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Abstract

Recent research in statistical- and example-
based machine translation integrates rule-
induced structured representations with statis-
tics and lexicalised exceptions. While rule-
based approaches concentrate on the formation
of partial translation hypotheses, probabilistic
approaches are concerned with the evaluation
and selection of the best hypotheses.

Within the METIS-II framework, we propose a
machine translation system which uses transfer
and expander rules to build an AND/OR graph
of partial translations and a statistical ranker to
find the best path through the graph. The pa-
per gives an overview of the architecture and an
evaluation of the system for several languages.

1 Introduction

Recent machine translation techniques integrate
rule-based knowledge and statistics: (Groves and
Way, 2006) integrate rule-induced chunk transla-
tions with a statistical decoder; for (Richardson et
al., 2001; Gamon et al., 2002), or (Ringger et al.,
2004), linguistic rules describe what possible trans-
formations a parse tree can undergo, but statistics
decides under which conditions a particular rule is
applied and (Quirk and Menezes, 2006) decide the
combination of derivation trees by statistical means.

This paper outlines an MT architecture which
uses rule-based devices to generate sets of partial
translation hypotheses and a statistical Ranker to
evaluate and retrieve the best hypotheses in their
context.

The rule-based device generates an acyclic
AND/OR graph which allows for compact repre-
sentation of many different translations while the
Ranker is a beam search algorithm which tries to
find most likely paths in the AND/OR graph.

Unlike a usual statistical decoder (Germann et al.,
2001; Koehn, 2004), our Ranker traverses the search
graph to grade alternative paths and outputs a list
of the n-best translations. The Ranker itself does
not modify the graph. It does not permute chunks
or items and it does not generate additional paths
which are not already contained in the graph. The

construction of the search graph and its evaluation
are thus separated as two distinct tasks.

Starting from a SL sentence, the graph is incre-
mentally constructed in three rule-based steps then
evaluated and only for the n-best translations word
tokens are generated:

1. The Analyser lemmatises and morphologically
analyses the SL sentence. It produces a (flat)
grammatical analysis of the sentence, detecting
phrases and clauses and potential subject can-
didates. An outline of the Analyser is given in
section 2.

2. The Matcher matches the analysed SL sentence
on the transfer lexicon and retrieves TL equiva-
lences. The Matcher has been described in (Carl
and Rascu, 2006). We will give a review of the
essential features in section 3.

3. The Expander inserts, deletes, moves and per-
mutes items or chunks according to TL syn-
tax. It is called Expander because it expands
the search space through the word- and phrase
translations retrieved from the lexicon. The Ex-
pander relies on a rule-based device. We give
some examples in section 4

4. The Ranker relies on a beam search algorithm
that iteratively traverses the graph and com-
putes the most likely translations in a log-linear
fashion (Och and Ney, 2002). The Ranker is ex-
plained in section 5.

5. Since the Ranker outputs lemmatised forms and
PoS tags, we need a Token Generator to gen-
erate surface word-forms from the lemmas and
PoS tags. The Token Generator has been de-
scribed in (Carl et al., 2005) and will be omitted
here.

2 The Analyser

The Analyser reads the SL sentence and produces
a flat sequence of feature bundles which contains
chunking and topological information of the sentence
similar to the one described in (Becker and Frank,
2002; Müller, 2004). For instance, from the German



1a Das Haus wurde von Hans gekauft (The house was bought by Hans)
The house was from Hans bought

1b

{lu=das, wnrr=1, c=w,sc=art, mark=np;subjF, markcl=hs;vf}
,{lu=haus, wnrr=2, c=noun, mark=np;subj, markcl=hs;vf}
,{lu=werden, wnra=3, c=verb,vtyp=fiv, mark=vg fiv, markcl=hs;lk}
,{lu=von, wnrr=4, c=w,sc=p, mark=np;nosubjF, markcl=hs;mf}
,{lu=Hans, wnrr=5, c=noun, mark=np;nosubj, markcl=hs;mf}
,{lu=kaufen, wnra=6, c=verb,vtyp=ptc2, mark=vg ptc, markcl=hs;rk}
.

Figure 1: A German sentence (1a) and the Output of the Analyser (1b). See text for explanation

SL sentence 1a the representation would be gener-
ated in figure 1 1b.

