
The Inner Works of an Automatic Rule Refiner for Machine Translation

Ariadna Font Llitjós William A. Ridmann
Language Technologies Institute Department of Computer Science

Carnegie Mellon University Carnegie Mellon University
Pittsburgh, 15217 Pittsburgh, 15217

aria@cs.cmu.edu war@andrew.cmu.edu

Abstract

Achieving high translation quality re-
mains the biggest challenge Machine
Translation (MT) systems currently face.
Researchers have explored a variety of
methods to include user feedback in the
MT loop. However, most MT systems
have failed to incorporate post-editing ef-
forts beyond the addition of corrected
translations to the parallel training data
for Statistical and Example-Based system
or to a translation memory database. In
this paper, we describe the nuts and bolts
of an Automatic Rule Refiner that, given
online post-editing information, traces the
errors back to lexical and grammar rules
responsible for the errors and proposes
concrete fixes to such rules. Initial results
on a Diagnostic Test set show that this
approach generalizes beyond input sen-
tences corrected by bilingual speakers,
and allows for the correct translation of
unseen data.

1 Introduction

In the field of Machine Translation, the most popu-
lar trend of recent years has been adding more bi-
lingual data to try to improve output quality. This
strategy works reasonably well for Statistical and
Example-Based MT systems. For Transfer-Based
approaches to MT, however, having more bilingual
data is rarely the solution to getting higher quality
output.

Traditional solutions to improve Transfer-Based
MT systems are costly and time-consuming, since
they involve many computational linguist hours to
develop new rules and refine old ones. Moreover,
in any MT system, out-of-vocabulary words are
constantly jeopardizing translation quality.

In this context, finding a way to automatically
improve Transfer-Based Machine Translation sys-
tems without the need of computational linguistics
experts constitutes a new promising research direc-
tion that deserves attention. This approach is par-
ticularly relevant for resource-poor scenarios.

In this paper, we describe an Automatic Rule
Refiner that improves the quality of MT output.
The refinement process targets bilingual speakers’
corrections gathered through an online tool. These
corrections allow the Rule Refiner (RR) to propose
modifications that result in direct improvement of
the grammar and the lexicon, yielding an im-
provement on overall translation quality of the MT
system, even on unseen data. First, the RR parses
and stores correction instances for specific transla-
tion pairs as provided by several bilingual speak-
ers. Next, it proceeds to do blame assignment
based on the transfer tree generated by the MT sys-
tem. At this stage, the system retrieves the error-
causing rules and lexical entries and it executes
specific refining operations.

In a nutshell, the RR can add a lexical entry,
modify a current lexical entry, bifurcate a rule and
modify the copy, usually making it into a more
specific rule, or refine a rule that is too general, by
adding a missing agreement constraint.

2 Related Work

Nishida (1988) and colleagues described a Post-
Editing Correction information Feedback system

(PECOF) in its early stages that also sought to im-
prove a transfer-based MT system. The main dif-
ferences with our approach are: 1) requiring
computational linguists, whose work is not only to
correct MT output but also to formulate correcting
procedures corresponding to unseen error patterns,
which are then executed by the PECOF system,
and 2) using two MT systems in order to detect
discrepancies between intermediate representations
of the source language and the target language
side, namely an original MT system (Japanese to
English) and a reverse MT system (English to
Japanese) that applied to the post-edited English
translation.

Our transfer-based MT system is particular in
the sense that its rules integrate information from
the three components of a typical transfer system,
namely parsing, transfer and generation. And thus,
in comparison with the PECOF system, blame as-
signment is more directly inferable from correc-
tions via the translation tree output by the system.

 More recently, researchers have looked at other
ways of including user feedback in the MT loop.
Phaholphinyo and colleagues (2005) proposed add-
ing post-editing rules to their English-Thai MT
system via a post-editing tool. However, they use
context sensitive pattern-matching rules, which
make it impossible to fix errors involving missing
words. Their system, unlike our approach, requires
experienced linguists as well as a large corpus.
They mention an experiment with 6,000 bilingual
sentences but report no results due to data sparse-
ness.1

3 Error Correction Extraction

The first part of the rule refinement process is the
extraction of error correction information. Our ap-
proach relies on bilingual speaker post-editing in-
formation, collected via an online Translation
Correction Tool (TCTool) as described in Font-
Llitjós and Carbonell (2004).

