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Statistical Machine Translation (SMT)
• Build a model P( e | f ), the probability of the English 

sentence “e” given the  French sentence “f”
• To translate a French sentence “f”, choose the English 

sentence “e” which maximizes P( e | f )

argmax  P( e | f )  =   argmax  P( f | e ) P( e ) 
e e

• P( f | e ) is the “translation model”
– Collect statistics from word aligned parallel corpora

• P( e ) is the “language model”
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Annotation of Minimal 
Translational  Correspondences 

•Word alignment is 
annotation of minimal 
translational correspondences

•Annotated in the context in 
which they occur

•Not idealized translations!

(solid blue lines annotated by a 
bilingual expert)
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Overview

• Solving problems with previous word alignment 
methodologies
– Problem 1: Measuring quality
– Problem 2: Modeling
– Problem 3: Utilizing new knowledge
– Joint Work with Daniel Marcu, USC/ISI
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Problem 1: Existing Metrics Do Not 
Track Translation Quality
- Dozens of papers report word alignment quality 

increases according to intrinsic metrics
- Contradiction: few of these report MT results; those 

that do report inconclusive gains
- This is because the two commonly used intrinsic 

metrics, AER and balanced F-Measure, do not 
correlate with MT performance!
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Measuring Precision and Recall
• Start by fully linking hypothesized alignments

• Precision is the number of links in our hypothesis that 
are correct
– If we hypothesize there are no links, have 100% precision

• Recall is the number of correct links we hypothesized
– If we hypothesize all possible links, have 100% recall

• We will test metrics which formally define and 
combine these in different ways
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Alignment Error Rate (AER)
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Experiment
• Desideratum:

– Keep everything constant in a set of  SMT systems except the word-level 
alignments

• Alignments should be realistic
• Experiment:

– Take a parallel corpus of 8M words of Foreign-English. Word-align it. 
Build SMT system. Report AER and Bleu.

– For better alignments: train on 16M, 32M, 64M words (but use only the 
8M words for MT building).

– For worse alignments: train on 2×1/2, 4 × 1/4, 8 × 1/8 of the 8M word 
training corpus.

• If AER is a good indicator of MT performance, 1 – AER and 
BLEU should correlate no matter how the alignments are built 
(union, intersection, refined)
– Low 1 – AER scores should correspond to low BLEU scores
– High 1 – AER scores should correspond to high BLEU scores
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AER is not a good indicator of MT 
performance

×

r2 = 0.16
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Fα-score
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Fα-score is a good indicator of MT 
performance

α = 0.4r2 = 0.85
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Discussion

• Using Fα-score as a loss criterion will allow 
for development of discriminative models 
(later in talk)

• AER is not derived correctly from F-Measure
• For details of experiments see squib in Sept. 

2007 Computational Linguistics



Problem 2: Modeling the Wrong 
Structure

• 1-to-N assumption
• Multi-word “cepts” (words in one language translated as a unit) only 

allowed on target side. Source side limited to single word “cepts”.
• Phrase-based assumption

• “cepts” must be consecutive words



Alex Fraser

LEAF Generative Story

• Explicitly model three word types:
– Head word: provide most of conditioning for translation

• Robust representation of multi-word cepts (for this task)
• This is to semantics as ``syntactic head word'' is to syntax

– Non-head word: attached to a head word
– Deleted source words and spurious target words (NULL aligned)
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LEAF Generative Story

• Once source cepts are determined, exactly one target head word is 
generated from each source head word

• Subsequent generation steps are then conditioned on a single target and/or 
source head word

• See EMNLP 2007 paper for details
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LEAF
• Can score the same structure in both directions
• Math in one direction (please do not try to read):
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Discussion
• LEAF is a powerful model
• But, exact inference is intractable 

– We use hillclimbing search from an initial alignment

• First model of correct structure: M-to-N 
discontiguous
– Head word assumption allows use of multi-word cepts

• Decisions robustly decompose over words
• Does not have segmentation problem of phrase alignment models:  

Probability of alignments of cept “the man” are closely related to 
probabilities for cept “man”