The analysis in 1b comprising among other things
the lemma lu of the word, part-of-speech infor-
mation c, sc and vtyp, as well as morphological
and syntactic information. Chunking information
is provided by the mark feature while the topolog-
ical parser produces a linguistically motivated, flat
macro structure of German, as coded by the markcl
feature. The values indicate: hs main clause vf
(Vorfeld) mf (Mittelfeld) lk (linke Klammer) and rk
(rechte Klammer) (see (Müller, 2004) for in depth
discussion).

3 The Matcher

The input of the matcher is a sequence of annotated
SL words as generated from the Analyser (see exam-
ple 1b in figure 1). The sequence of feature bundles
is then matched on the lexicon as described in (Carl
and Rascu, 2006).

When matching the SL representation on the dic-
tionary and retrieving translation options a number
of translation divergencies have to be coped with.

While the dictionary entries are coded as se-
quences of words, these words may actually be non-
sequential in the sentence to be translated. The dic-
tionary and the Matcher may regroup words in a
sentence into coherent meaning entities which are
distributed over several parts of the sentence and
retrieve sets of translations for them. On the other
hand, the dictionary provides many possible trans-
lation options and leaves it to the Ranker to decide
which fits best the context. We give examples of
these two mechanisms.

The Matcher retrieves all possible translation op-
tions for the sentence. It returns a structure as
shown in figure 2. Each SL node is transformed into
a node of an AND/OR graph which consists of a set
of translation options. Each retrieved translation
option is, in turn a flat tree. Translation options are
clustered into translation units which are assigned
to one SL node.

A translation option consists of a “mother” node

{lu=das,wnrr=1,c=w,sc=art, ... }

@{c=art,n=146471}@{lu=the,c=AT0}.

.

,{lu=Haus,wnrr=2,c=noun, ...}

@{c=noun,n=268244}@{lu=company,c=NN1}.

,{c=noun,n=268246}@{lu=home,c=NN1}.

,{c=noun,n=268247}@{lu=house,c=NN1}.

,{c=noun,n=268249}@{lu=site,c=NN1}.

.

,{lu=werden,wnrr=3,c=verb,vtyp=fiv, ...}

@{c=verb,n=604071}@{lu=be,c=VBD} .

,{c=verb,n=604076}@{lu=will,c=VM0} .

.

,{ori=von,wnrr=4,c=w,sc=p, ...}

@{c=w,sc=p,n=587268}@{lu=by,c=PRP}.

,{c=w,sc=p,n=587269}@{lu=from,c=PRP}.

,{c=w,sc=p,n=587270}@{lu=of,c=PRF}.

.

,{ori=Hans,wnrr=5,c=noun, ...}

@{c=noun,n=265524}@{lu=hans,c=NP0}.

.

,{lu=kaufen,wnrr=6,c=verb,vtyp=ptc2, ...}

@{c=verb,n=307263}@{lu=buy,c=VVN}.

,{c=verb,n=307265}@{lu=purchase,c=VVN}.

.

.

Figure 2: Output of the Matcher: The SL analy-
sis of figure 1 (example 1b) is transformed into an
AND/OR graph enriched with retrieved translation
options.

preceding the @ and a sequence of leave nodes, fol-
lowing @. The “mother” node of a retrieved transla-
tion option contains information concerning the en-
try as a whole while the feature bundle(s) following
@ represent tagged and analysed words of the the
actual entry.

3.1 Discontinuous matching

In this section we give some examples of discontinu-
ous entries as they occur frequently in German (and
Dutch). Note that the complexity for matching dis-
continuous phrases is much higher than for match-



ing continuous phrases. Matching a discontinuous
phrase of length m on a sentence of length n may
lead to a huge number of retrieved entries in the or-

der of O

(

n
m

)

, while for continuous phrases there

is a maximum of (n − m) matches. Thus, there are
more than 3000 possible ways to match a discontin-
uous phrase of 5 words on a 15-word sentence while
a continuous phrase may lead to only 10 possible
matches.

In addition, various permutations of the phrases
are possible, according to whether the phrase is
matched on a subordinate clause or a main clause.
In (Carl and Rascu, 2006) we have described vari-
ous strategies to reject matched entries if they don’t
obey a predefined set of criteria. Among other
things, the Matcher tackles the following phenom-
ena.

3.1.1 Detached prefixes

Detached verbal prefix as e.g. “ab” in example 2a
occur at the end of the main clause as in 2b, while
it stays with the verb in subordinate clauses (2c).

2a ablehnen ↔ reject
2b Hans lehnt das Angebot ab.
≈ Hans rejects the offer prefix.

