Joshua:

Open Source Toolkit for Parsing-based Machine Translation

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan

Highlights

- Fully-featured decoder
 - SCFG decoder in the style of Heiro Chiang (2007)
 - n-gram language model integration
- Attempts to minimize external dependencies
 - Implemented our own MERT and grammar extraction
 - Currently only requires Giza++ and SRILM
- Written in Java
- Goals are to be scalable, easy to extend

Synchronous CFGs

- Generalize context free grammars so they generate pairs of related strings
- Useful for specifying relationship between languages
- Formal definition:
 - T_s: a set of source-language terminal symbols
 - T_t: a set of target-language terminal symbols
 - N: a shared set of nonterminal symbols
 - A set of rules of the form $X \rightarrow \langle \alpha, \beta, \sim, w \rangle$
 - X ∈ N
 - α is a sequence source terminals and non-terminals
 - β is a sequence of target terminals and non-terminals
 - ~ is a one-to-one correspondence between the non-terminals
 - w is a weight or probability assigned to the rule

Example SCFG

	Japanese	English
$S \rightarrow$	NP(1) VP(2)	NP1 VP2
S'→	S(1) COMP(2)	COMP 2 S1
$VP \rightarrow$	NP1 V2	$V^{(2)}$ NP(1)
$NP \rightarrow$	gakusei-ga	student
$NP \rightarrow$	sensei-ga	teacher
\lor \rightarrow	odotta	danced
\lor \rightarrow	itta	said
$COMP \rightarrow$	to	that

Heiro-style rules

- Currently, only support Heiro-style rules with single non-terminal
- Not as nice as linguistically motivated rules, but useful for things like reordering

*Thanks to David Chiang for Hiero slides

Extracting Heiro rules

Extracting Heiro rules

Some challenges with Heiro

- Large number of rules
 - Decreases time/space efficiency
- Spurious ambiguity
 - Decreases time efficiency
 - Pollutes *n*-best lists
- Ad hoc constraints:
 - Initial phrases ≤ 10 words, rules ≤ 6 symbols
 - Require an aligned terminal
 - Limit to two nonterminals, nonadjacent

Some challenges with SCFGs

- Integration of an n-gram language model is difficult under SCFGs
 - Using an n-gram LM generally makes translation quality much better
 - We do not construct a translation in a left-to-right fashion as in phrase-based SMT

n-gram language model

LM state in chart parsing

Decoding takes place via chart parsing

Chart parsing

- Decoder maintains a chart, which contains an array of cells
- A cell maintains a list of *items*
- Derivations are stored in a structure called a hypergraph.

• State of an Item

- Source span
- Left hand side nonterminal symbol
- Left/right LM state

Example Derivation

Other Bells and Whistles

- Beam and cube pruning Huang and Chiang (2007)
- Built in minimum error rate training Och and Ney (2003)
 - Modular, so easily allows optimization to objective functions other than Bleu Zaidan (2009)
- Suffix array indexing of the parallel corpus Lopez (2007)
 - Allows on-the-fly look up of translation rules
- *n*-best extraction from hypergraphs _{Chiang} (2007)
- Equivalent LM state maintenance Li and Khudanpur (2008)
- Support for parallel decoding

Decoding Speed

Training data

- Task: Chinese to English translation
- Sub-sampled from parallel corpus containing approx 3M sentence pairs
 - obtained 570k sentence pairs
 - Number of translation rules: 3M
- LM data: Gigaword and English side of the parallel
 - Number of n-grams in LM: 49M

38 times faster than the baseline!

Speed and translation quality comparison:

Docodor	Speed	BLEU-4	
Decoder	(sec/sent)	МТ03	MT03
Python	26.5	34.4%	32.7%
Java	1.2	34.5%	32.9%
Java (parallel)	0.7	37.3%	32.7/0

Current directions

- Recreating Syntax-Augmented Machine Translation Zollmann and Venugopal (2006)
 for more linguistically motivated translation rules
- Implementing Bloom Filter Language Models Talbot and Osborne (2007) to allow much larger LMs to be used with less memory
- Integrating Minimum Bayes Risk Re-ranking Kumar and Byrne (2004) of n-best translations extracted from hypergraphs
- Scaling to a 1,000,000,000 word parallel corpus Callison-Burch (2009)

Where to get the software

- Subversion repository at
 - <u>http://sourceforge.net/projects/joshua</u>
- Quick installation instructions are in
 - joshua/trunk/INSTALL.txt
- Instructions on running with sample grammar are in
 - joshua/trunk/README.txt
- For support write to
 - Joshua_support@googlegroups.com

Thanks!

• Happy hacking!