Each translation pair corrected by a user via the
TCTool generates a log file, which can be proc-
essed and parsed by the Rule Refiner to extract all
the relevant correction and error information, and
store it into a correction instance (CI).

CIs store all correction actions taken by a user,
with related error information (Figure 1), into a

1 For a more detailed discussion of related work, see Font
Llitjós and Carbonell (2006)

vector of actions. Actions are processed by the
Rule Refiner one at a time, following the algorithm
described in Section 5. It is important to note that
the order in which the user corrected errors has an
impact on the order in which refinements apply
and, consequently, on the resulting refined gram-
mar.

3.1 Correction Instance Handling

It is crucial that the correction actions stored in our
system correspond to the essence of what the bilin-
gual speaker did to correct a specific translation
pair while using the TCTool. This is actually a
rather hard task. Even with just four correction ac-
tions (add, modify, delete and change word order),
users can choose to correct the same mistake in
more than one different way. For example, instead
of modifying a word directly by editing it, deleting
the incorrect word and adding a correct word
would lead to the same final translation, but there
would be no automatic way to relate the correction
actions to the same error. In addition to intended
corrections, users often change their mind and
some times even make mistakes.

SL: John and Mary fell
TL: Juan y María cayeron
Alignments: ((1,1),(2,2),(3,3),(4,4))

 Action 1: add (se in position 4)
 Temp_CTL: Juan y María se cayeron
 Alignments: ((1,1),(2,2),(3,3),(4,5))

 Action 2: add alignment (fell⎯se (4,4))

CTL: Juan y María se cayeron
Alignments: ((1,1),(2,2),(3,3),(4,5),(4,4))

Figure 1. Correction Instance for Add Action. CIs store
the source language sentence (SL), the target language
sentence (TL) and the initial alignments (AL), as well as
all the correction actions done by the user. It also pro-
vides the corrected translation (CTL) and final align-
ments.

Thus the goal of this component is to extract all
the post-editing actions taken by non-expert users
and process them while filtering out as much noise
as possible at this early stage, so that the error in-
formation can be used effectively by the rest of the
system.

3.1.1 Spurious Correction Detection

There are several ways in which users change their
mind, the first one being to correct a sentence that
is already correct. If at some point during the cor-
rection session, the user decides to go back and
mark the translation as being correct, the RR ig-
nores any correction actions registered and as-
sumes the translation is correct, effectively
filtering out the noise introduced by the users’
hesitation.

3.1.2 Spurious Loop Detection

In other cases, users carry out a correction action
and then change their mind. Examples of this are
when users decide to add a word, but then realize
that it is not needed, or modify a word from form1
into form2, and then decide that it was already cor-
rect before, and so changes form2 back to form1.

The RR addresses all this issues with a Spurious
Loop Detector. The Spurious Loop Detector oper-
ates by iterating over each action (Ai) and search-
ing for an action (Ai’) that will subsequently have
had a reverse effect on the translation correction.
Both Ai and Ai’ are removed from the list of ac-
tions the user performed. Then each action lying in
between Ai and Ai’ is updated to reflect the re-
moval of Ai and Ai’. Such updates can result in
even more actions removed from the user action
history.

More specifically, the following user actions can
reverse each other:

• Adding and Deleting the same word
(and vice-versa).

• Editing a word more than once (first ac-
tion deleted if last edit on word reverts
back to original word, first action
change to last edit otherwise).

• Changing Word Order to previous or-
der.

• Adding and Deleting the same SL-TL
word alignment (and vice-versa)

 Spurious Loop Detection runs in O(|A|²) time.
 Given a Source Language (SL) and Target Lan-

guage (TL) sentence pair, correctly detecting and
discarding spurious loops allows for more reliable
comparison of CIs that were parsed from log files
generated by different users.

3.2 Collection of Correction Instances

Since users of the TCTool are not linguists or
translation experts, the need to compare different
correction instances and filter out noise becomes
even more relevant.

On the other hand, all posterior blame assign-
ment and refinement decisions made by the system
fully depend on the correct extraction and process-
ing of error correction information given by bilin-
gual speakers.

In batch mode, the RR reads in multiple correc-
tion instances affecting multiple translation pairs,
and stores them in a Collection. This allows the RR
to compare all the CI affecting a SL-TL pair and, if
they contain equivalent information2, they are
stored only once in the Collection with a weight
proportional to the number of different CIs that
were found to be equivalent. This weight directly
indicates how much evidence there is in the data to
support a correction action set as being more ap-
propriate than another one with less weight for any
given SL-TL pair. Namely, the relevance of a par-
ticular CI can be precisely estimated by its weight,
which corresponds to the number of log files (and
thus different users) that agree with it.