2c dass Hans das Angebot ablehnt

≈ that Hans the offer rejects.

⇒ that Hans rejects the offer.

The matching algorithm must take into account
these different realisations of the same word.

3.1.2 Reflexive verbs

The reflexive pronoun “sich” in the dictionary entry
3a may be dislocated from the finite verb as in the
subordinate clauses 3b or it may be adjacent to it
as in the main clause 3c.

3a sich beeilen ↔ hurry up
3b dass Hans sich immer beeilt.
≈ that Hans himself always hurries up.

⇒ that Hans always hurries up.

3c Hans beeilt sich morgens
⇒ Hans hurries up in the morning.

3.1.3 Light verbs and idioms

The predicate “vom Mund” and the verb “ablesen”
may be non-adjacent in 4b or continuous in a
subordinate clause 4c. Note that “ablesen” has
a detachable prefix so that two discontinuous
phenomena overlap here.

4a vom Mund ablesen ↔ lip-read
4b Hans liest ihr Wünsche vom Mund ab.
≈ Hans read her wishes from mouth prefix.
⇒ Hans lip-reads her wishes.

4c dass Hans ihr Wünsche vom Mund abliest.
≈ that Hans her wishes from mouth reads.

⇒ that Hans lip-reads her wishes.

3.2 Lexical Overgeneration

To account for a maximum number of different con-
texts, the dictionary over-generates translation hy-
potheses which are then filtered and graded by the
Ranker in the context of the generated sentence.
This section outlines some of the divergences tackled
in the lexicon and its interaction with the Ranker.

3.2.1 Lexical semantic ambiguities

In examples 5a and 5b German “Bank” has two
different translations “bank” and “bench”. From
the dictionary both translation options are retrieved
and left to the Ranker to choose the appropriate
translation in 5A and 5B.

5a Bank ↔ bank
5b Bank ↔ bench
5A Die Bank hat den Kredit gekündigt.

⇔ The bank has recalled the loan.
5B Hans sitzt auf der Bank.

⇔ Hans sits on the bench.

3.2.2 Negation

In order to translate negation from German to
English the finite verb “do” has to be inserted and
the German finite verb (“kommt”) becomes an
infinite English one. We tackle this by means of a
multi-word transfer rule 6a.

6a nicht ↔ do not
6b nicht ↔ not
6A Hans kommt nicht ⇔ Hans does not come
≈ Hans comes not.

3.2.3 Magnifiers / Intensifiers

A specific problem of lexical ambiguities are ’in-
tensifiers’ or ’magnifiers’. For instance, the word
“stark” (basically ’strong’) can translate into many
different adjectives depending on the context and
the noun it modifies. Examples 7a-f show some of
the possible translations and 7A-F provide contexts
in which stark is translated differently.

3.2.4 Preposition

In some cases the choice of the preposition collo-
cates with the verb as e.g. in “wait for”, “depend
on” “turn off”, “fade out”, etc. These are preposi-
tions that are strongly bound to the verb and are
lexicalised



7a stark ↔ strong
7b stark ↔ good
7c stark ↔ high
7d stark ↔ bad
7e stark ↔ heavy
7f stark ↔ big

7A Das ist ein starker Mann
⇔ This is a strong man

7B Es war sein stärkstes Theaterstück
⇔ It has been his best play

7C Paul hat starkes Fieber
⇔ Paul has high temperature

7D Das Auto war stark beschädigt
⇔ The car was badly damaged

7E Hans ist ein starker Raucher
⇔ John is a heavy smoker

7F Es gab es eine starke Nachfrage
⇔ There was a big demand

To cope with semantically bound prepositions,
the dictionary generates various possible translation
as in 8a-e. The choice of the ‘correct’ preposition is
left to the Ranker to decide.

8e auf ↔ on;in;up;onto;upon;. . .
8A auf dem Tisch ⇔ on the table
8B auf dem Hof ⇔ in the yard

4 The expander

The Expander adds further translation hypotheses
to AND/OR graph. It is a rule-based device, which
takes as its input the output of the Matcher. The Ex-
pander essentially inserts, deletes and moves transla-
tion units in the graph. It also produces alternative
partial translations.

A rule for reordering the verbal group in Ger-
man main clauses is shown below. The Expander
rule ReorderFinVerb_hs moves the translation of
the participle “gekauft” in figure 2 in a main clause
(mark=hs) behind the finite verb “wurde”.

