

MT Marathon

26th - 30th January 2009

Prague, Czech Republic

Lectures, Talks, Labs

	Morning Lecture	Research Talks	Afternoon Lab Session	Evening
	9.00 - 10.30	11.00 - 12.30	14.00 - 17.00	17.00 – ?
Monday	Introduction to MT and MT Evaluation (Adam Lopez)	Projects: Introduction Intro to Stat-XFER (Alon Lavie) Intro to TectoMT (Zdeněk Žabokrtský, Ondřej Bojar)	Manual judgement of MT quality	
Tuesday	Word Alignment (Barry Haddow)	PostCAT, apertium-cy, MBMT	Implementing IBM model 1	Projects: Update
Wednesday	Phrase-Based Models and Decoding (Chris Dyer)	Joshua, SAMT, MERT+	Installing and running Moses (Hieu Hoang and Josh Schroeder)	
Thursday	TectoMT: Processing Trees (Zdeněk Žabokrtský and others)	RIA, Sub-Tree Aligner	TectoMT hands-on experience: Installation and tutorial (Jana Kravalová)	Projects: Update
Friday	Richer Models and Optimization (Philipp Koehn)	Projects: Final Short Presentations	Using factored models and MERT in Moses (Hieu Hoang, Barry Haddow, Abhishek Arun)	

Accepted Contributions, Research Talks

The following contributions will be presented during late mornings:

- 1. apertium-cy: **F. M. Tyers, K. Donnelly**: apertium-cy a collaboratively-developed free RBMT system for Welsh to English
- 2. Joshua: Z. Li, C. Callison-Burch, W. Thornton, S. Khudanpur: Joshua: an Open-source Decoder for Parsing-based Machine Translation
- 3. MBMT: A. van den Bosch and P. Berck: Memory-Based Machine Translation and Language Modeling
- 4. MERT+: N. Bertoldi, B. Haddow, J.-B. Fouet: Improved Minimum Error Rate Training in Moses
- 5. PostCAT: J. Graça, K. Ganchev, B. Taskar: PostCAT Posterior Constrained Alignment Toolkit
- 6. RIA: Y. Graham, J. van Genabith: An Open Source Rule Induction Tool for Transfer-Based SMT
- 7. SAMT: A. Venugopal, A. Zollmann: Grammar based statistical MT on Hadoop. An end-to-end toolkit for large scale PSCFG based statistical machine translation
- 8. Sub-Tree Aligner: V. Zhechev: Unsupervised Generation of Parallel Treebanks through Sub-Tree Alignment
- 9. Z-MERT: **O. Zaidan**: Z-MERT: A Fully Configurable Open Source Tool for Minimum Error Rate Training of Machine Translation Systems (There is no presentation for this paper.)

Research talk presentations should be 20 to 25 minutes long with additional 5 minutes for a discussion.

Contents

Monday	4
Introduction to MT	4
MT Evaluation	13
Intro to Stat-XFER	19
Stat-XFER: Czech to English Translation Project	29
	33
Tuesday	35
Word Alignment	35
Wednesday	12
Phrase-Based Models and Decoding	42
Thursday 5	51
Introduction to the Software Framework	51
TectoMT: Alignment	57
	59
	62
Friday	39
Discriminative Training and Factored Translation Models	69

Statistical Machine Translation

presentation: Adam Lopez slides: Chris Callison-Burch

Various approaches

- Word-for-word translation
- Syntactic transfer
- Interlingual approaches
- Controlled language
- Example-based translation
- Statistical translation

Advantages of SMT

- Data driven
- Language independent
- No need for staff of linguists of language experts
- Can prototype a new system quickly and at a very low cost

Statistical machine translation

- Find most probable English sentence given a foreign language sentence
- Automatically align words and phrases within sentence pairs in a parallel corpus
- Probabilities are determined automatically by training a statistical model using the parallel corpus

Parallel corpus

what is more , the relevant cost dynamic is completely under control.

sooner or later we will have to be sufficiently progressive in terms of own resources as a basis for this fair tax system.

we plan to submit the first accession partnership in the autumn of this year .

it is a question of equality and solidarity

the recommendation for the year 1999 has been formulated at a time of favourable developments and optimistic prospects for the european economy . that does not , however , detract from the deep appreciation which we have for this report .

im übrigen ist die diesbezügliche kostenentwicklung völlig unter kontrolle

früher oder später müssen wir die notwendige progressivität der eigenmittel als grundlage dieses gerechten steuersystems zur sprache bringen .

zur sprache bringen . wir planen , die erste beitrittspartnerschaft im herbst dieses jahres vorzulegen .

hier geht es um gleichberechtigung und solidarität .