3.2.1 Error Complexity

In addition to taking into account the number of
users who agreed on a specific set of correction
actions, the RR also scores CIs according the com-
plexity of their set of correction actions, or error
complexity.

To estimate the error complexity of a given CI,
both the number of errors addressed (approximated
by counting different correction actions) as well as
whether there is any dependency among the errors
(the assumption being that when two different cor-
rection actions affect the same word they are tar-
geting the same error, and thus are considered
dependent), are factored in.

More specifically, CIs are sorted with polyno-
mial sort, first by degree of dependency and then
by coefficient, namely the amount of clusters with
that degree.

2 Equivalent CIs are CIs that in addition to having the same
SL-TL and Corrected TL, once the spurious loops have been
detected and removed, they also have the same set of correc-
tion actions affecting the same words.

For example, CIs with one correction action can
be codified as (1); CIs with two independent cor-
rection actions, as (2), and with two dependent ac-
tions, as (1,0); CIs with three independent
correction actions, can be codified as (3), with two
dependent actions and one independent action, as
(1,1), and with three dependent correction actions,
as (1,0,0), and so on.

Descendent order of these vectors provides a
natural and intuitive way to sort correction in-
stances, since it correctly prioritizing CIs with a
larger number of independent errors over CIs with
smaller number errors that are dependent among
them: 001, 002, 003, 010, 011, 100, etc.3

3.2.2 Ranking of CI Collection

Since we want to prioritize correction instances
with more user support and tackle simpler errors
first, the RR uses the following ranking algorithm:

 For each CIcollection:
1. For each SL-TL pair, find the CI with the highest

weight (more evidence) BestCI
 2. For each BestCI, compute error complexity

3. Rank BestCI with lowest error complexity higher.

This algorithm picks the CI with more user sup-
port for each SL-TL pair (BestCI) and then com-
putes their error complexity in order to rank
simpler CIs higher. The resulting ranking is used
by the Rule Refiner to determine in which order to
process correction data stored in a Collection of
Correction Instances.

This “Tetris” approach is based on the underly-
ing assumption that once simpler errors are fixed,
more complex errors will be simplified (thus mov-
ing up in the ranking) and become easier to fix
automatically.

4 Rule Blame Assignment

After having correctly stored and processed error
correction information, rule blame assignment is
executed by the RR. This is a key step of the rule
refinement process, and is what differentiates
Rule-Based MT systems form most Statistical MT
(SMT) or Example-Based MT (EBMT) systems.
Namely, for systems that do not have explicit rules,
an approach like the one proposed here cannot be
applied directly.

3 Currently, the implementation of error complexity does not
take alignment correction actions into account.

Given the error and correction words and the
transfer tree output by the transfer engine, the RR
can identify the incorrect rules and/or lexical en-
tries, as the case might be, that are responsible for
the error.

4.1 Rule handling

In order for the blame assignment algorithm to be
effective, the RR pre-processes the lexicon and the
grammar and assigns unique Rule IDs to all the
entries that do not already have an ID.

To ensure fast look up of rules, red-black trees
are used to index all rules by their respective Rule
IDs. Additionally, lexical entries are indexed by
their SL and TL sides, including exact and partial
matches. Red-black trees are a balanced-tree data
structure that ensures amortized look-up times of
O(log|R|). Logarithmic lookup time is vital as the
lexicon could potentially have hundreds of thou-
sands of rules.

When rules are bifurcated, a Refined Rule Hier-
archy is created (with each child being a derived
rule from its parent). Since refined rules are stored
in a text file that needs to be parsed by the transfer
engine, hierarchy information is stored as meta
data encapsulated by comments that are unparsed
by the transfer engine. Such a hierarchy allows
reverting back to the grammar and lexicon previ-
ous to refinements that did not lead to an im-
provement of MT quality.

In general, all meta data specific to the Rule Re-
finer is stored as comments in the grammar and
lexicon text files so as not to disturb transfer en-
gine parsing.

4.2 Translation Trees

Similar to the modified transfer approach discussed
in the early METAL system (Hutchins and Somers,
1992), the rules in our transfer-based MT system
contain analysis, transfer and generation informa-
tion (Lavie et al., 2004). This representation
greatly facilitates blame assignment.

