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Rule-based vs. Statistical MT

e Traditional Rule-based MT:

— Expressive and linguistically-rich formalisms capable of
describing complex mappings between the two languages
— Accurate “clean” resources
— Everything constructed manually by experts
— Main challenge: obtaining and maintaining broad coverage
e Phrase-based Statistical MT:

— Learn word and phrase correspondences automatically
from large volumes of parallel data

— Search-based “decoding” framework:

e Models propose many alternative translations
e Effective search algorithms find the “best” translation

— Main challenge: obtaining and maintaining high translation
accuracy
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Research Goals

e Long-term research agenda (since 2000) focused on
developing a unified framework for MT that addresses
the core fundamental weaknesses of previous
approaches:

— Representation — explore richer formalisms that can
capture complex divergences between languages

— Ability to handle morphologically complex languages

— Methods for automatically acquiring MT resources from
available data and combining them with manual resources

— Ability to address both rich and poor resource scenarios

e Main research funding sources: NSF (AVENUE and
LETRAS projects) and DARPA (GALE)
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CMU Statistical Transfer

(Stat-XFER) MT Approach

e Integrate the major strengths of rule-based and
statistical MT within a common framework:

Linguistically rich formalism that can express complex and
abstract compositional transfer rules

Rules can be written by human experts and also acquired
automatically from data

Easy integration of morphological analyzers and
generators

Word and syntactic-phrase correspondences can be
automatically acquired from parallel text

Search-based decoding from statistical MT adapted to find
the best translation within the search space: multi-feature
scoring, beam-search, parameter optimization, etc.

Framework suitable for both resource-rich and resource-
poor language scenarios
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Stat-XFER Main Principles

Framework: Statistical search-based approach with
syntactic translation transfer rules that can be acquired
from data but also developed and extended by experts

Automatic Word and Phrase translation lexicon
acquisition from parallel data

Transfer-rule Learning: apply ML-based methods to
automatically acquire syntactic transfer rules for
translation between the two languages

Elicitation: use bilingual native informants to produce a
small high-quality word-aligned bilingual corpus of
translated phrases and sentences

Rule Refinement: refine the acquired rules via a process
of interaction with bilingual informants
XFER + Decoder:

— XFER engine produces a lattice of possible transferred
structures at all levels

— Decoder searches and selects the best scoring combination
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Stat-XFER MT Approach
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Stat-XFER Framework
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Transfer Rule Formalism

Type information
Part-of-speech/constituent

information/'
Alignments

X-side constraints

y-side constraints \

Xy-constraints,
e.g. ((Y1 AGR) = (X1 AGR))
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Transfer Rule Formalism

Value constraints

Agreement constraints
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Translation Lexicon:
Hebrew-to-English Examples
(Semi-manually-developed)
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Translation Lexicon:
French-to-English Examples
(Automatically-acquired)

1/21/2009 Alon Lavie: Stat-XFER 13



Hebrew-English Transfer Grammar
Example Rules
(Manually-developed)
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French-English Transfer Grammar
Example Rules
(Automatically-acquired)
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The Transfer Engine

e Input: source-language input sentence, or source-
language confusion network

e Output: lattice representing collection of translation
fragments at all levels supported by transfer rules

e Basic Algorithm: “bottom-up” integrated “parsing-
transfer-generation” chart-parser guided by the
synchronous transfer rules

— Start with translations of individual words and phrases
from translation lexicon

— Create translations of larger constituents by applying
applicable transfer rules to previously created lattice
entries

— Beam-search controls the exponential combinatorics of the
search-space, using multiple scoring features
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The Transfer Engine

e Some Unique Features:

— Works with either learned or manually-developed
transfer grammars

— Handles rules with or without unification constraints

— Supports interfacing with servers for morphological
analysis and generation

— Can handle ambiguous source-word analyses and/or
SL segmentations represented in the form of lattice
structures
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Hebrew Example
(From [Lavie et al., 2004])

e |nput word: B$WRH

|-----B---—- | $WR| --H--|
|--B--|-H--]--$WRH---|

1/21/2009 Alon Lavie: Stat-XFER



Hebrew Example
(From [Lavie et al., 2004])