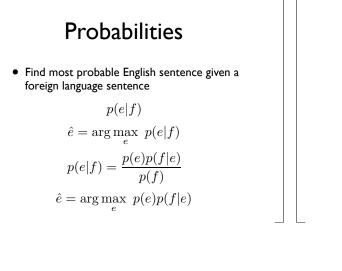
die empfehlung für das jahr 1999 wurde vor dem hintergrund günstiger entwicklungen und einer für den kurs der europäischen wirtschaft positiven perspektive abgegeben. im übrigen tut das unserer hohen wertschätzung für den vorliegenden bericht keinen abbruch.

Probabilities

• Find most probable English sentence given a foreign language sentence

p(e|f)

Probabilities

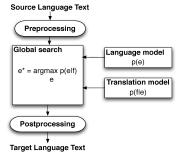

• Find most probable English sentence given a foreign language sentence

p(e|f) $\hat{e} = \arg \max_{e} \ p(e|f)$

Probabilities

• Find most probable English sentence given a foreign language sentence

p(e|f) $\hat{e} = \arg \max_{e} p(e|f)$ $p(e|f) = \frac{p(e)p(f|e)}{p(f)}$



What the probabilities represent

- p(e) is the "Language model"

 Assigns a higher probability to fluent / grammatical sentences
 - Estimated using monolingual corpora
- p(f|e) is the "Translation model"
 Assigns higher probability to sentences that have corresponding meaning
 - Estimated using bilingual corpora

For people who don't like equations

Language Model

- Component that tries to ensure that words come in the right order
- Some notion of grammaticality
- Standardly calculated with a trigram language model, as in speech recognition
- Could be calculated with a statistical grammar such as a PCFG

Trigram language model

• p(I like bungee jumping off high bridges) =

Trigram language model

 p(I like bungee jumping off high bridges) = p(I | <s> <s>) *

Trigram language model

 p(I like bungee jumping off high bridges) = p(I | <s> <s>) * p(like | <s> I) *

Trigram language model

 p(I like bungee jumping off high bridges) = p(I | <s> <s>) * p(like | <s> I) * p(bungee | I like) *

Trigram language model

 p(l like bungee jumping off high bridges) = p(l | <s> <s>) * p(like | <s> l) * p(bungee | l like) * p(jumping | like bungee) *

Trigram language model

 p(I like bungee jumping off high bridges) = p(I | <s> <s>) * p(like | <s> I) * p(bungee | I like) * p(jumping | like bungee) * p(off | bungee jumping) *

Trigram language model

 p(I like bungee jumping off high bridges) = p(I | <s> <s>) * p(like | <s> I) * p(bungee | I like) * p(jumping | like bungee) * p(off | bungee jumping) * p(high | jumping off) *

Trigram language model

 p(I like bungee jumping off high bridges) = p(I | <s> <s>) * p(like | <s> |) * p(bungee | I like) * p(jumping | like bungee) * p(off | bungee jumping) * p(high | jumping off) * p(bridges | off high) *

Trigram language model

 p(I like bungee jumping off high bridges) = p(I | <s> <s>) * p(like | <s>) * p(bungee | 1 like) * p(jumping | like bungee) * p(off | bungee jumping) * p(high | jumping off) * p(bridges | off high) * p(</s> | high bridges) *

Trigram language model

 p(I like bungee jumping off high bridges) = p(I | <s> <s>) * p(like | <s> I) * p(bungee | I like) * p(jumping | like bungee) * p(off | bungee jumping) * p(high | jumping off) * p(bridges | off high) * p(</s> | high bridges) * p(</s> | bridges </s>)