The translation tree that is output by the MT sys-
tem contains a precise trace of what translation
rules were applied to what lexical entries in order
to generate the target sentence that the user cor-
rected. This is done via unique rule IDs displayed
by the tree, which are used by the Blame assign-

ment process to retrieve the relevant rules that need
to be refined.

 (S,1 (NP,6 (NP,2 (N,2:1 'JUAN'))

(CONJ,1:2 'Y')
(NP,2 (N,3:3 'MARÍA')))

 (VP,1 (V,6:4 'CAYERON'))))

Figure 2. Translation tree output by the MT system for
the SL sentence John and Mary fell.

5 Rule Refinement Operations

The core component of the rule refinement process
is the one that decides what rule refinement opera-
tions need to apply to address a specific error (cor-
rection). This is also the component that is most
sensitive to the set of correction actions currently
allowed by the TCTool, for the kinds of rule re-
finement operations that are applied crucially de-
pend on what types of correction actions were
chosen by users.

The two main pieces of information that deter-
mine the rule refinement operation that will be ap-
plied by the RR are the correction action (taken by
the user) and the error information available at re-
finement time. Given the correction action type
(add, edit, delete and change_word_order) and the
error and correction words, the RR applies a dif-
ferent refinement algorithm. In general, the Rule
Refiner addresses lexical refinements first and then
moves on to refinements of the grammar rules, if
necessary.

First let’s introduce some notation to describe
error and correction information. The RR repre-
sents TL sentences as vectors of words from 1 to n
(sentence length), indexed from 1 to m (corpus
length) and the corrected
sentences (CTL) as follows:

),...,...(1 nim WWWTL =

),...,...',...('1 nclueim WWWWCTL =
where Wi represents the error, namely the word

that needs to be modified, deleted or dragged into a
different position by the user in order for the sen-
tence to be correct; and Wi’ represents the correc-
tion, namely the user modification of Wi or the
word that needs to be added by the user in order
for the sentence to be correct.

Wclue, or clue word, represents a word that pro-
vides a clue with respect to what triggered the cor-
rection, namely the cause of the error. For

example, in the case of lack of agreement between
a noun and the adjective that modifies it, as in *el
coche roja (the red car), Wclue should be instanti-
ated to coche, namely the word that gives us the
clue about what the gender agreement feature
value of Wi should be, namely masculine (rojo).
Wclue can also be a phrase or constituent like a plu-
ral subject (eg. *[Juan y Maria] cayó, where the
pl

be contiguous or separated
by

iner, refer to Font-
Ll

he Rule Refiner
illustrated by es.

5.1 Add Word

bly
identify a correction word (Wi’). See Figure 3.

ural is implied by the conjoined NP).
Wclue is not always present and it can be before

or after Wi. They can
 one or more words.
For more information about the theoretical

framework of the Rule Ref
itjós and Carbonell (2006).
The following subsections describe a simplified

version of algorithm underlying t
 a few exampl

When users add a word (by clicking on the [New
Word] button on the TCTool interface and then
writing the word in the newly created box), there is
no error word per se, however the RR can relia

Figure 3. TCTool snapshot after having created a new
word (se).

Figure 4. TCTool snapshot after having added the newly
rec ated word into the right position (Action 1).

Having instantiated Wi’ with a word in the CTL
vector (Figure 4), the next step is to check if the
user added any alignments from the word in the SL
sentence to this Wi’, and if so, to retrieve them.
Alignment information, however, can only be ex-

tracted after later correction actions are processed
by the RR, and thus at this point a look ahead in
th

racts the corresponding
ali

om SL
word to other TL words (in this case (4,5)).

e Action vector is required.
In the John and Mary fell example, when the

user adds the word se between María and cayeron
(Juan y María se cayeron), there is no alignment
information available for Wi’ (Figure 4), and so the
algorithm looks ahead in the Action vector trying
to find an alignment added to position i. In this
case, it finds that se is aligned to fell by the user
later on, and thus it ext

gnment (4,4). Figure 5.
However, the SL word aligned to Wi’ could also

be aligned to other TL words, in this case fell also
happens to be aligned to cayeron. And so next, the
RR algorithm extracts all the alignments fr

Figure 5. TCTool snapshot showing Action 2: Adding
ma

 determine the
ne

ord]
an

e lexicon, however [fell cayeron] is
th

]. The resulting refined entry is displayed
below:

 -> ["se cayeron"]

 ((y0 agr num) = pl)

nual alignment.