YO: ((SPANSTART 0) Y1: ((SPANSTART 0) Y2: ((SPANSTART 1)
(SPANEND 4) (SPANEND 2) (SPANEND 3)
(LEX BSWRH) (LEX B) (LEX $WR)
(POS N) (POS PREP)) (POS N)

(GEN F) (GEN M)
(NUM S) (NUM S)
(STATUS ABSOLUTE)) (STATUS ABSOLUTE))

Y3: ((SPANSTART 3) Y4: ((SPANSTART 0) Y5: ((SPANSTART 1)
(SPANEND 4) (SPANEND 1) (SPANEND 2)
(LEX $LH) (LEX B) (LEX H)

(POS POSS)) (POS PREP)) (POS DET))

Y6: ((SPANSTART 2) Y7: ((SPANSTART 0)

(SPANEND 4) (SPANEND 4)
(LEX $WRH) (LEX BSWRH)
(POS N) (POS LEX))
(GEN F)

(NUM S)

(STATUS ABSOLUTE))
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XFER Output Lattice
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The Lattice Decoder

e Stack Decoder, similar to standard Statistical MT
decoders

= Searches for best-scoring path of non-overlapping
lattice arcs

e No reordering during decoding

e Scoring based on log-linear combination of scoring
features, with weights trained using Minimum Error Rate
Training (MERT)

e Scoring components:

— Statistical Language Model
— Bi-directional MLE phrase and rule scores
— Lexical Probabilities

— Fragmentation: how many arcs to cover the entire
translation?

— Length Penalty: how far from expected target length?
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XFER Lattice Decoder
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Stat-XFER MT Systems

e General Stat-XFER framework under development for past
seven years
e Systems so far:
— Chinese-to-English
— French-to-English
— Hebrew-to-English
— Urdu-to-English
— German-to-English
— Hindi-to-English
— Dutch-to-English
— Turkish-to-English
— Mapudungun-to-Spanish
e In progress or planned:
— Arabic-to-English
— Brazilian Portuguese-to-English
— English-to-Arabic
— Hebrew-to-Arabic
— Czech-to-English
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Syntax-based MT Resource Acquisition
IN Resource-rich Scenarios

e Scenario: Significant amounts of parallel-text at
sentence-level are available

— Parallel sentences can be word-aligned and parsed (at
least on one side, ideally on both sides)

e Goal: Acquire both broad-coverage translation lexicons
and transfer rule grammars automatically from the data
e Syntax-based translation lexicons:

— Broad-coverage constituent-level translation equivalents at
all levels of granularity

— Can serve as the elementary building blocks for transfer
trees constructed at runtime using the transfer rules

1/21/2009 Alon Lavie: Stat-XFER 24



Syntax-driven Resource
Acquisition Process

- Automatic Process for Extracting Syntax-driven Rules
and Lexicons from sentence-parallel data:
1. Word-align the parallel corpus (GIZA++)
2. Parse the sentences independently for both languages
3. Tree-to-tree Constituent Alignment:

a) Run our new Constituent Aligner over the parsed sentence pairs
b) Enhance alignments with additional Constituent Projections

4. Extract all aligned constituents from the parallel trees

Extract all derived synchronous transfer rules from
the constituent-aligned parallel trees

6. Construct a “data-base” of all extracted parallel
constituents and synchronous rules with their
frequencies and model them statistically (assign them
relative-likelihood probabilities)

a1
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PFA Constituent Node Aligner

e Input: a bilingual pair of parsed and word-aligned
sentences

e Goal: find all sub-sentential constituent alignments
between the two trees which are translation equivalents
of each other

e Equivalence Constraint: a pair of constituents <S,T>
are considered translation equivalents if:

— All words in yield of <S> are aligned only to words in yield of <T>
(and vice-versa)

— If <S> has a sub-constituent <S1> that is aligned to <T1>, then
<T1> must be a sub-constituent of <T> (and vice-versa)

e Algorithm is a bottom-up process starting from word-
level, marking nodes that satisfy the constraints
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Recent Improvements

e The Tree-to-Tree (T2T) method is high precision but
suffers from low recall

e Alternative: Tree-to-String (T2S) methods (i.e. [Galley
et al., 2006]) use trees on ONE side and project the
nodes based on word alignments

