important to test. Ayan and Dorr (2006b) also used a quite

strict phrase length setting due to computational constraints. These constraints were disk space

and offline computation time, which are not a concern our system due to its small footprint in both

disk use and CPU time.

For comparison, we also considered the heuristically combined GIZA++ alignments used

by our baseline system. In both cases, the in-domain and out-of-domain corpora were aligned

separately.

5.2.3.3 Phrase Extraction Heuristics

Translation by pattern matching becomes extremely relevant when we consider the inter-

action of word alignment and phrase extraction heuristics. The GIZA++ alignments used in our

baseline system are dense alignments. The number of alignment links is over 96% of the number

of word tokens in each language. The actual percentage of aligned words may be somewhat less

than this, since some words may participate in multiple alignments. However, we can safely as-

sert that most words are aligned. Recall that the tight extraction heuristic requires aligned words

at both the edges of main phrases and subtracted phrases (§3.3.2, §4.4). Since most words are

aligned, this heuristic filters out relatively few candidate phrases. Conversely, the loose heuristic,

which allows phrases to contain unaligned words at the borders of aligned phrases, will result in

only a small number of additional extracted phrases.

8For comparison, our baseline system achieves a score of 32.9 BLEU on this task, though we use it as a development

corpus.
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In contrast, the maximum entropy alignments are sparse. The number of alignment links is

less than 70% of the number of word tokens in each language. These alignments interact strongly

with the extraction heuristics. Consider a phrase uXv containing two collocated subpatterns and

a single gap. We will make the coarse assumption that any given word has only a 70% chance

of being aligned. Since the tight heuristic requires that both the main phrase and the subphrase

have aligned edge words, the chance that an arbitrary phrase meets this criterion is less than 25%.

The situation is even worse for phrases with two gaps. In contrast, the loose heuristic not only re-

moves this restriction, but permits the extraction of many variant translations containing unaligned

words at the edges of the main phrase and subtracted phrases. This results in the extraction of a

very large inventory of phrases. Ayan and Dorr (2006a) show that this interaction dramatically

affects translation performance. They found that using the loose heuristic with sparse alignments

improved accuracy by 3.7 BLEU over the tight heuristic. This finding is supported by Fraser and

Marcu (2007a) and Lopez and Resnik (2006), who found that larger phrase inventories tend to

improve translation accuracy, particularly for Chinese to English translation.

Scaling this result to a very large dataset is a natural application for translation by pattern

matching, since it implies that a very large number of phrases would have to be processed if we

constructed a phrase table offline. Indeed, Ayan and Dorr (2006a) do not provide results for some

more permissive settings due to computational cost, even in their small data setting. Later, we

will show that the interaction of loose extraction heuristics on sparse alignments on a large corpus

produces a very large model §5.3.

5.2.3.4 Coherent Translation Units

An interesting modification to our baseline model is enabled by pattern matching. Recall

from §3.1 that for every phrase, we compute a marginal for phrase translation probabilities using

the number of rules containing the source phrase.

We saw in §3.3.2 and §4.4 that several conditions can prevent extraction of a translation for

any particular occurrence of a source phrase. The target phrase might be too long, there might be

unaligned words at its edges if we are using a tight extraction heuristic, the reflected source span

might not match the main phrase, or one of the subtracted phrases violates these restrictions.

Translation by pattern matching gives us the ability to incorporate the knowledge that we

gain from failed phrase extraction into our model. Informally, we think of this as follows. If

a phrase occurs frequently in our corpus, but we are often unable to extract a translation for it,

then our confidence that it represents a coherent unit of translation is diminished. Conversely,

if we are usually able to extract a translation of the phrase, then we believe that the phrase is a

natural unit of translation. We call this property coherence. Note that this property is not captured

in the conventional offline extraction method in which only valid phrase pairs are extracted. If

a phrase occurs many times but we can only extract a translation for it a few times, then those

translations receive very high probabilities, even though they may only reflect coincidence or even

misalignments.