Alignment information is required in order to re-
trieve the relevant lexical entries and

cessary refinements accordingly.
First, the entry for [SLW Wi’] is sought in the

lexicon, if it’s not there, [SLW OtherTLW
d [SL Wi’+OtherTLWord] are looked up.
In our example, [fell se] and [fell se cayeron]

are not in th
ere (V,6).
 At this point, the RR BIFURCATES the lexical

entry [fell cayeron] creating a copy of it (V,11),
and REFINES it by replacing the TL side with Wi’
+ OtherTLWord (aligned to SL word): [fell se
cayeron

{V,11}
V::V |: [fell]
(;(P:{V,6})
 (X1::Y1)
 ((x0 form) = fall)
 ((x0 tense) = past)
 ((y0 agr pers) = 3)

The new lexical entry is added to the Lexicon
and the Refined Lexicon is loaded to the transfer
engine in order to assess the effect of the rule re-
finement.

The lattice output by the transfer engine when
translating the SL sentence is checked against the
CTL sentence as corrected by the user.

If the RR finds that CTL is being generated by
the MT system, it stops, otherwise, it proceeds to
grammar refinements. For this example, the algo-
rithm described above successfully refined the
lexicon and the lattice output by the refined MT
system, and so the Rule Refiner moves on to the
next best CI in the Collection ranking.

If the word added (Wi’) is not aligned to any
word in the SL sentence, then there is nothing to be
done at the lexical level and the algorithm skips to
grammar refinements.

The first step is blame assignment by looking at
the translation tree. For example, given the transla-
tion pair you saw the woman − viste la mujer and
the user correction of adding the word “a” in front
of mujer, the RR detects that “a” is not aligned to
any words in the SL sentence, and it proceeds to
look at the translation tree to extract the appropri-
ate rule that needs to be refined.

Figure 6: Translation Tree showing user insertion (“a”)
with two potentially relevant rules highlighted (VP,2
and NP,3).

In this case, since “a” is inserted between “viste”
(V) and “la” (DET), there are two candidate rules
for refinement, namely VP,2 and NP,3 (Figure 6).

Adding an “a” in the right position to any of
these two rules ([“a” DET N] and [V “a” NP])
would have the desired effect for this example.
However, only the second option generalizes well
to other sentences. If the first one were chosen, all
instances of NP[DET N] would be generated in
Spanish with an “a” preceding them, even when
the NP is a subject or an oblique, this would result
in an unnecessary ambiguity increase.

In general, to handle these cases in batch mode
(when there is no option for further user interac-
tion), the RR needs to refine the most specific rule,
namely the candidate rule that encodes the most
amount of context (Figure 7). This ensures that the
refinement applies to syntactic environments most
similar to the original corrected sentence. In this
case, this means the refinement applies to object
NPs only and not to all NPs.

Figure 7: Depicting context captured by each candidate
rule. VP,2 encapsulates more context than NP,3, and
thus is more specific.

This is still not the ideal level of generalization,
since one would want to only add an “a” in front of
animated object NPs in Spanish. The RR could
further refine the bifurcated rule to have a value
constraint that restricts its application to NPs with
mujer as a head. However, in the absence of se-
mantic features in the lexicon (such as animacy),
not adding any further refinements is the best strat-
egy to strive high accuracy and control unneces-
sary ambiguity.

5.2 Edit Word

When users modify a word (Wi) into a related form
or sense (Wi’), there are two possible scenarios.
The one most favorable to generalization, is that
the lexicon already discriminates between these
two forms, usually by giving them a different value
for the same feature attribute (example: [red-roja]
and [red-rojo]). The one with less immediate im-
pact is that the two senses are identically defined in
the lexicon, namely they have the same POS and
the same feature attributes and values (ex:
[women-mujer] and [guitar-guitarra] are both sin-
gular feminine nouns in Spanish).

If the lexicon already discriminates between the
two lexical entries, the RR extracts the grammar
rule for the immediate common parent of Wi and
Wclue (as identified by the user) and adds an

agreement constraint with the triggering feature4
between the constituents corresponding to Wi and
Wclue.

SL: I see the red car
TL: veo el auto roja
Alignments: ((2,1),(3,2),(4,4),(5,3))

 Action 1: edit (Wi=roja Wi’=rojo; Wclue=auto)

CTL: veo el auto rojo
Alignments: ((2,1),(3,2),(4,4),(5,3))

Figure 8. Correction Instance for edit action.