Calculating Language Model Probabilities

• Unigram probabilities

 $p(w_1) = \frac{count(w_1)}{total \ words \ observed}$

Calculating Language Model Probabilities

• Bigram probabilities

 $p(w_2|w_1) = \frac{count(w_1w_2)}{count(w_1)}$

Calculating Language Model Probabilities

• Trigram probabilities

 $p(w_3|w_1w_2) = \frac{count(w_1w_2w_3)}{count(w_1w_2)}$

Calculating Language Model Probabilities

- Can take this to increasingly long sequences of n-grams
- As we get longer sequences it's less likely that we'll have ever observed them

Backing off

- Sparse counts are a big problem
- If we haven't observed a sequence of words then the count = 0
- Because we're multiplying the n-gram probabilities to get the probability of a sentence the whole probability = 0

Backing off

 $.8 * p(w_3|w_1w_2) +$ $.15 * p(w_3|w_2) +$ $.049 * p(w_3) +$.001

• Avoids zero probs

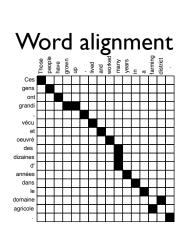
Translation model

- p(f|e)... the probability of some foreign language string given a hypothesis English translation
- f = Ces gens ont grandi, vécu et oeuvré des dizaines d'années dans le domaine agricole.
- e = Those people have grown up, lived and worked many years in a farming district.
- e = I like bungee jumping off high bridges.

Translation model

• How do we assign values to p(f|e)?

$$p(f|e) = \frac{count(f,e)}{count(e)}$$

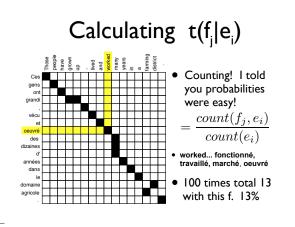

 Impossible because sentences are novel, so we'd never have enough data to find values for all sentences.

Translation model

 Decompose the sentences into smaller chunks, like in language modeling

$$p(f|e) = \sum_{a} p(a, f|e)$$

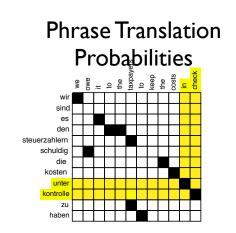
• Introduce another variable *a* that represents alignments between the individual words in the sentence pair

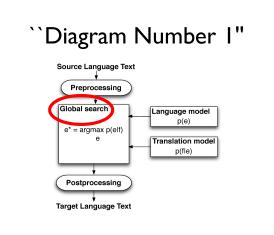


Alignment probabilities

• So we can calculate translation probabilities by way of these alignment probabilities

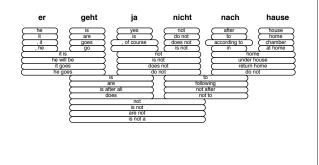

$$p(f|e) = \sum_{a} p(a, f|e)$$

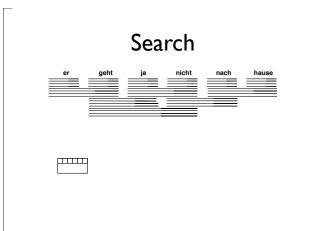

• Now we need to define p(a, f | e) $p(a, f|e) = \prod_{j=1}^m t(f_j|e_i)$

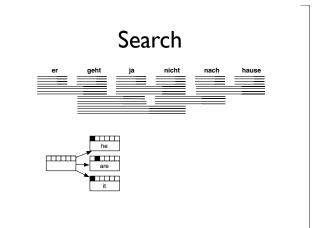


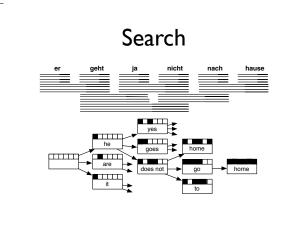
Calculating $t(f_i|e_i)$

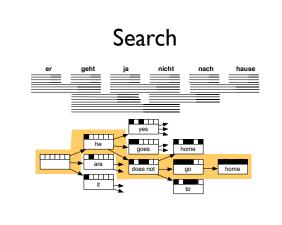
- Unfortunately we don't have word aligned data, so we can't do this directly.
- OK, so it's not quite as easy as I said.
- Tomorrow's lecture will describe how word alignments are obtained using Expectation Maximization.