We define coherence as the ratio of successful extractions to attempted extractions. This

is added as a feature in our log-linear model. As an alternative, we can incorporate the notion

of coherence directly into the phrase translation probability. We call this the coherent phrase-

to-phrase translation probability. We found in preliminary experiments that these alternatives

performed equally well. In the interest of keeping our model as simple as possible, we choose the

latter option since it does not increase the number of features.
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System BLEU loss

Best (all modifications) 32.6 –

with grow-diag-final-and alignment instead of maximum entropy alignment 32.1 -0.5

with tight extraction heuristic instead of loose 31.6 -1.0

without UN data 31.6 -1.0

without separate UN grammar 32.2 -0.4

with standard p( f |e) instead of coherent p( f |e) 31.7 -0.9

Baseline (Phrase Tables) 30.7 -1.9

Baseline (Pattern Matching) 30.9 -1.7

Table 5.6: Results of scaling modifications and ablation experiments.

5.2.3.5 Results

As in §3.5 and §4.5, each system configuration was optimized separately on the develop-

ment set. We repeat the baseline system results from §4.5 and show the results for a system

combining all of the modifications described above. In addition, we performed ablation exper-

iments to study the contribution of each modification to the improved system (Table 5.6). Our

result improves significantly over the baseline. The improvement over the conventional baseline

is 1.9 BLEU. Since this is a strong baseline, our improvements are quite substantial. We find that

all the modifications described above contribute in some way to the improvement. The results

highlight the complementary nature of our modifications. In some cases the removal of even one

of them causes a loss of over one BLEU point.

To confirm these results, we ran two additional experiments. First, we compared the base-

line and improved systems on the NIST 2006 Chinese-English task. Since we did not perform any

other experimentation on this dataset it serves as a validation set. The baseline system scores 27.0,

while our modified system improves this to 28.4, a statistically significant improvement.

We also compared our modified system against an augmented baseline using a 5-gram lan-

guage model and rule-based number translation. The objective of this experiment is to ensure that

our improvements are complementary to better language modeling, which often subsumes other

improvements. The new baseline achieves a score of 31.9 on the NIST 2005 set, making it nearly

the same as the strong results reported by Chiang (2007). Our modified system increases this to

34.5, a substantial improvement of 2.6 BLEU.

5.3 A Tera-Scale Translation Model

To get a sense of the what our improvements would require if we attempted them in a

system based on direct representation, we estimated size of the synchronous grammar table that

would be equivalent to the configuration of our best system. Due to constraints on disk space and

time, we did not construct the table itself, for reasons that will become clear below. We modified

the extractor to simply report the number of rules that it would normally extract under our model

setting. To estimate phrase table size, we assume that the disk space requirements and the number

of scored rules grows linearly in the number of extracted rules.9 Therefore, we simply multiply the

numbers in Table 5.1 by the ratio of extracted rules between the improved and baseline systems.

The number of extracted rules and the resulting estimates of phrase table size (Table 5.7)

show that it would be completely impractical to compute such a phrase table. The large corpus,

9This is perhaps conservative, since our corpus is heterogeneous, and since the ratio of unique rules tends to increase

with their overall number.
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Phrase Tables (external prefix tree)

Extract time 77 CPU days

Actual rule instances extracted 19.3 billion

Estimated unique rules 6.6 billion

Estimated compressed extract file size 135 GB

Estimated uncompressed extract file size 917 GB

Estimated total representation size 604 GB

Translation by Pattern Matching

Total generation time 1.3 CPU hours

Source-side suffix array size 1.36 GB

Target-side array size 461 MB

Alignments size 311 MB

Lexical weight table size 63 MB

Precomputation size (top 100) 1.24 GB

Total representation size 3.4 GB

Table 5.7: Generation times and size of representations for the improved model (cf. Table 5.2).

sparse alignments, and loose extraction heuristics combine to produce a number of rule occur-

rences that is two orders of magnitude larger than in the baseline system. Merely counting all

of these occurrences took almost five days on our 17-node research cluster. We estimate that the

resulting files would require about a terabyte of disk space. Assuming that we even had adequate

external algorithms to sort, score, and generate a memory-mapped prefix tree for such large files,

we hesitate to estimate how long it would take. This estimate does not even address the question of

computing the coherent phrase translation probabilities in an offline setting. In order to compute

this feature using offline methods, we would need to extract an event for each occurrence of a pat-

tern that might be considered a legal phrase, even if the occurrence was not part of an extractable

phrase pair. This would substantially inflate the number of events extracted from the corpus and

increase the amount of offline computation beyond the estimate reported here.