For the CI represented in Figure 8 (I see the red
car), the user edits roja into rojo (by clicking on
the word and changing ‘a’ into ‘o’), and the system
finds that the difference (delta set) between the
lexical entry for roja and rojo is [agr gen].5

At this point, the RR moves to the Grammar Re-
finement.

Figure 9. Edit Word window eliciting for Clue word
Information.

Since the user identified auto as being the clue
word as shown in Figure 9, the RR algorithm can
now instantiate what variables do Wi and Wclue cor-
respond to in the relevant rule (NP,8), namely y3
and y2.

Next, the Rule Refiner adds an [agr gen] con-
straint to the rule copy (NP,9) between y2 and y3:

{NP,9} ;; y1 y2 y3
NP::NP : [DET ADJ N] -> [DET N ADJ]
(;(P:{NP,8})
 (X1::Y1) (X2::Y3) (X3::Y2)
 ((x0 det) = x1)
 ((x0 mod) = x2)
 (x0 = x3)
 (y0 = x0)
 (y1 == (y0 det))
 (y3 == (y0 mod))
 (y2 = y0)
 ((y2 agr gen) = (y3 agr gen)))

4 The triggering feature is the attribute name for which the two
lexical entries have a different value.
5 roja is the feminine form of red in Spanish and rojo is the
masculine form (auto rojo vs casa roja).

However, if the lexicon does not already dis-
criminate between the two lexical entries (Wi and
Wi’), the RR postulates a new feature attribute and
adds a binary value constraint to each lexical entry,
in order to allow the grammar to distinguish be-
tween the two senses of the same SL word.

For example, given the sentence Mary plays gui-
tar and its translation as produced by our MT sys-
tem, *María juega guitarra, the user will edit
juega into toca and since this new sense is not
listed in the lexicon, the RR will BIFURCATE the
original lexical entry [play juega] and REFINE it
by replacing the TL side (as in 5.1. Add above).
Since in this case, [play toca] is otherwise an ex-
act copy of [play juega] (with the same POS and
features), the system postulates a new feature
(feat_0) to distinguish between the two and adds
the following constraints to the lexical entries:
[play toca ((feat_0) = +)] and [play juega
((feat_0) = −)].

If Wclue were instantiated with guitarra, in order
to effectively add an agreement constraint between
“toca” and “guitarra”, in addition to adding an
agreement constraint to the rule that subsumes both
words (VP,2), a percolate method recursively adds
the appropriate agreement constraints to all inter-
mediate rules (in this case, VP,1 and NP,3):

(S,1 (NP,2 (N,3:1 'MARÍA'))
(VP,2 (VP,1 (V,5:2 'JUEGA'))

(NP,3 (DET,2:3'LA')
 (N,5:4 'GUITARRA')))))

5.3 Delete Word

If a user deletes a word (by dragging it to the
trash), it could be that the user really meant to de-
lete this word or that she just wanted to modify the
incorrect word and thus deleted it and then added a
new word with the correct word in it.

In order to detect this, the RR algorithm checks
if there were any alignments from it to one or more
SL words, and if so, it looks ahead to see if there
was any other word in the TL sentence that was
aligned to that SL word at a later point in the ses-
sion. If there is a TL word aligned to the SL word,
then the RR algorithm checks if it’s already in the
lexicon, and if it isn’t, it adds it.

If Wi’ is in the lexicon, the RR algorithm adds a
new lexical entry for the SL word aligned to it with
an empty TL side ([SL word “”]), which results
into the MT system not translating the SL word.

5.4 Word Order Change

In order to change the order of the TL words, users
can drag and drop words into a different position in
the TL sentence. (Alignments stay the same, unless
manually changed by users).

The Rule Refiner detects which word(s) were
moved to a different position and extracts what
were their initial (i) and final (i’) positions. The
Rule Refiner can only reliably execute refinement
operations if, given a word that has moved (Wi),
both the initial and final positions fall inside the
scope of a rule in the grammar. If a word under-
goes a long-distance move and thus is placed at the
beginning or the end of the sentence far from its
original position, automatic refinements become
less reliable.

If the initial and final positions are subsumed by
a rule in the grammar, then the RR algorithm can
extract the rule that immediately subsumes the
constituents in both positions and BIFURCATE it
in order to change the constituents on the right
hand side of the rule copy.