ReorderFinVerb_hs =
Ve{mark=hs}e{mark=vg_fiv},
*e{mark=hs}a{mark~=vg_ptc;vg_inf},
^Ie{mark=hs}e{mark=vg_inf},
Pe{mark=hs}e{mark=vg_ptc}

: p(move=V->VIP).

This is a rule of a formal framework FRED de-
scribed in (Carl and Schmidt-Wigger, 1998). The
rule maps on a sequence of translation units (TUs)
starting with the finite verb mark=vg_fiv and fol-
lowed by an optional infinitive verb (mark=vg_inf)
and a participle mark=vg_ptc. Between the finite
verb and the optional infinitive can be number of

{lu=das,wnrr=1,c=w,sc=art, ... }

@{c=art,n=146471}@{lu=the,c=AT0}.

.

,{lu=Haus,wnrr=2,c=noun, ...}

@{c=noun,n=268244}@{lu=company,c=NN1}.

,{c=noun,n=268246}@{lu=home,c=NN1}.

,{c=noun,n=268247}@{lu=house,c=NN1}.

,{c=noun,n=268249}@{lu=site,c=NN1}.

.

,{lu=werden,wnrr=3,c=verb,vtyp=fiv, ...}

@{c=verb,n=604071}@{lu=be,c=VBD} .

,{c=verb,n=604076}@{lu=will,c=VM0} .

.

,{lu=kaufen,wnrr=6,c=verb,vtyp=ptc2, ...}

@{c=verb,n=307263}@{lu=buy,c=VVN}.

,{c=verb,n=307265}@{lu=purchase,c=VVN}.

.

,{ori=von,wnrr=4,c=w,sc=p, ...}

@{c=w,sc=p,n=587268}@{lu=by,c=PRP}.

,{c=w,sc=p,n=587269}@{lu=from,c=PRP}.

,{c=w,sc=p,n=587270}@{lu=of,c=PRF}.

.

,{ori=Hans,wnrr=5,c=noun, ...}

@{c=noun,n=265524}@{lu=hans,c=NP0}.

.

.

Figure 3: Output of the Expander: The participle
(kaufen) is moved behind the finite verb (werden).
A translation equals the concatenation of the leaves
of the graph. Each path through the graph can only
accommodate one translation option for each trans-
lation unit.

‘non-verbs’. All nodes need to occur in the same
main clause (mark=hs). The existential quantifier e
requires that at least one reading of the TU must be
compatible with the test, while the universal quan-
tifier a requires there is no other reading of the TU
than the one given in the test. The finite verb, the
infinite verb and the participle are marked by the
marker V, I and P respectively. The action part of
the rule — following the colon — moves the marked
nodes into the desired word order, so that the verbs
are grouped together in their right order. While this
operation deterministically moves the nodes in the
graph, the formalism also allows operations to pro-
duce alternative permutations of sequences of TUs.

The rule ReorderFinVerb_hs transforms the
Matcher output in figure 2 into the graph in figure 3
which yields the (correct) word order “The house
was bought by Hans”.

We have tested the system on four languages
(Dutch, German, Greek and Spanish) into English.
A separate set of Expander rules is used for each
source language, consisting of five rules for Greek
up to approx. 20 rules for German. The results of
this experiment are discussed in section 6



The Expander rules roughly classify into the fol-
lowing sets.

4.1 Inserting and deleting spurious words

In some cases additional function words have to
be inserted or deleted. In 9a an article is required
while in 9b the preposition of is needed to mark the
genitive.

9a Hans ist Lehrer ⇔ Hans is a teacher
9b der Wagen meines Bruders

⇔ the car of my brother

4.2 Adjusting the verbal group

Parts of the German verbal group appear in the
“linke Klammer” and other parts in the “rechte
Klammer”. In main clauses, the “Mittelfeld” may
intervene between these two parts. For English these
parts have to be re-joined. The discussion of the rule
ReorderFinVerb_hs shows how we tackle this. More
examples are given here.

4.2.1 Passive voice

The finite verb (wurde) and the participle (gekauft)
are detached in the main clause. For English these
have to be joined as shown in example10b.

10a Das Haus wurde von Hans gekauft.
≈ The house was by Hans bought.

10b The house was bought by Hans.

4.2.2 Composed tense

Similarly, for composed tenses in the German
main clause, the finite verb and the participle are
detached (11a) and need to be joined for the English
translation (11b).