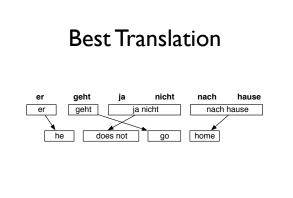


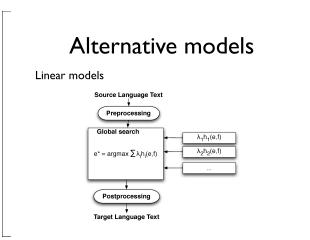


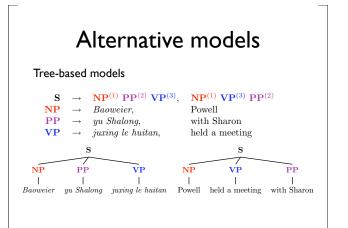

The Search Process AKA ``Decoding"


- Look up all translations of every source phrase
- Recombine the target language phrases that maximizes the translation model probability * the language model probability
- This search over all possible combinations can get very large so we need to find ways of limiting the search space


Translation Options







The Search Space

- In the end the item which covers all of the source words and which has the highest probability wins!
- That's our best translation
 - $\hat{e} = \arg\max_{e} p(e)p(f|e)$
- And there was much rejoicing!

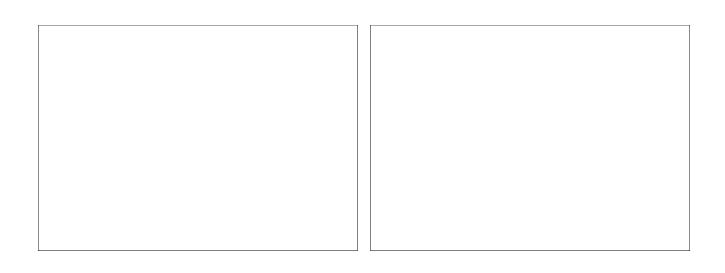
Wrap-up: SMT is data driven

- Learns translations of words and phrases from parallel corpora
- Associate probabilities with translations empirically by counting co-occurrences in the data
- Estimates of probabilities get more accurate as size of the data increases

Wrap-up: SMT is language independent

- Can be applied to any language pairs that we have a parallel corpus for
- The only linguistic thing that we need to know is how to split into sentences, words
- Don't need linguists and language experts to hand craft rules because it's all derived from the data

Wrap-up: SMT is cheap and quick to produce


- Low overhead since we aren't employing anyone
- Computers do all the heavy lifting / statistical analysis of the data for us
- Can build a system in hours or days rather than months or years

More Information

- <u>http://www.statmt.org</u> papers, tutorials, etc.
- Statistical Machine Translation. In ACM Computing Surveys 40(3), Aug 2008.

At <u>http://homepages.inf.ed.ac.uk/alopez</u>

BibTeX at http://github.com/alopez/smtbib

Evaluating Translation Quality

Presentation: Adam Lopez Slides: Chris Callison-Burch

Evaluating MT Quality

Why do we want to do it? Want to rank systems

- Want to evaluate incremental changes
- How not to do it
 - ``Back translation"
 - The vodka is *not* good

Evaluating Human Translation Quality

- Why?
 - Quality control
 - Decide whether to re-hire freelance translators
 - Career promotion

DLPT-CRT

- Defense Language Proficiency Test/ Constructed Response Test
- Read texts of varying difficulty, take test
- Structure of test
 - Limited responses for questions
 - Not multiple choice, not completely open
 - Test progresses in difficulty
 - Designed to assign level at which
 - examinee fails to sustain proficiency

DLPT-CRT

- Level 1: Contains short, discrete, simple sentences. Newspaper announcements.
- Level 2: States facts with purpose of conveying information. Newswire stories.
- Level 3: Has denser syntax, convey opinions with implications. Editorial articles / opinion.
- Level 4: Often has highly specialized terminology. Professional journal articles.