For example, if the grammar already contains a
general NP rule that reverses the order of the ad-
jectives and nouns in Spanish, but is lacking a spe-
cific rule for pre-nominal adjectives, given relevant
correction feedback, the RR can extract the general
NP rule and flip the order of N and ADJ on the
RHS (TL side) of the rule. This also requires up-
dating the alignment information as well as af-
fected indices in the value and agreement
constraints.

The next step is to further constrain the newly
created rule so that it only applies in the right con-
text. Again this can be done in a general way if the
lexicon already distinguishes between the lexical
entries that are affected by this change and the
general cases. A constraint with the appropriate
feature attribute is added to the specific rule and a
blocking constraint is added to the general rule.

If there is no current feature attribute to distin-
guish between the special case and the general
case, the RR postulates a new binary feature and
add a value constraint to the appropriate lexical
entries as well as to the specific and general
grammar rules.

To see a concrete example of this (Gaudi was a
great artist *Gaudí era un artista grande
Gaudí era un gran artista), see Font Llitjós and
Carbonell (2006).

6 Generalization Power

The main difference between this approach and
mere post-editing is that the resulting refinements
affect not only the translation instances corrected
by the user, but also other similar sentences where
the same error would manifest. After the types of
refinements described in Section 5 have been ap-
plied to the grammar and lexicon, sentences like I
gave the girl a book and Juan is a great person
will now correctly be translated as Doy un libro a
la niña (instead of *Doy un libro la niña) and
Juan es una gran persona (instead of *Juan es una
persona grande), to name just two examples.

7 Evaluation of Automatic Refinements

The ultimate goal of the Automatic Rule Refiner
is to improve MT output accuracy and quality. Ini-
tial experiments with an English-Spanish MT sys-
tem, designed to measure the effects of the
refinement process, clearly show that refinements
generalize well beyond the specific sentences cor-
rected by users.

A Diagnostic Test (DT) set was developed with
55 sentences expected to exhibit the same kinds of
errors that users corrected, but that are significantly
different from the ones corrected. For this initial
experiment the seven different log files shown in
Figure 10 were processed by the Rule Refiner.

1. I see the red car – veo el auto roja – veo el auto rojo
TCTool: Edit RR: Add gender agreement constraint

2. you saw the woman – viste la mujer – viste a la mujer
TCTool: Add RR: Add “a” to the appropriate Gr rule

3. I see the red unicorn – veo el unicorn rojo – unicornio
TCTool: Edit RR: Add OOV word to the lexicon

4. Mary plays the guitar – María juega la guitarra – toca
TCTool: Edit RR: Add new sense of the word “play”

5. John and Mary fell – Juan y María cayeron – se caye-
ron.
TCTool: Add RR: Add reflexive form to the lexicon

6. Gaudi was a great artist – Gaudí era un artista gran –
gran artista. TCTool: Move gran in front of artista
RR: Add NP rule to cover pre-nominal ADJ

7: I would like to go – me gustaría que ir – me gustaría
ir. TCTool: Delete que RR: allow no translation for
“to” ([to “ ”]).

Figure 10: Log Files processed by the Rule Refiner.

The DT set was translated both with the initial
grammar and lexicon (19 grammar rules and 250
lexical entries) and with the final refined grammar
and lexicon, result of all the refinements triggered
by the seven log files (21 grammar rules and 254
lexical entries).

The MT system went from not producing a cor-
rect translation to producing one to two correct
translations for most SL sentences in the DT set,
while the number of total translations per sentence
went from an average of 4 to an average of 6 trans-
lations, as shown in Table 1. Note that the average
increase in the number of correct translations (re-
call) is larger than the average increase in the total
number of translations (ambiguity). In this context,
ambiguity corresponds to the denominator of pre-
cision, and so when ambiguity increases, precision
decreases.

Table 1: The first row measures recall achieved be-
fore any refinements and after 7 refinements were ap-
plied, the average number of correct translations; the
second row shows the average increase of the number of
correct translations. The last two rows illustrate ambigu-
ity: the average number of total translations, and the
average increase of the number of total translations.

 Figure 11 shows a few examples from the

DT set which were not being correctly translated
by the original MT system and are now being cor-
rectly translated by the refined MT system.

 (1) I meet some didactic professors at the conference –
 conocí a algunos profesores didácticos en el congreso
 (2) I saw the children – vi a los niños
 (3) The unicorn slept – el unicornio durmió
 (4) The boy plays the viola – el niño toca la viola
 (5) The little boys fell – los niños pequeños se cayeron
 (6) Irina is a great friend – Irina es una gran amiga.
 (7) They want to contribute – Ellas quieren contribuir

 Figure 11: Translation examples from DT set after
refinements in Figure 10. The number preceding each
example corresponds to the log file number responsible
for the correction.