11a Hans hat das Haus gekauft.
≈ Hans has the house bought.

11b Hans has bought the house.

4.2.3 Sentences with modal verbs

For modal sentences, the infinite verb has to be
moved right behind the finite verb:

12a Hans will ein Haus kaufen.
≈ Hans wants to a house buy.

12b Hans wants to buy a house.

4.3 Adjusting the subject

In contrast to English, German allows one phrasal
element to precede the finite verb, which may or may
not be the subject of the sentence. In some cases we
know the subject from the German analysis. In these
cases we can deterministically move the subject to
its right position. In other cases the German analysis
provides several subject candidates. We generate a
translation hypothesis for each possible permutation
and let the Ranker decide which is the more likely
subject.

4.3.1 Moving the subject

In example 13a the subject “Hans” follows the
finite verb “kam”. In English the subject needs to
precede the finite verb, so that a re-ordering of the
TUs are required. In order to adjust the sentence
to English syntax, the subject needs to be moved in
front of the verb, as in 13b.

13a Gestern kam Hans in das Büro.
Yesterday came Hans into the office.

13b Yesterday Hans came into the office.

4.3.2 Ambiguous subjects

In cases a sentence is tagged with several subject
candidates, we generate multiple word orders and
let the Ranker decide which is the more likely
one. While 14a is the usual subject-verb-order,
the accusative object may be topicalised as in 14b.
Due to homonymy of some German accusative
and nominative nouns we may not be able to
disambiguate the correct subject.

14a Die Katze trinkt die Milch.
The cat drinks the milk.

14b Die Milch trinkt die Katze.
The milk drinks the cat.

We generate two translation hypotheses as in 14c
with both subject candidates and leave it to the
statistical Ranker to decide which is the more likely
English sentence.

14c ( the milk drink the cat.
| the cat drink the milk.)

5 The ranker

The Ranker works similar to a decoder as used in sta-
tistical machine translation. Och and Ney (2002) ex-
tend the noisy channel model of Brown et al. (1993)
by adding weighing coefficients with feature func-
tions and combining them in a log linear fashion.
As a statistical decoder, the Ranker is a search pro-
cedure which seeks to find the target sentence ê with
the highest probability:

ê = argmax

M
∑

m

wmhm(·)

where hm is a feature function and wm is a weigh-
ing coefficient. The feature functions hm can be in-
dependent and trained on separate data while the
weighing coefficients wm are used to fine-tune the
system.

The Ranker is a beam-search algorithm which tra-
verses the AND/OR graph in a breadth first man-
ner. At each step the nodes are weighted by the fea-
ture functions and all expanded sentence prefixes are



<s id=3-0 lp="-9.227912">
the AT0 146471
company NN1 268244
was VBD 604071 PermFinVerb_hs
bought VVN 307263 PermFinVerb_hs
by PRP 587268 PermFinVerb_hs
hans NP0 265524 PermFinVerb_hs
. PUN 367491
</s>
<s id=3-1 lp="-9.682535">
the AT0 146471
house NN1 268247
was VBD 604071 PermFinVerb_hs
purchased VVN 307265 PermFinVerb_hs
by PRP 587268 PermFinVerb_hs
hans NP0 265524 PermFinVerb_hs
. PUN 367491
</s>

Figure 4: Output of the Ranker: the two best scored
translations.

stored in the beam until its maximum width (cur-
rently 1000) is achieved. From there on only the
highest weighted sentence are further expanded. We
have experimented with various feature functions to
weight the nodes and describe their settings in this
section. An evaluation is given in section 6.

Output of the Ranker are the n-best graded trans-
lation paths through the graph. For the example in
figures 3 the two best translations (word forms) are
shown in figure 4. The output also indicates the
resources used to generate the translations, among
other things, the number of the translation entries
and the Expander rules.

5.1 Language model

We have tested various language models, all of them
making use of the BNC1 and all are generated using
the CMU language modelling toolkit2. The BNC is a
tagged collection of texts making use of the CLAWS5
tag set which comprises roughly 70 different tags.
The CMU language modelling toolkit generates n-
gram language models (LMs) from tokenised texts.
These LMs are then used as a feature function of the
Ranker.