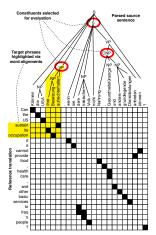
Human Evaluation of Machine Translation

- One group has tried applying DLPT-CRT to machine translation
 - Translate texts using MT system
 - Have monolingual individuals take test
 - See what level they perform at
- Much more common to have human evaluators simply assign a scale directly using fluency / adequacy scales

Fluency

- 5 point scale
- 5) Flawless English
 4) Good English
 3) Non-native English
- 2) Disfluent
- Í) Incomprehensible

Adequacy


- This text contains how much of the information in the reference translation:
- 5) All
 - 4) Most
 - 3) Much
 - 2) Little
 - I) None

Relative ranking

- An alternative to absolute scales
- Simply ask
 - Is A better than B?
 - Is B better than A?
 - Or are they indistinguishable?

Consistent-based evaluation

 Rather than ranking the translations of whole sentences, instead have people focus on smaller parts

Human Evaluation of MT v. Automatic Evaluation

• Human evaluation is

- Ultimately what we're interested in, but
- Very time consuming
- Not re-usable
- Automatic evaluation is
 - Cheap and reusable, but
 - Not necessarily reliable

Goals for Automatic Evaluation

- No cost evaluation for incremental changes
- Ability to rank systems
- Ability to identify which sentences we're doing poorly on, and categorize errors
- Correlation with human judgments
- Interpretability of the score

Methodology

- Comparison against reference translations
- Intuition: closer we get to human translations, the better we're doing
- Could use WER like in speech recognition

Word Error Rate

- Levenshtein Distance (also "edit distance")
- Minimum number of insertions, substitutions, and deletions needed to transform one string into another
- Useful measure in speech recognition
 Shows how easy it is to recognize speech
 Shows how easy it is to wreck a nice beach

Problems with WER

- Unlike speech recognition we don't have the assumptions of

 linearity
 - exact match against the reference
- In machine translation there can be many possible (and equally valid) ways of translating a sentence
- Also, clauses can move around, since we're not doing transcription

Solutions

- Compare against lots of test sentences
- Use multiple reference translations for each test sentence
- Look for phrase / n-gram matches, allow movement

Metrics

- Exact sentence match
- WER
- PI-WER
- Bleu
- Precision / Recall
- Meteor

Bleu

- Use multiple reference translations
- Look for n-grams that occur anywhere in the sentence
- Also has ``brevity penalty"
- Goal: Distinguish which system has better quality (correlation with human judgments)

Example Bleu

RI: It is a guide to action that ensures that the military will forever heed Party commands.
R2: It is the Guiding Principle which guarantees the military forces always being under the command of the Party.
R3: It is the practical guide for the army always to heed the directions of the party.

C1: It is to insure the troops forever hearing the activity guidebook that party direct. **C2:** It is a guide to action which ensures that the military always obeys the command of the party.

Example Bleu

RI: <u>It is</u> a guide to action that ensures that the military will forever heed Party commands.
R2: <u>It is</u> the Guiding Principle which guarantees the military forces always being under the command of the Party.
R3: <u>It is</u> the practical guide for the army always to heed the directions of the party.

CI: <u>It is to</u> insure <u>the</u> troops <u>forever</u> hearing <u>the</u>

activity guidebook that party direct.

Example Bleu

RI: <u>It is a guide to action that ensures that the military</u> will forever heed <u>Party</u> commands.
R2: <u>It is</u> the Guiding Principle <u>which</u> guarantees the military forces <u>always</u> being under the command of the Party.
R3: <u>It is</u> the practical <u>guide</u> for the army <u>always</u> to heed <u>the</u> directions <u>of the party</u>.

C2: <u>It is a guide to action which ensures that the military always</u> obeys <u>the command of the party.</u>

Automated evaluation

- Because **C2** has more n-grams and longer ngrams than **C1** it receives a higher score
- Bleu has been shown to correlate with human judgments of translation quality
- Bleu has been adopted by DARPA in its annual machine translation evaluation

Interpretability of the score

- How many errors are we making?
- How much better is one system compared to another?
- How useful is it?
- How much would we have to improve to be useful?

Evaluating an evaluation metric

• How well does it correlate with human judgments?

