
Improved Minimum Error Rate Training in Moses

Nicola Bertoldi, Barry Haddow and Jean-Baptiste Fouet

Third MT Marathon, Prague
28th January 2009

Outline

MERT background

The need for a new MERT in moses

The design of the new MERT

Evaluation

Conclusions and future work

Discriminative Models

State-of-the-art performance in statistical machine translation

Combine outputs of several probabilistic models

Features can be any function of source and target

e.g. forward/backward translation log probability, language
model score, word penalty, etc.

Linear Model

e∗(λ) = arg max
e

r∑
i=1

λihi (e, f)

feature weights λi . . . λr and feature functions h1 . . . hr .

Weight Optimisation

How do we choose the best lambda?

We want the weights that produce the best translations.
Where “best” is measured by some automatic metric, eg
bleu, per etc.

Most popular method is minimum error rate training (MERT),
proposed by Och (2003).

A form of coordinate ascent
Uses n-best lists from tuning set to approximate decoder
output
Generally works well for small numbers of features (up to 20 or
30)
Implementation available in moses

The Need for a New MERT

The existing moses MERT implementation has a number of
issues

Lack of modularity in the design makes it difficult to e.g.
replace bleu with another automatic metric.
Mix of program languages in implementation hinders
experimentation.

At MTM2, a reimplementation of MERT was instigated with
the following goals:

Clean, modular design to facilitate extension and
experimentation
Separation of translation metric and optimisation code
Standalone open-source software, isolated from moses
Improved efficiency

Architecture of new MERT

Moses Optimizerinput

models

n-best

refs

Scorer

weights inner loop

outer loop

optimal
weights

scoretype

statistics

MERT consists of inner and outer loop

Outer loop runs the decoder over the tuning set and produces
n-best lists

Inner loop does weight optimisation

Iterate outer loop until convergence

Inner loop was replaced in the new MERT

MERT Design: Inner loop

Uses the n-best lists and references

N-best lists of previous iterations are merged

Aims to find the weight set that maximises the translation
score on the tuning set

Consists of two main components:

Scorer Calculates translation metric
Optimiser Searches for the best weight set

These are implemented as separate classes

Can add a new Scorer/Optimiser by implementing new
subclass

For efficiency, some scoring statistics are pre-calculated in a
separate extraction phase.

Evaluation: Translation performance on Heldout Test Sets

Evaluation was performed on two different tasks from WMT08

Standard moses system with 100-best lists for tuning

Scores in tables are all bleu

nc-devtest07 nc-test07 newstest08
old MERT 24.42 25.55 15.50
new MERT 24.87 25.70 15.54

Table: Comparison using the news commentary task.

devtest06 test06 test07
old MERT 32.75 32.67 33.23
new MERT 32.86 32.79 33.19

Table: Comparison using the europarl task.

Evaluation: Iterations

This shows the variation of bleu on tuning and heldout sets,
against iterations of the outer loop

Standard moses set up, with europarl training and WMT
dev06 and test08 for tuning and heldout test, respectively.

Compare MERT old, with MERT new using 1,3 or all previous
n-best lists

Note: ability to specify previous list count is new

Development

 20

 20.5

 21

 21.5

 22

 22.5

 23

 0 5 10 15 20

B
LE

U
 (

%
)

iteration

old
new-all
new-3
new-1

Test

 20

 20.5

 21

 21.5

 22

 22.5

 23

 0 5 10 15 20

B
LE

U
 (

%
)

iteration

old
new-all
new-3
new-1

Evaluation: Disk usage

The graph below shows the on-disk usage of mert for each
iteration

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 2 4 6 8 10 12 14 16 18 20

S
iz

e
(M

b)

iteration

old
new-all
new-3
new-1

The new MERT implementation uses more disk as duplicate
removal has not yet been implemented

Evaluation: Execution time

The graphs below compare execution time for old MERT and
three different configurations of new MERT.

Total accumulated inner-loop time

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2 4 6 8 10 12 14 16 18 20

tim
e

(s
ec

on
ds

)

iteration

old, total
new-all, total
new-3, total
new-1, total

Time for phase 1 (extraction) and

phase 2 (optimisation).

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 2 4 6 8 10 12 14

tim
e

(s
ec

on
ds

)

iteration

old, phase 1
old, phase 2

new-all, phase 1
new-all, phase 2

Evaluation: Execution Time - Comments

New MERT concatenates latest n-best list to previous ones

Old MERT merges lists, removing duplicates

This means that new MERT has very short extraction phase,
which does not increase with number of iterations

But optimisation time increases more quickly with number of
iterations
It is roughly linear in the size of the combined n-best list
And disk usage increases too

Duplicate removal should reduce execution time

Evaluation: Extensibility

The principal aim of rewriting MERT was to provide a more
flexible design

So it should be easier to incorporate new features

Cer, Jurafsky and Manning (WMT 2008) showed how MERT
could be improved by “regularisation”

Smoothing out of the error surface helps to avoid local
maxima in the translation metric
This is done by either taking an average or minimum over a
neighbourhood

This smoothing was added to the scorer base-class

Making it available to any scorer

The smoothing was tested on fr-en and de-en WMT08
europarl data.

Smoothing Experiments: bleu scores

fr-en de-en
Method Window devtest06 test06 test07 devtest06 test06 test07

none n/a 32.86 32.79 33.19 27.54 27.67 28.07

minimum ±1 32.70 32.65 33.20 27.51 27.79 28.00
±2 32.81 32.75 33.21 27.75 27.85 28.10
±3 32.83 32.76 32.93 27.70 27.92 27.96
±4 32.88 32.77 33.24 27.70 27.87 28.02

average ±1 32.79 32.77 33.29 27.44 27.81 28.00
±2 32.89 32.83 33.28 27.63 27.73 27.98
±3 32.78 32.67 33.19 27.53 27.67 27.87
±4 32.81 32.79 33.25 27.81 28.01 28.22

The gains of 0.5-1.0 bleu reported by Cer et al. were not reproduced

They used a Chinese-English translation task

The error surface may have more noise

Conclusions

We have described a new open source implementation of
MERT

It is distributed within moses, but is standalone

Modularity allows easy replacement of optimiser or translation
metric

Currently both per and bleu scorers are available

The translation performance of systems tuned by the new
MERT is similar to those tuned by the old MERT

The new MERT is slightly slower and uses more disk than the
old

This is a known problem which will be rectified

Possible Enhancements

Implement duplicate removal when merging n-best lists

Add new automatric metrics eg wer, meteor, combinations
of metrics

Add ability to constrain the feature weights

Add priors to the weights

Investigate parallelisation of the algorithm

Implement the lattice optimisation proposed by Macherey et
al (EMNLP 2008)

Questions?

Thank you!
Questions?