These results represent a lower-bound on recall
for this test set, since the MT system used for these

 Recall Before After
Avg. Num of Correct Tr. 0.38 1.20
Avg. Increase in % 214%
 Ambiguity
Avg. Num of Total Tr. 4.09 6.11
Avg. Increase in % 49%

experiments did not include a morphology module.
If the system had a morphology module, refine-
ments would generalize to all forms of a specific
word, and thus the impact on unseen data would be
much larger.

8 Conclusions and Future Work

The main goal of the Automatic Rule Refiner is to
extend the lexicon and the grammar to account for
exceptions not originally encoded in the translation
rules. A secondary goal is to make overly general
rules more specific to reduce grammar ambiguity.

Beyond increasing lexical coverage, the errors
most efficiently corrected by the Rule Refiner are
syntactic in nature. The reason for this is that the
generalization power of the RR is greatest when
refinements involve existing feature constraints.
Since our lexicon currently contains purely mor-
pho-syntactic features (such as gender, number and
person), grammar refinements affecting those fea-
tures will generalize well on unseen data.

Semantic errors, however, usually require the
system to postulate a new binary feature to distin-
guish between the different senses of the word.
Since the RR cannot populate other lexical entries
with newly hypothesized features automatically, in
the absence of a generalization mechanism, this
process represents just a first step towards seman-
tic correction. An extension of this work could be
to query an external ontology, and derive semantic
distinctions from it.

Initial results show that our Automatic Rule Re-
finement achieves the main goal to add generation
capability to the translation model, and thus im-
prove MT output recall, without proportional in-
creases in ambiguity.

The space of solutions for an Automatic Rule
Refiner is large and there is a clear tradeoff be-
tween adding constraints to control ambiguity and
loosing refinement generality.

Adding generation capabilities to the model by
always bifurcating, for example, increases ambigu-
ity exponentially. In a modular translation model,
where rules plug into each other, blind bifurcation
increases the complexity of the grammar unneces-
sarily and can pose a serious problem.

Adding more feature constraints will decrease
ambiguity, but unless features already exist in the
lexicon, refinements will not generalize over un-
seen words and syntactic structures.

In the ideal oracle case, only the right con-
straints at the right level of generality, are added to
the model. In the practical learning case, the
Automatic RR learns refinements that increase the
generation capabilities, but do not increase ambi-
guity exponentially (much like a partial constraint
oracle).

When applying refinements automatically, it
cannot always be determined whether a refinement
should be as general as possible or, on the con-
trary, it should only be made as specific as possi-
ble. Therefore, choosing between prioritizing
generalization versus ambiguity reduction becomes
a practical matter and can be decided according to
specific needs.

9 Acknowledgements

We would like to thank Jaime Carbonell and Alon
Lavie for fruitful discussion about the theoretical
aspects of this work. This research was funded in
part by NSF grant number IIS-0121-631.

References
Font Llitjós, Ariadna and Jaime Carbonell. 2006. Auto-

mating Post-Editing To Improve MT Systems.
AMTA, APE Workshop. Boston, USA.

Font Llitjós, Ariadna and Jaime Carbonell. 2004. The
Translation Correction Tool: English-Spanish user
studies. LREC, Lisbon, Portugal.

Hutchins, W. J., and Harold L. Somers. 1992. An Intro-
duction to Machine Translation. London: Academic
Press.

Alon Lavie, Stephan Vogel, Erik Peterson, Katharina
Probst, Ariadna Font-Llitjós, Rachel Reynolds, Jaime
Carbonell, and Richard Cohen. 2004. Experiments
with a Hindi-to-English Transfer-based MT System
under a Miserly Data Scenario. Transactions on
Asian Language Information Processing (TALIP),
Special Issue on Rapid Deployment Hindi-English
Translation Systems.

Nishida, F.; S. Takamatsu, T. Tani and T. Doi. 1988.
Feedback of Correcting Information in Postediting to
a Machine Translation System. COLING.

Phaholphinyo, Sitthaa; Teerapong Modhiran, Nattapol
Kritsuthikul and Thepchai Supnithi. 2005. A Practi-
cal of Memory-based Approach for Improving Accu-
racy of MT. MT Summit X. Phuket Island, Thailand.