The CMU toolkit generates a vocabulary of up
to 65535 words which occur most frequently in the
training material. It supports open LMs which ac-
count for unknown words and closed LMs which as-
sume all tokens to be known in the training material.
A LM made up of CLAWS5 tags would be a closed

1The British National Corpus (BNC) consists of more than
100 million words in more than 6 million sentences http:

//www.natcorp.ox.ac.uk/
2which can be downloaded from http://www.speech.cs.

cmu.edu/SLM_info.html

language model since there are less than 70 different
tags in this tag set and all tags are likely to occur in
the training material.

The closed LMs assume that only items in the
training data will occur in the test data, while open
LMs save some of the probability mass for (un-
known) words in the test data which did not occur
in the training set. These words will be mapped on
the item UNK.

We did not experiment with the various discount-
ing strategies provided with the CMU toolkit; all our
experiments used good-turing discounting.

To find suited LMs for our application, we have
experimented with the following parameters:

• number of sentences: 100K, 1M and 6M

• different ways of preprocessing the BNC:

– open token-based LM

– closed mixed lemma-tag LM

– closed mixed token-tag LM

– orthogonal lemma-tag LM

• 3-gram and 4-gram token LMs and 4-gram, 5-
gram and 6-gram PoS-tag LMs

5.1.1 Open token-based LM

The open token-based LM assumes (lower-cased)
surface word-forms as the input to the Ranker. This
requires token generation to take place on the output
of the Expander previous to the Ranker.

5.1.2 Closed mixed token-tag model

The vocabulary of the closed mixed token-tag model
consists of word tokens (thus the un-lemmatised
BNC) but unknown words will be mapped on their
CLAWS5 tag. That is, assume the reference set
contains the sentence ”John likes strawberries” but
”strawberries” does not occur in the vocabulary of
the 60000 most frequent tokens. Instead of let-
ting the CMU toolkit map ”strawberries” on the
tag UNK, we would replace it by the CLAWS5 tag
<NN2>. In this way we can generate and assume
a finite number of different tokens (the 69 CLAWS5
tags plus the 60000 most frequent tokens in the ref-
erence set). Analogically at runtime, previous to
the Ranker, we would generate tokens from the lem-
mas. The Ranker would consult the LM’s vocabu-
lary and map any unknown word on the CLAWS5
tag. (Manning and Schütze, 1999) suggest to map
unknown words on two tags: one for numbers and
all other unknown words on one other tag. With
our strategy unknown tokens are mapped on many
more tags. In this way we can make sure that any
sentence contains only known tokens.



5.1.3 Closed mixed lemma-tag model

The closed mixed lemma-tag model works essentially
similar to the Closed mixed token-tag model but
makes use of the 60000 most frequent lemmas. Thus
the above reference sentence would be lemmatised
into ”John like strawberry”, and - given ”straw-
berry” is not among the 60000 most frequent lemmas
in the training corpus - it would be preprocessed into
”John like <NN2>”. At runtime, lemmas would be
transformed into word tokens on the output of the
Ranker.

5.1.4 Orthogonal lemma-tag model

In the orthogonal lemma-tag model we compute two
LMs: a CLAWS5 tag n-gram model (LM tag) and
a lemma m-gram model (LM lem). In addition we
compute a cooccurrence weight of the lemmas given
their tag according to the following equation:

w(lem, tag) =
NL

NL + C(lem)
∗ (C(lem, tag) + 1)

Where NL is half the number of different tags (i.e.
69/2), C(lem) is the number of occurrences of the
token in the BNC and C(lem, tag) is the number of
cooccurrences of a lemma and a tag. For instance the
lemma ”tape-recorder” has 103 occurrences in the
BNC. The weights for ”tape-recorder” given their
tag are shown in the table below, where <*> ac-
counts for the possibility that a lemma/tag occurs
in the test translations but did not occur in the train-
ing set:

lemma tag # w(lem, tag)
tape-recorder AJ0 3 1.00363636
tape-recorder NN1 87 22.08000000
tape-recorder NN2 13 3.51272727
tape-recorder <*> 0 0.25090909

The orthogonal lemma-tag model consists thus of
three feature functions which are computed for each
node in the beam:

w1∗log(p(tag))+w2∗log(p(lem))+w3∗log(w(lem, tag))

In a first experiment we have compared these four
LMs. The orthogonal lemma-tag model consistently
showed the best results so that we gave up fur-
ther experiments with the open token and the closed
token-tag and lemma-tag models.