On a system levelOn a per sentence level

- Data for testing correlation with human judgments of translation quality

NIST MT Evaluation

- Annual Arabic-English and Chinese-English competitions
- 10 systems
- 1000+ sentences each
- Scored by Bleu and human judgments
- Human judgments for translations produced by each system

ACL Workshop on SMT

- Translation between English, French, German, Spanish, Hungarian and Czech
- 30 different systems
- In-domain and out-of-domain test sets
- Scores produced by multiple automatic metrics
- Systems ranked by 100+ human judges

Final thoughts on Evaluation

When writing a paper

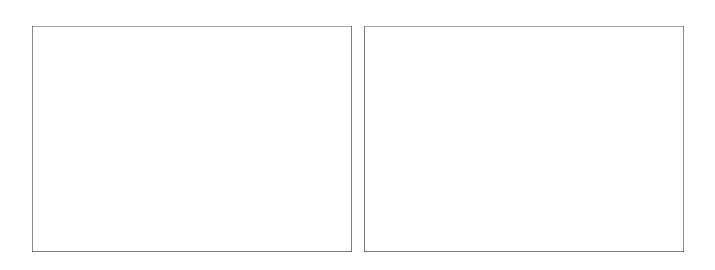
- If you're writing a paper that claims that

 one approach to machine translation is better than another, or that
 - some modification you've made to a system has improved translation quality
- Then you need to back up that claim
- Evaluation metrics can help, but good experimental design is also critical

Experimental Design

- Importance of separating out training / test / development sets
- Importance of standardized data sets
- Importance of standardized evaluation metric
- Error analysis
- Statistical significance tests for differences between systems

Invent your own evaluation metric


- If you think that Bleu is inadequate then invent your own automatic evaluation metric
- Can it be applied automatically?
- Does it correlate better with human judgment?
- Does it give a finer grained analysis of mistakes?

Evaluation drives MT research

- Metrics can drive the research for the topics that they evaluate
- NIST MT Eval / DARPA Sponsorship
- Bleu has lead to a focus on phrase-based translation
- Minimum error rate training
- Other metrics may similarly change the community's focus

Homework Exercise

- Evaluation exercise for homework
- Examine translations from state-of-the-art systems (in the language of your choice!)
- Manually evaluate quality!
- Perform error analysis!
- Develop ideas about how to improve SMT!

Stat-XFER: A General Framework for Search-based Syntax-driven MT

Alon Lavie Language Technologies Institute Carnegie Mellon University

Joint work with: Greg Hanneman, Vamshi Ambati, Alok Parlikar, Edmund Huber, Jonathan Clark, Erik Peterson, Christian Monson, Abhaya Agarwal, Kathrin Probst, Ari Font Llitjos, Lori Levin, Jaime Carbonell, Bob Frederking, Stephan Vogel

Outline

- Context and Rationale
- CMU Statistical Transfer MT Framework
- Extracting Syntax-based MT Resources from Parallel-corpora
- Integrating Syntax-based and Phrase-based Resources

2

- Open Research Problems
- Conclusions

1/21/2009

Alon Lavie: Stat-XFER

Rule-based vs. Statistical MT **Research Goals** Traditional Rule-based MT: • Long-term research agenda (since 2000) focused on Expressive and linguistically-rich formalisms capable of describing complex mappings between the two languages Accurate "clean" resources Everything constructed manually by experts developing a unified framework for MT that addresses the core fundamental weaknesses of previous approaches: . Representation - explore richer formalisms that can Main challenge: obtaining and maintaining broad coverage capture complex divergences between languages Phrase-based Statistical MT: Ability to handle morphologically complex languages
Methods for automatically acquiring MT resources from available data and combining them with manual resources
Ability to address both rich and poor resource scenarios Learn word and phrase correspondences automatically from large volumes of parallel data Search-based "decoding" framework: • Models propose many alternative translations • Effective search algorithms find the "best" translation Main research funding sources: NSF (AVENUE and LETRAS projects) and DARPA (GALE) Main challenge: obtaining and maintaining high translation accuracy