By comparison, it took 1.3 hours to generate the data files for our pattern matching decoder

on a single CPU, and we completed the full complement of experiments in Table 5.6 in substan-

tially less time than it took to simply count the rules that would be generated in the conventional

system.

5.4 Conclusions

Our results demonstrate that translation by pattern matching enables practical, rapid explo-

ration of vastly larger models than those currently in use. As a first step in this direction, we have

explored a number of different scaling axes, and shown that we can significantly outperform a

strong baseline generated with a state-of-the-art model. Furthermore, the rapid prototyping capa-

bilities of our system enable experimentation with many different model variants using a single

representation that is easy and efficient to generate. We explored some interesting characteristics

of the hierarchical phrase-based translation model using this capability, finding that while longer

phrases are no more helpful in the hierarchical setting than in the standard setting, the use of dis-

contiguous phrases adds power to hierarchical models, in addition to acting as a simplified type of

lexicalized distortion.
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6 Conclusions and Future Work

We can only see a short distance ahead, but we can see plenty there that needs to be

done.

–Alan Turing

Algorithms have been central to the development of statistical machine translation (Chap-

ter 2). Stack decoding algorithms (e.g., Koehn, 2004a; Wang and Waibel, 1997) originating in

information theory (Jelinek, 1969) and classical artificial intelligence (Hart et al., 1968) were es-

sential to the development of early models. Context-free parsing algorithms originating in the

parsing community (Cocke, 1970; Earley, 1970; Kasami, 1965; Younger, 1967) have been pivotal

to the development of hierarchical translation models, and continue to produce new variants and

embellishments (Huang and Chiang, 2007; Venugopal et al., 2007). Minimum error rate training

(Och, 2003) is a novel optimization procedure originating in the statistical machine translation

community that has been central to rapid progress over the last several years.

This dissertation continues the tradition of algorithmic innovation in statistical machine

translation. We turned a novel idea for scaling (Callison-Burch et al., 2005; Zhang and Vogel,

2005) into a fully realized algorithmic framework to address a crucial scaling problem (Chapter 3)

and solved a difficult algorithmic puzzle to make it applicable to a wide range of models (Chap-

ter 4). Our algorithms draw on pattern matching techniques originally developed in bioinformatics

and information retrieval. We applied our framework and significantly improved a strong baseline,

showing that it could support models vastly larger than the current state of the art (Chapter 5).

The contributions of this dissertation include the following.

• We generalized a previous idea, bringing it to fruition as a complete algorithmic frame-

work called machine translation by pattern matching. It enables scaling to large data, richer

modeling, and rapid prototyping.

• We identified open questions in the prior work that provides the foundation for our frame-

work. We solved these problems, giving state-of-the-art performance in standard phrase-

based translation models.

• We introduced a novel approximate pattern matching algorithm that extends our framework

to a variety of important models based on discontiguous phrases. Our algorithm solves a

challenging computational puzzle. It is two orders of magnitude faster than the previous

state-of-the art, and enables a number of previously difficult or impossible applications.

• We showed how our framework can be applied to scale statistical translation models along

several axes, leading to substantial improvement in translation accuracy over a state-of-the-

art baseline.

• We showed that our method can scale up to extremely large models, at least two orders of

magnitude larger than most contemporary models.
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• We include the most comprehensive contemporary survey of the field of statistical machine

translation.

We believe that these results only scratch the surface of the potential of translation by pattern

matching. Our algorithms enable the development and application of models that are at least two

orders of magnitude larger than most contemporary models. This makes them applicable to both

the ever-increasing size of parallel corpora, and the development of more complex models trained

on these corpora.