5.2 Lexical weights

In a set of further experiments we have included and
tested feature functions for lexicon weights and for
Expander rules. A widely used method to compute
weights for lexicon entries is based on counting their
relative frequencies. However, it is known that rel-
ative frequencies overestimate low occurrences and

also, since we do not make use of translated texts
which could give a clue for their ”real” probabilities,
counting token frequencies in a hand-made lexicon
would even more heavily overestimate rare transla-
tion relations.

The idea is, therefore, to ’incrementally’ modify
the weights of lexicon entries based on the amend-
ments of a posteditor (Och, 2003). This approach is
similar to (Watanabe et al., 2003)[p 398], who en-
hance an MT system ”by comparing a wrong trans-
lation and its correction”. While Watanabe et al.
(2003) compare the dependency structures of the
translation and its correction, we compute a NIST
score (NISTtrans) for the n-best translations and
assign a relative NIST score as the weight w(r) for
the Expander rules and lexicon rules:

w(r) = 1/|T |
∑

r∈T

NISTTrans

NISTMax

Thus, consider the above output of the Ranker in
section 5 on page 5. Assume the first translation
with id=3-0 has a NIST score of 2.6447 and the sec-
ond translations with id=3-1 has a NIST score of
3.0949. Since 3.0949 is in the same time the maxi-
mum NIST score for this translation, house occurs
only in the better scored translation, company occurs
in the worse scored translation and hans occurs in
both translations, the lexicon rules will be assigned
the following weight:

r tag id w(r)
company NN1 268244 0.854
house NN1 268247 1.0
hans NP0 265524 0.927

6 Evaluation

We have experimented with various lemma- and tag-
LMs. These models were generated based on sets of
100K, 1M and 6M sentences of the BNC. For all
lemma models we have used 3-grams. For the 100K
and 1M set we have also used a 4-gram model. Un-
fortunately, due to space restrictions, it was not pos-
sible to generate a 6M, 4-gram lemma model. For
the tag models we have used 4, 5 and 6-grams.

We have tested the system on 50 Dutch, 50 Span-
ish and 50 Greek sentences with the 6M-n3 lemma-
and the 6M-n6 tag models with the following results:

Language BLEU NIST
Dutch 0,4034 6,4489
Spanish 0,3701 5,7304
Greek 0.2138 5.1220

For a German test set of 200 sentences, various
combinations of these models were run with several
settings of weight combinations.

Preliminary results are resumed as follows. The
more data is used for the lemma LM, the better is the



result. Strangely, this does not seem to hold true for
the tag LM. Thus, the 100K tag model performs best
in almost every combination. The best results are
obtained with the parameters w1 = 0.5, w2 = 0.06
and w3 = 1.0 using the largest 6M 3-gram lemma
model. As can be seen in the table below, in this
combination, the 100K 4-gram tag model produces
best NIST and BLEU results while larger and higher
n-gram tag models produce worse.

NIST BLEU lemma LM tag LM
5.4801 0.1861 6M-n3 100K-n4
5.4450 0.1859 6M-n3 100K-n6
5.4645 0.1856 6M-n3 1M-n4
5.4683 0.1855 6M-n3 100K-n5
5.4526 0.1855 6M-n3 6M-n4
5.4509 0.1849 6M-n3 1M-n5
5.4359 0.1844 6M-n3 6M-n5
5.4165 0.1836 6M-n3 6M-n6

As of now we do not have an explanation for this
behaviour and we are not aware of similar findings
from other groups.

The differences in BLEU and NIST scores for the
four languages is — besides their similarity to En-
glish and the length of the test sentences — also due
to the quality, coverage and ambiguity of the lexicon.
The table below shows that conditions are worst for
German: the German test set has the longest sen-
tences and the highest lexical ambiguity. There are
on average 3.6 translation options per word. Note
that this is, compared to a statistical MT system
very little, where a word can have up to 100 or
more translations. However, dictionaries for Greek,
Dutch and Spanish produce on average less than 2
TOs per TU. On the other hand, with more than
1.3 tokens per TO, the German lexicon is almost a
phrase-lexicon.

language Tok/TO TO/TU ∅ len.
Greek 1.0208 1.9959 9.5
Dutch 1.1258 1.9796 10.8
Spanish 1.1930 1.9506 7.8
German 1.3282 3.6352 13,2

7 Related work and conclusion

We have described a machine translation system
within the METIS-II project which joins a transfer
dictionary with simple reordering rules and a statis-
tical ranker. A general overview of the METIS-II
project is given in (Dirix et al., 2005) and in (Van-
deghinste et al., 2006). More detailed descriptions of
the various realisations of METIS-II are in (Badia et
al., 2005; Markantonatou et al., 2006; Vandeghinste
et al., 2007).

