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Language Modelling Challenges

Good modelling
N-grams (n = 8?)

Good estimation
Millions / billions / trillions of words
Good estimators (e.g., Witten-Bell, Kneser-Ney)

Small memory footprint
Low computational complexity
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A Curse of Dimensionality - and Large Corpora

Size of N-gram event space increases exponentially

|UN | = |vocab|N

Set of observed N-grams n increases more slowly

n � |vocab| × 50N−1

These are very different quantities
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Some Corpus Statistics

Corpus Gigaword Europarl GW Apriori EP Apriori
1-gms 281K 61K 281K 61K
2-gms 5,441K 127K 78,961,000K 3,721,000K
3-gms 274,844K 467K etc.
4-gms 599,383K 815K
5-gms 842,297K 1,028K
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Information-based Space Lower Bound

Statement

log2
(|U|

n

)
bits are needed to represent n items from a Universe U

Why

There are
(|U|

n

)
distinct sets of size n in U

A distinct code must be assigned to each such set
log2(x) bits are needed to represent x distinct codes

Problem
Any lossless representation scales with |U| (this is not good)
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All Language Models are Approximate

Model assumptions are approximate
Not using all available data is approximate
Model reduction - pruning, clustering etc. - is approximate
Parameter estimates are approximate

Bloom filters
Are also approximate but may reduce the above approximations
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Representing a Set via Hashing

Problem
Represent a set S of size n drawn from U where n � |U|

Solution
Bloom Filter uses a bitarray of size m and k hash functions
To Train:

Hash each item k times setting corresponding bits in m
To Test:

Hash a candidate k times, if all bits set report member else
non-member
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Representing a Set via Hashing

Bloom filter (cont.)
False positives occur with quantifiable probability
Size and false positive rate independent of |U| (in theory)
No false negative - i.e., one-sided error

E.g. 7.2 bits per item → false positive rate ≈ 0.03



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Motivation Bloom Filter Language Models Experiments Summary

Using a Bloom Filter
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Optimising a Bloom Filter

How many hash functions?

False positive probability: f = (1− p)k

where p = (1− 1
m )kn is the probability that a bit is still zero

f is minimized for: k∗ = m
n ln(2)

Previous Example: m = 13, n = 4

With k = 1 the false positive rate was 4
13 ≈ 0.30

With k = 2 the false positive rate was ( 7
13)2 ≈ 0.28

Asymptotically setting half the bits is optimal
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Storing Corpus Statistics

Problem
Bloom filters are not an associative data structure

Possible Solutions
1 Append each N-gram in set by its count

False positive rate will increase by factor |MAXCOUNT |
Error will no longer be one-sided

2 Replace each bit by a counter
Space increased by factor log (|MAXCOUNT |)
Most counters will be set to 1 or 2
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Storing Corpus Statistics
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Storing Corpus Statistics

Our Solution
Store each N-gram 1 + blog(count)c times

Log Frequency Bloom filter
Store each N-gram appended by an integer j

1 ≥ j ≥ 1 + blog(count)c

Query an N-gram’s frequency by appending an integer
j = 1 and incrementing until hitting a 0

Estimation errors decay exponentially: f (d) = f d for d > 0
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Converting Corpus Frequencies to a Set
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Storing Related Events

Language Model Statistics
Witten-Bell: N-gram and suffix counts
Kneser-Ney: N-gram, prefix, suffix and infix counts

Proxy Events
Use existence of one event to infer a related event
e.g. presence of N − 1-gram implies suffix count ≥ 1

Savings for Witten-Bell
No need to store singleton suffix counts
Reduced set ≈ 2

3 size of complete set
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Reducing Effective Error Rate

Actual Error Rate
Errors only occur for non-members (i.e. one-sided error)

err = Pr(x /∈ Corpus|x ∈ Hypothesis)× f

Can we increase the a priori membership probability?

Using Monotonicity of N-gram Event Space
If a unigram x tests false, then a bigram xy cannot be a
member
More generally, freq(xy) ≤ min{freq(x), freq(y)}
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An Example
Interpolated Witten-Bell BF-LM

Pwb(wi |w i−1
i−n+1) = λw i−1

i−n+1
Pml(wi |w i−1

i−n+1)

+(1−λw i−1
i−n+1

)Pwb(wi |w i−1
i−n+2)

where λx is defined via,

1− λx =
count(x)

suffix(x) + count(x)
,

Start from lowest order event (i.e. unigram)
Bound numerator in ml term by count of denominator
Bound suffix count by its token frequency
Truncate computation if ml denominator is zero
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Baseline Models Europarl Witten-Bell

n Pruned Types Mem. Gzip’d BLEU
3 No 5.9M 172Mb 51Mb 28.95
3 Yes 2.4M 64Mb 21Mb 28.96
4 No 14.1M 477Mb 129Mb 28.99
4 Yes 3.5M 102Mb 33Mb 29.41
5 No 24.2M 924Mb 238Mb 29.38
5 Yes 4.2M 131Mb 38Mb 29.60
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Witten-Bell BF 3-gram Europarl
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Witten-Bell BF 3-gram Europarl
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Witten-Bell BF 3-gram Europarl
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Witten-Bell BF 5-gram Europarl
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Log Frequency Scheme for Corpus Statistics
Set increases by less than 2 when storing frequencies
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Applying Nested Bounds
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Summary

Bloom filters can be used effectively for language
modelling below information-theoretic lower bounds
11 - 15 bits per N-gram seems like enough

Future Work
Reducing computation in the log frequency BF scheme
Hybrid models - e.g. explicit 1,2-grams + BF 3,4,5-grams
Other NLP applications of log frequency BF framework
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Thanks

Thanks for listening!
Thanks to all the Moses Team!
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