6.1 Future Work

A number of obvious extensions to the work in this thesis include extension to syntac-

tic phrase-based models (DeNeefe et al., 2007; Galley et al., 2004, 2006) and factored transla-

tion models (Koehn and Hoang, 2007; Koehn et al., 2007). The former requires only a model-

specific source-driven extraction algorithm, while the latter requires additional innovations in pat-

tern matching, since it depends on a layered representation of training and input data.

We also plan to incorporate discriminative training methods into our framework. Chan

et al. (2007), Carpuat and Wu (2007), and Subotin (2008) improve translation accuracy by re-

casting target phrase selection as a multi-class classification problem. They train a local classifier

using contextual features of the source phrase. A drawback is that model complexity is substan-

tially increased due to the richness of the feature space, harming the efficiency of offline training

methods. However, these features are easy to obtain at runtime using our approach, which finds

source phrases in context. We could investigate other novel features using this framework. For

instance, we could consider using entire document context, which has not received much attention

in the statistical translation literature.

Although our algorithms are quite fast, we believe that their efficiency can be substantially

improved. This is especially true in the extraction step. We can improve this using an online/offline

mixture (Zhang and Vogel, 2005), in which we extract a small, fully computed phrase table con-

taining only the most frequent source phrases, and use translation by pattern matching for phrases

not found in this table. This is the same strategy that we used to break down the pattern matching

problem in Chapter 4, by focusing on the most frequent phrases. Since the number of frequent

types is small, this limited extraction would be feasible even for the extravagantly large model we

developed in Chapter 5. Although our current decoder is only about twice as slow as decoding

with a direct representation, this improvement would enable our decoder to achieve speed close to

that of offline methods, while retaining the scaling capabilities of our approach.

In our experiments, we were able to keep a very large corpus in memory without substan-

tially taxing our moderate cluster resources. However, the available parallel data are constantly

growing, particularly with continued development of web-mined and comparable corpora. Ex-

tension to factored models may also significantly tax memory resources. Therefore, we may

consider using more efficient representations. Navarro and Mäkinen (2007) describe compressed

self-indexes, a class of data structures that support both random access and fast pattern matching

while consuming only slightly more than the information-theoretic minimum space required by

the data. They are several times more compact than suffix arrays, and would thus allow scaling to

substantially larger corpora without significant changes to the architecture we have laid out in this

dissertation.

Moving beyond just translation, there is an affinity between natural language processing and

bioinformatics. Where natural language processing seeks to analyze and manipulate sequences of

words in human language, bioinformatics seeks to analyze and manipulate sequences of proteins
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and other biological markers. Unsurprisingly, there is a some history of cross-development. Re-

cently, there has been some interest in the application of natural language parsing techniques to

protein folding problems (Hockenmaier et al., 2006). Synchronous grammars used in machine

translation can also be used in the analysis of protein structures (Chiang, 2004). It has been shown

that suffix arrays and prefix trees, the basis of many pattern matching algorithms in bioinformat-

ics, have novel applications in the analysis of corpora (Yamamoto and Church, 2001) and parallel

corpora (McNamee and Mayfield, 2006).

This dissertation deepens this relationship by using bioinformatics algorithms to improve

machine translation. As discussed in §4.2.1, the pattern matching problem for discontiguous

phrases is a variant of the approximate pattern matching problem. A major application of approx-

imate pattern matching in bioinformatics is query processing in protein databases for purposes

of sequencing, phylogeny, and motif identification (Gusfield, 1997). Using our approximate pat-

tern matching algorithms, we conjecture that machine translation could be treated very much like

search in a protein database. In this scenario, the goal is to select training sentences that match

the input sentence as closely as possible, under some evaluation function that accounts for both

matching and mismatched sequences, as well as possibly other data features.

Taking this scenario further, we imagine deepening the connection to bioinformatics by ap-

plying multiple sequence alignment algorithms to the translation problem. These algorithms take a

set of similar sequences and attempt to find an optimal alignment of their matching subsequences

(Durbin et al., 1998). One natural outcome that can be computed from the multiple sequence

alignment is the consensus alignment. Suppose that we find many partial matches of a sentence

in our training data. We could apply multiple sequence alignment to their extracted translations

to synthesize a new translation. Where most current decoding algorithms force the translations

of overlapping source phrases to compete, this method reinforces their common elements. There-

fore, it might be a better use of the sparse evidence in our training data. Similar algorithms have

been used in translation system combination (Rosti et al., 2007), speech recognition (Mangu et al.,

2000), and automatic summarization (Barzilay and Lee, 2003).