— High recall, but lower precision

e Recent work by Vamshi Ambati [Ambati and Lavie, 2008]:
combine both methods (T2T*) by seeding with the T2T
correspondences and then adding in additional
consistent projected nodes from the T2S method

— Can be viewed as restructuring target tree to be maximally
iIsomorphic to source tree

— Produces richer and more accurate syntactic phrase tables
that improve translation quality (versus T2T and T2S)
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TnS vs TNT Comparison
French-English

TYPE Total TnS % TnT % 0%
ADIP 600104 412250 | 68.6 | 176677 | 294 | 90.7
ADVP 1010307 696106 | 68.9 | 106532 | 105 | 83.1
NP 11204763 | 8377739 | 74.7 | 4152363 | 371 | 93.8
VP 4650093 | 2918628 | 62.7 | 238639 5.1 | 67.9
PP 3772634 | 2766634 | 733 | 842308 | 223 | 894

S 2233075 | 1506832 | 67.4 | 248281 11.1 | 94.5
SBAR 912240 591755 | 64.8 42407 4.6 | 919
SBARQ 19935 9034 45.5 7576 38 99.6

1/21/2009
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respect

principes
e Add consistent projected nodes from source tree

e Tree Restructuring:

— Drop links to a higher parent in the tree in favor of a lower
parent

— In case of a tie, prefer a node projected or aligned over an
unaligned node
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Extracted Syntactic Phrases

English

French

The principles

Principes

English

French

The principles

Principes

ith the
principles

des Principes]

With the des Principes
principles
Accordance Respect

English French
The principles | Principes
With the Principes
principles

Accordance Respect des
with the.. principes
Accordance Respect

In Dans le
accordance respect des
with the... principes

Is all in Tout ceci
accordance dans le
with.. respect...
This et

Accordance Respect des

with the.. principes

Accordance Respect

In accordance Dans le

with the... respect des
principes

Is all in Tout ceci

accordance dans le

with.. respect...

This et

__________




Comparative Results
French-to-English

Dev-5et Test-Set
System BLEU | BLEU | METEOR

Xfer-TnS 26.57 27.02 57.68

Xfer-TnT 21.75 22.23 54.05

- Xter-Inl° | 2734 | 2776 | 53782

Xfer-Moses | 2954 | 30.18 58.13

e MT Experimental Setup
— Dev Set: 600 sents, WMT 2006 data, 1 reference
— Test Set: 2000 sents, WMT 2007 data, 1 reference
— NO transfer rules, Stat-XFER monotonic decoder
— SALM Language Model (430M words)
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Combining Syntactic and
Standard Phrase Tables

Recent work by Greg Hanneman, Alok Parlikar and Vamshi
Ambati

Syntax-based phrase tables are still significantly lower in
coverage than “standard” heuristic-based phrase extraction
used in Statistical MT

Can we combine the two approaches and obtain superior
results?

Experimenting with two main combination methods:

— Direct Combination: Extract phrases using both approaches and then
jointly score (assign MLE probabilities) them

— Prioritized Combination: For source phrases that are syntactic — use the
syntax-extracted method, for non-syntactic source phrases - take them
from the “standard” extraction method

Direct Combination appears to be slightly better so far
Grammar builds upon syntactic phrases, decoder uses both
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Recent Comparative Results
French-to-English

Condition BLEU METEOR
Syntax Phrases Only 27.34 56.54
(Non-syntax Phrases Only 30.18 58.35
Syntax Prioritized 29.61 58.00
Direct Combination 30.08 58.35

e MT Experimental Setup
— Dev Set: 600 sents, WMT 2006 data, 1 reference
— Test Set: 2000 sents, WMT 2007 data, 1 reference
— NO transfer rules, Stat-XFER monotonic decoder
— SALM Language Model (430M words)

1/21/2009 Alon Lavie: Stat-XFER
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Transfer Rule Learning

e Input: Constituent-aligned parallel trees
e |dea: Aligned nodes act as possible decomposition
points of the parallel trees