Our approach is similar to (Badia et al., 2005)
in that both of us use n-gram language models to
rank translation candidates. However, while we use

a rule-based, heuristic Expander to generate sets of
hypotheses on TL word order, (Badia et al., 2005)
proposes a two layered algorithmic permutation of
words and chunks: The first layer permutes words
within a chunk; the second layer permutes chunks
within a sentence. The ranker selects the most likely
permutations. Also (Vandeghinste et al., 2007) as-
sumes a kind of isomorphism between SL chunks and
TL chunks. The translations of recursively embed-
ded SL chunks are considered to be bags of bags.
These structure bags are the input of the ranker
which evaluates all permutations and outputs the
‘best’ serialisations of the structure.

Since, depending on how the SL is chunked, for
many translations it is required to merge various
bags, as described in sections 3 and 4, (Vandeghin-
ste et al., 2007) also introduce a rule-based device to
overcome cross-chunk translation divergences. The
question then arises whether in addition to this
heuristic mechanism, an algorithmic permutation is
required which generates all possible sequences of
the bags, or whether a heuristic permutation of some
probable permutations, as we suggest in this paper,
is already sufficient. While we control the genera-
tion of partial translations by means of rules and
thus hope to produce only ‘high quality’ hypothe-
ses, many of the algorithmic permutations are ac-
tually misleading. Much of research (Schack, 2004;
Schack and Mechsner, 2006) and the history of word-
based SMT (Brown et al., 1990) has shown that too
many dimensions of freedom are in fact a hindrance
to learning. Learning can only take place by re-
stricting the number of free variables (Schack, 2004).
Only when the the basic concepts are learned, the
degree of free variables can be increased again. Yet,
in Machine Translation it is still unclear which the
optimum number of free variables is (Wu, 2006).

An approach related to METIS-II has also been
suggested by (Carbonell et al., 2006). Like METIS-
II their so-called “Context-based machine transla-
tion” also makes use of a transfer dictionary and a
target language corpus. The dictionary provides ba-
sic word (and phrase) translations which are used
to retrieve chunks from the target language corpus.
From the best sequence of overlapping chunks the
translation is generated. However, like phrase-based
MT this approach does not adequately model dis-
continuous translations.

The core idea of our work is also similar to (Brown
and Frederking, 1995) who use a statistical English
Language Model (ELM) to select between alternate
partial translations produced by three symbolic MT
system from the PANGLOSS Mark III system. In
contrast to their approach we build a search graph
with flat reordering rules.

As in so-called “generation-heavy” translation
(Habash, 2004), our expander rules tackle some of



the translation divergences thereby producing nu-
merous partial translation hypotheses. This “sym-
bolic overgeneration” is then constrained by a statis-
tical ranker making use of several statistical feature
functions.

Still another line of research related to ours is re-
ported in (Liu et al., 2005). In their “Tree-to-String”
approach they use a pre-processed bilingual corpus
to match parsed SL sentences and retrieve sets of
partial translation hypotheses. As in our work, the
best path through these translation hypotheses is
determined by a ‘statistical generator’, a log-linear
combination of feature functions.

The common characteristics among these different
systems is that basic target language configurations
are generated and their best combination is deter-
mined by a statistical device.

This is consistent with a number of cognitive and
linguistic theories: According to (Harris, 1988), lin-
guistic events are generated through a set of ‘basic
configurations’ “. . . whose structure is determined by
the partial order constraint and whose distribution
follows the probabilities associated with the likeli-
hood constraint.” (Pereira, 2000)

While, for Harris the ‘basic configurations’ cor-
respond to elementary clauses, (Pereira, 2000) as-
sumes that they also include ‘hidden parameters’
such as elements of a grammar. He states that:
“a common characteristic of most of [information-
theoretic and machine-learning] tasks is [to seek] a
decision among a finite set of alternatives, or a rank-
ing of alternatives.” This is also in line with (Flach
and Kakas, 1997) who point out that rule-based ap-
proaches are suited to generate hypotheses, while
probabilistic approaches are concerned with evalua-
tion and the selection of the best hypotheses.

This paper outlines the architecture and imple-
mentation of an MT system putting into practice
this premise. The aim is to clearly separate the two
tasks, provide a maximum number of resources to
each of them and enable their fruitful complementa-
tion.
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