Finally, our work coincides with related efforts in the use of string kernels, a type of kernel

used in machine learning methods that computes the overlap of non-contiguous subsequences

between documents (Lodhi et al., 2002). The pattern matching algorithm for hierarchical phrases

can be seen as computing a string subsequence kernel between an input sentence and the entire

training text, a quite difficult problem. String kernels and related learning techniques are becoming

widespread in statistical language processing and computational linguistics. More broadly, these

techniques are related to the notion of distributional similarity between words, which has received

substantial attention in computational linguistics (e.g. Lee, 1999; Manning and Schütze, 1999;

Pereira et al., 1993). Our algorithms could be used to investigate such hypotheses on a very large

scale using kernel methods. However, they also have application in small scale, where they could

be used to extract all sets of subsequences from small parallel corpora, thus making the most use

of finite resources.

6.2 Concurrent Trends and Related Work

Other work contemporary with ours has focused on scalable representations of language

models, complementing to our work. Brants et al. (2007) and Zhang et al. (2006b) use distributed

representations of extremely large language models. Notably, the latter approach is based on suf-

fix arrays, an index data structure used in our pattern matching algorithms. Talbot and Osborne

(2007a,b) employ a Bloom filter, a data structure with enormous compression rates that admits a
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small probability of error. This enables them to store a very large language model in a surpris-

ingly small amount of memory. They aim to put large-scale models in reach of researchers with

moderate computing resources. This encourages widespread experimentation with datasets and

models that would only be accessible to those with large computing clusters. In this sense it is

most complementary to our own work. A system combining their language model representation

and our translation model representation could scale to extremely large models of both while using

only a modest amount of memory.
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Marcello Federico, and Rafael Banchs. Morpho-syntactic information for automatic error anal-

ysis of statistical machine translation output. In Proc. of NAACL Workshop on Statistical Ma-

chine Translation, pages 1–6, Jun 2006.

Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A taxonomy of suffix array construction

algorithms. ACM Computing Surveys, 39(2), Jun 2007.

Chris Quirk and Arul Menezes. Do we need phrases? Challenging the conventional wisdom in

statistical machine translation. In Proc. of HLT-NAACL, pages 8–16, Jun 2006.

Chris Quirk, Arul Menezes, and Colin Cherry. Dependency treelet translation: Syntactically

informed phrasal SMT. In Proc. of ACL, pages 271–279, Jun 2005.

Mohammad Sohel Rahman, Costas S. Iliopoulos, Inbok Lee, Manal Mohamed, and William F.

Smyth. Finding patterns with variable length gaps or don’t cares. In Proc. of COCOON, Aug

2006.

Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity Resolution. PhD

thesis, University of Pennsylvania, 1998.

Philip Resnik and Noah A. Smith. The web as parallel corpus. Computational Linguistics, 29(3):

349–380, Sep 2003.

Philip Resnik, Mari Broman Olsen, and Mona Diab. Creating a parallel corpus from the “book of

2000 tongues”. In Proceedings of the Text Encoding Initiative 10th Anniversary User Confer-

ence (TEI-10), 1997.

Roni Rosenfeld. Two decades of statistical language modeling: where do we go from here? Proc.

of IEEE, 88(8):1270–1278, Aug 2000.

Antti-Veikko Rosti, Necip Fazil Ayan, Bing Xiang, Spyros Matsoukas, Richard Schwartz, and

Bonnie Dorr. Combining outputs from multiple machine translation systems. In Proc. of HLT-

NAACL, pages 228–235, Apr 2007.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, 2nd

edition, 2003.

Grazia Russo-Lassner, Jimmy Lin, and Philip Resnik. A paraphrase-based approach to machine

translation evaluation. Technical Report LAMP-TR-125, University of Maryland, Aug 2005.