– Not limited to only using 1-best prediction
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Problem 3: Existing Approaches Can’t 
Utilize New Knowledge
• It is difficult to add new knowledge sources to 

generative models
– Requires completely reengineering the generative story for 

each new source

• Existing unsupervised alignment techniques can not 
use manually annotated data
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Background
• We love EM, but

– EM often takes us to places we never imagined/wanted to 
go

• Bayes is always right

argmax  P(e | f)  =   argmax  P(e) x P(f | e)
e e

But in practice, this works better:

argmax  P(e)2.4 x P(f | e) x length(e)1.1 x KS 3.7 …
e
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Decomposing LEAF
• Decompose each step of the LEAF generative 

story into a sub-model of a log-linear model
– Add backed off forms of LEAF sub-models 
– Add heuristic sub-models (do not need to be 

related to generative story!)
– Allows tuning of vector λ which has a scalar for 

each sub-model controlling its contribution
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Reinterpreting LEAF
• g(ei)                               – source word type sub-model
• w( μi ) – source non-head linking sub-model
• t1 ( fj | y(i) ) – head word translation sub-model

• Etc… – many more sub-models

p(a, f | e) = g × w × t1 × etc…

p(a, f | e) = z-1 × gλ1 × wλ2× t1 
λ3× etc…

p(a, f | e) =
exp ∑m λm hm(f, a, e; θm)

exp(Z)
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Semi-Supervised Training
• Define a semi-supervised algorithm which 

alternates increasing likelihood with 
decreasing error
– Increasing likelihood is similar to EM
– Discriminatively bias EM to converge to a local 

maxima of likelihood which corresponds to 
“better” alignments 

• “Better” = higher Fα-score on small gold standard 
corpus
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Bootstrap

M-Step

E-Step

D-Step

Translation

Initial
sub-model
parameters

Viterbi 
alignments

Sub-model
parameters

Viterbi 
alignments

Tuned
lambda
vector

The EMD Algorithm
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Discussion 
• Usual formulation of semi-supervised learning: 

“using unlabeled data to help supervised learning”
– Build initial supervised system using labeled data, predict 

on unlabeled data, then iterate 
– But we do not have enough gold standard word alignments 

to estimate parameters directly!
• EMD allows us to train a small number of important 

parameters discriminatively, the rest using likelihood 
maximization, and allows interaction
– Similar in spirit (but not details) to semi-supervised 

clustering
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Experiments
• French/English

– LDC Hansard (67 M English words)
– MT: Alignment Templates, phrase-based

• Arabic/English
– NIST 2006 task (168 M English words)
– MT: Hiero, hierarchical phrases
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Results

System F-Measure BLEU F-Measure BLEU

(α = 0.4) (1 ref) (α = 0.1) (4 refs)

IBM Model 4 
(GIZA++)  and 
heuristics

73.5 30.63 75.8 51.55

EMD (ACL 2006 
model) and 
heuristics

74.1 31.40 79.1 52.89

LEAF+EMD 76.3 31.86 84.5 54.34

French/English Arabic/English
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Contributions
• Found a metric for measuring alignment quality 

which correlates with MT quality
• Designed LEAF, the first generative model of M-to-N 

discontiguous alignments
• Developed a semi-supervised training algorithm, the 

EMD algorithm
• Obtained large gains of 1.2 BLEU and 2.8 BLEU 

points for French/English and Arabic/English tasks
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Thank You!


	Improved Word Alignments for Statistical Machine Translation
	Statistical Machine Translation (SMT)
	Overview
	Problem 1: Existing Metrics Do Not Track Translation Quality
	Measuring Precision and Recall
	Alignment Error Rate (AER)
	Experiment
	AER is not a good indicator of MT performance
	F-score
	F-score is a good indicator of MT performance
	Discussion
	Problem 2: Modeling the Wrong Structure
	LEAF Generative Story
	LEAF Generative Story
	LEAF
	Discussion
	Problem 3: Existing Approaches Can’t Utilize New Knowledge
	Background
	Decomposing LEAF
	Reinterpreting LEAF
	Semi-Supervised Training
	Discussion 
	Experiments
	Results
	Contributions