— The sub-trees of any aligned pair of nodes can be broken
apart at any lower-level aligned nodes, creating an
inventory of “treelet” correspondences

— Synchronous “treelets” can be converted into synchronous
rules

e Algorithm:

— Find all possible treelet decompositions from the node
aligned trees

— “Flatten” the treelets into synchronous CFG rules
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French-English System

e Large-scale broad-coverage system,
developed for research experimentation

e Participated in WMT-08 and WMT-09
Evaluations

e Latest version integrates our most up-to-date
processing methods:
— French and English parsing using Berkeley Parser

— Moses phrase tables combined with syntactic phrase
tables using syntax-prioritized method

— Very small grammar (26 rules) selected from large
extracted rule set

1/21/2009 Alon Lavie: Stat-XFER 46



French-English System
Data Resources

e Europarl corpus v. 4:
— European parliamentary proceedings
— 1.43 million sentences (36 MW)
 News Commentary corpus:
— Editorials, columns
— 0.06 million sentences (1 MW)
e Giga-FrEn corpus, pre-release version:
— Crawled Canadian, European websites in various domains
— 8.60 million sentences (191 MW)
e TOTAL:
— about 10M sentence pairs
— 9.57M sentence pairs after cleaning and filtering
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French-English System
Phrase Tables

e After complete phrase pair extraction,
filtering and collapsing:
— 424 million standard SMT phrases
— 27 million syntactic phrases

e Combined In a syntax-prioritized
combination

1/21/2009 Alon Lavie: Stat-XFER
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French-English System
Example Grammar Rules




English-French System
Translation Example

The extrem '1|_|h1' in Europ
1e 1mmigraktion as a political di

" 1ML gL :|.t1| Nyl
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Current and Future
Research Directions

e Automatic Transfer Rule Learning:

— Under different scenarios:

e From large volumes of automatically word-aligned “wild”
parallel data, with parse trees on one or both sides

e From manually word-aligned elicitation corpus
» In the absence of morphology or POS annotated lexica

— Compositionality and generalization
e Granularity of constituent labels — what works best for MT?
e Lexicalization of grammars

— ldentifying “good” rules from “bad” rules
— Effective models for rule scoring for
e Decoding: using scores at runtime
e Pruning the large collections of learned rules
— Learning Unification Constraints
1/21/2009 51 Alon Lavie: Stat-XFER



Current and Future
Research Directions

e Advanced Methods for Extracting and
Combining Phrase Tables from Parallel Data:

— Leveraging from both syntactic and non-syntactic
extraction methods

— Can we “syntactify” the non-syntactic phrases or
apply grammar rules on them?

e Syntax-aware Word Alignment:

— Current word alignments are naive and unaware of
syntactic information

— Can we remove incorrect word alignments to
Improve the syntax-based phrase extraction?

— Develop new syntax-aware word alignment methods

1/21/2009 52 Alon Lavie: Stat-XFER



Current and Future
Research Directions

e Syntax-based LMs:

— Our syntax-based MT approach performs
parsing and translation as integrated processes

— Our translations come out with syntax trees
attached to them

— Add syntax-based LM features that can
discriminate between good and bad trees, on
both target and source sides!
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Current and Future
Research Directions

e Algorithms for XFER and Decoding

— Integration and optimization of multiple
features into search-based XFER parser

— Complexity and efficiency improvements

— Non-monotonicity issues (LM scores,
unification constraints) and their
consequences on search
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Current and Future
Research Directions

e Building Elicitation Corpora:
— Feature Detection
— Corpus Navigation

e Automatic Rule Refinement

e Translation for highly polysynthetic
languages such as Mapudungun and
lnupiaqg
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Conclusions

e Stat-XFER is a promising general MT framework,
suitable to a variety of MT scenarios and languages

e Provides a complete solution for building end-to-end MT
systems from parallel data, akin to phrase-based SMT
systems (training, tuning, runtime system)

e No open-source publically available toolkits, but
extensive collaboration activities with other groups

e Complex but highly interesting set of open research
Issues
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