Peter Sanders and Frederik Transier. Intersection in integer inverted indices. In Proc. of ALENEX,

pages 71–83, Jan 2007.

121



Satoshi Sato and Makoto Nagao. Toward memory-based translation. In Proc. of COLING, pages

247–252, Aug 1990.

Charles Schafer and Elliott Franco Drabek. Models for inuktitut-english word alignment. In Proc.

of ACL Workshop on Building and Using Parallel Texts, pages 79–82, Jun 2005.

Libin Shen, Anoop Sarkar, and Franz Josef Och. Discriminative reranking for machine translation.

In Proc. of HLT-NAACL, pages 177–184, May 2004.

Stuart M. Shieber and Yves Schabes. Synchronous tree-adjoining grammars. In Proc. of COLING,

pages 253–258, 1990.

Michel Simard, Nicola Cancedda, Bruno Cavestro, Marc Dymetman, Eric Gaussier, Cyril Goutte,

Kenji Yamada, Philippe Langlais, and Arne Mauser. Translating with non-contiguous phrases.

In Proc. of HLT-EMNLP, pages 755–762, Oct 2005.

Michael Sipser. Introduction to the Theory of Computation. PWS Publishing, 2nd edition, Feb

2005.

David A. Smith and Noah Smith. Bilingual parsing with factored estimation: Using English to

parse Korean. In Proc. of EMNLP, pages 49–56, Jul 2004.

Noah A. Smith. From words to corpora: Recognizing translation. In Proc. of EMNLP, pages

95–102, Jul 2002.

Noah A. Smith. Novel Estimation Methods for Unsupervised Discovery of Latent Structure in

Natural Language Text. PhD thesis, Johns Hopkins University, Oct 2006.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and John Makhoul. A study of

translation edit rate with targeted human annotation. In Proc. of AMTA, pages 223–231, Aug

2006.

Harold Somers. An overview of EBMT. In Michael Carl and Andy Way, editors, Recent Advances

in Example-Based Machine Translation, chapter 4, pages 115–153. Kluwer, 2003.

Michael Subotin. Conditional random fields for statistical machine translation. Generals paper

(draft), Jan 2008.

David Talbot and Miles Osborne. Randomised language modelling for statistical machine trans-

lation. In Proc. of ACL, pages 512–519, Jun 2007a.

David Talbot and Miles Osborne. Smoothed bloom filter language models: Tera-scale LMs on the

cheap. In Proc. of ACL, pages 468–476, Jun 2007b.

Ben Taskar. Learning Structured Prediction Models: A Large-Margin Approach. PhD thesis,

Stanford University, Dec 2004.

Ben Taskar, Simon Lacoste-Julien, and Dan Klein. A discriminative matching approach to word

alignment. In Proc. of HLT-EMNLP, pages 73–80, Oct 2005.

Christoph Tillman. A unigram orientation model for statistical machine translation. In Proc. of

HLT-NAACL: Short Papers, pages 101–104, May 2004.

122



Christoph Tillman and Hermann Ney. Word reordering and a dynamic programming beam search

algorithm for statistical machine translation. Computational Linguistics, 29(1):98–133, Mar

2003.

Christoph Tillmann and Tong Zhang. A discriminative global training algorithm for statistical

MT. In Proc. of ACL-COLING, pages 721–728, Jul 2006.

Christoph Tillmann, Stephen Vogel, Hermann Ney, and Alex Zubiaga. A DP-based search using

monotone alignments in statistical translation. In Proc. of ACL-EACL, pages 289–296, 1997.

Kristina Toutanova, H. Tolga Ilhan, and Christopher D. Manning. Extensions to HMM-based

statistical word alignment models. In Proc. of EMNLP, pages 87–94, Jul 2002.

Joseph P. Turian, Luke Shen, and I. Dan Melamed. Evaluation of machine translation and its

evaluation. In Proc. of MT Summit IX, Sep 2003.

Nicola Ueffing and Hermann Ney. Word-level confidence estimation for machine translation using

phrase-based translation models. In Proc. of HLT-EMNLP, pages 763–770, Oct 2005.

Nicola Ueffing, Franz Josef Och, and Hermann Ney. Generation of word graphs in statistical

machine translation. In Proc. of EMNLP, pages 156–163, Jul 2002.

Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar. Transductive learning for statistical ma-

chine translation. In Proc. of ACL, pages 25–32, Jun 2007.

Esko Ukkonen. On-line construction of suffix-trees. Algorithmica, 14(3):249–260, Sep 1995.

Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority

queue. Mathematical Systems Theory, 10(2):99–127, 1977.

Ashish Venugopal, Andreas Zollmann, and Alex Waibel. Training and evaluating error minimiza-

tion rules for statistical machine translation. In Proc. of ACL Workshop on Building and Using

Parallel Texts, pages 208–215, Jun 2005.

Ashish Venugopal, Andreas Zollmann, and Stephan Vogel. An efficient two-pass approach to

synchronous-CFG driven statistical MT. In Proc. of HLT-NAACL, 2007.

K. Vijay-Shanker, David Weir, and Aravind K. Joshi. Characterizing structural descriptions pro-

duced by various grammatical formalisms. In Proc. of ACL, pages 104–111, 1987.

Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

Stephan Vogel, Hermann Ney, and Christoph Tillman. HMM-based word alignment in statistical

machine translation. In Proc. of COLING, pages 836–841, Aug 1996.

Chao Wang, Michael Collins, and Philipp Koehn. Chinese syntactic reordering for statistical

machine translation. In Proc. of EMNLP-CoNLL, pages 737–745, Jun 2007.

Jianqiang Wang. Matching Meaning for Cross-Language Information Retrieval. PhD thesis,

University of Maryland, 2005.

Ye-Yi Wang and Alex Waibel. Decoding algorithm in statistical machine translation. In Proc. of

ACL-EACL, pages 366–372, Jul 1997.

123



Taro Watanabe and Eiichiro Sumita. Bidirectional decoding for statistical machine translation. In

Proc. of COLING, pages 1079–1085, Aug 2002.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki. Online large-margin training

for statistical machine translation. In Proc. of EMNLP-CoNLL, pages 764–773, Jun 2007.

Warren Weaver. Translation. In William N. Locke and A. Donald Booth, editors, Machine Trans-

lation of Languages: Fourteen Essays, chapter 1, pages 15–23. MIT Press, 1955. Reprint of

1949 memorandum.

Benjamin Wellington, Joseph Turian, Chris Pike, and I. Dan Melamed. Scalable purely-

discriminative training for word and tree transducers. In Proc. of AMTA, pages 251–260, Aug

2006a.

Benjamin Wellington, Sonjia Waxmonsky, and I. Dan Melamed. Empirical lower bounds on the

complexity of translational equivalence. In Proc. of ACL-COLING, pages 977–984, Jun 2006b.

John S. White, Theresa O’Connell, and Francis O’Mara. The ARPA MT evaluation methodolo-

gies: Evolution, lessons, and future approaches. In Proc. of AMTA, 1994.

Dekai Wu. Stochastic inversion transduction grammars, with application to segmentation, brack-

eting, and alignment of parallel corpora. In Proc. of IJCAI, pages 1328–1335, Aug 1995a.

Dekai Wu. Grammarless extraction of phrasal translation examples from parallel texts. In Proc.

of TMI, pages 354–372, Jul 1995b.

Dekai Wu. A polynomial-time algorithm for statistical machine translation. In Proc. of ACL,

pages 152–158, Jun 1996.

Dekai Wu. MT model space: statistical versus compositional versus example-based. Machine

Translation, 19(3–4):213–227, Dec 2005.

Dekai Wu and Hongsing Wong. Machine translation with a stochastic grammatical channel. In

Proc. of ACL-COLING, pages 1408–1415, Aug 1998.

Deyi Xiong, Qun Liu, and Shouxun Lin. Maximum entropy based phrase reordering model for

statistical machine translation. In Proc. of ACL-COLING, pages 521–528, Jul 2006.

Kenji Yamada and Kevin Knight. A syntax-based statistical translation model. In Proc. of ACL-

EACL, 2001.

Kenji Yamada and Kevin Knight. A decoder for syntax-based statistical MT. In Proc. of ACL,

pages 303–310, Jul 2002.

Mikio Yamamoto and Kenneth Church. Using suffix arrays to compute term frequency and doc-

ument frequency for all substrings in a corpus. Computational Linguistics, 27(1):1–30, Mar

2001.

David Yarowsky and Grace Ngai. Inducing multilingual POS taggers and NP bracketers via robust

projection across aligned corpora. In Proc. of NAACL, pages 200–207, Jun 2001.

David Yarowsky, Grace Ngai, and Richard Wicentowski. Inducing mulilingual text analysis tools

via robust projection across aligned corpora. In Proc. of HLT, pages 109–116, 2001.

124



Daniel H. Younger. Recognition and parsing of context-free languages in time n3. Information

and Control, 10(2):189–208, 1967.

Richard Zens and Hermann Ney. A comparative study on reordering constraints in statistical

machine translation. In Proc. of ACL, pages 144–151, Jul 2003.

Richard Zens and Hermann Ney. Improvements in phrase-based statistical machine translation. In

Proc. of HLT-NAACL, pages 257–264, May 2004.

Richard Zens and Hermann Ney. Efficient phrase-table representation for machine translation with

applications to online MT and speech translation. In Proc. of HLT-NAACL, 2007.

Hao Zhang and Daniel Gildea. Stochastic lexicalized inversion transduction grammar for align-

ment. In Proc. of ACL, pages 475–482, Jun 2005.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight. Synchronous binarization for ma-

chine translation. In Proc. of HLT-NAACL, pages 256–263, Jun 2006a.

Ying Zhang and Stephan Vogel. An efficient phrase-to-phrase alignment model for arbitrarily long

phrase and large corpora. In Proc. of EAMT, May 2005.

Ying Zhang, Almut Silja Hildebrand, and Stephan Vogel. Distributed language modeling for N-

best list re-ranking. In Proc. of EMNLP, pages 216–223, Jul 2006b.

Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Computing Surveys,

38(2), Jul 2006.

125


	Dedication
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Outline of the Dissertation
	Research Contributions

	A Survey of Statistical Machine Translation
	Previous Work
	Background and Context
	Formal Description

	Modeling Part I: Translational Equivalence
	Finite-State Transducer Models
	Synchronous Context-Free Grammar Models
	Other Models of Translational Equivalence

	Modeling Part II: Parameterization
	Generative Models
	Discriminative Models

	Parameter Estimation
	Parameter Estimation in Generative Models
	Interlude: Word Alignment
	Estimation in Log-Linear Models

	Decoding
	FST Decoding
	SCFG Decoding
	Reranking

	Evaluation
	Current Directions and Future Research
	Conclusions

	Machine Translation by Pattern Matching
	Baseline Model
	Phrase Tables
	Translation by Pattern Matching
	Pattern Matching and Suffix Arrays
	Source-Driven Phrase Extraction and Scoring

	Bringing Performance up to the State of the Art
	Results
	Baseline System Results
	Translation by Pattern Matching Results
	Analysis of Memory Use

	Conclusions

	Pattern Matching for Phrases with Gaps
	Hierarchical Phrase-Based Translation (Redux)
	The Pattern Matching Problem for Hierarchical Phrases
	Baseline Algorithm
	Analysis

	Solving the Pattern Matching Problem for Hierarchical Phrases
	Efficient Enumeration
	Faster Pattern Matching for Individual Query Patterns

	Source-Driven Phrase Extraction
	Results
	Timing Results
	Translation Quality Results

	Conclusion

	Tera-Scale Translation Models
	Rapid Prototyping via Pattern Matching
	Experiments
	Relaxing Grammar Length Restrictions
	Interlude: Hierarchical Phrase-Based Translation and Lexical Reordering
	Complementary Scaling Axes

	A Tera-Scale Translation Model
	Conclusions

	Conclusions and Future Work
	Future Work
	Concurrent Trends and Related Work

	Bibliography