> 1/21/2009 Alon Lavie: Stat-XFER

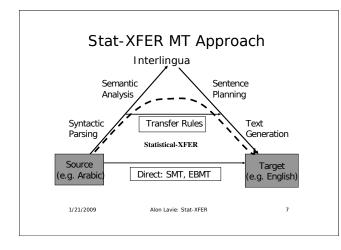
CMU Statistical Transfer (Stat-XFER) MT Approach Integrate the major strengths of rule-based and statistical MT within a common framework: - Linguistically rich formalism that can express complex and abstract compositional transfer rules - Rules can be written by human experts and also acquired automatically from data

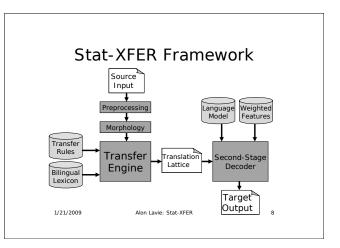
Alon Lavie: Stat-XFER

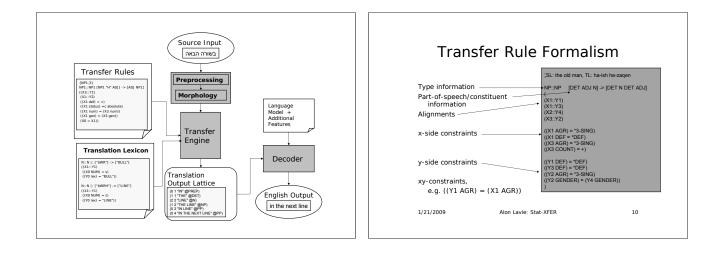
1/21/2009

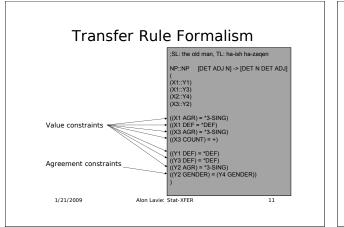
1/21/2009

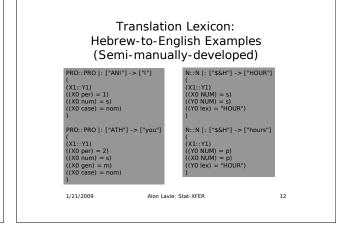
- automatically from data Easy integration of morphological analyzers and generators Word and syntactic-phrase correspondences can be automatically acquired from parallel text
- automatically acquired from parallel text Search-based decoding from statistical MT adapted to find the best translation within the search space: multi-feature scoring, beam-search, parameter optimization, etc. Framework suitable for both resource-rich and resource-poor language scenarios

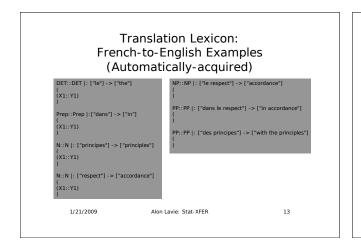

Alon Lavie: Stat-XFER

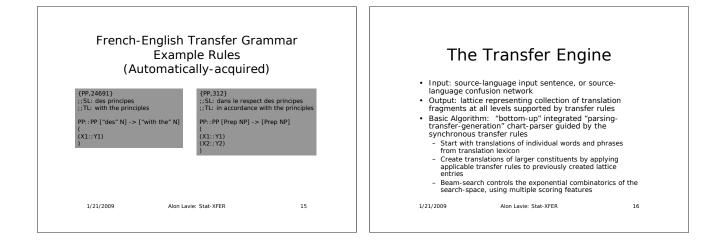

Stat-XFER Main Principles

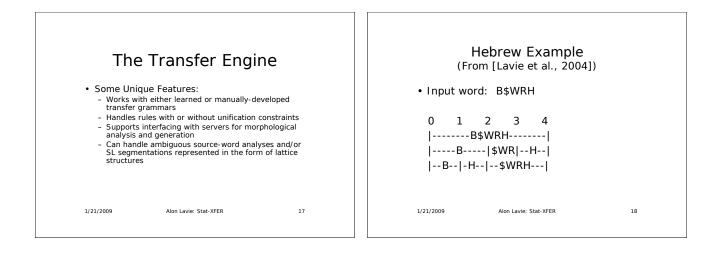

- Framework: Statistical search-based approach with syntactic translation transfer rules that can be acquired from data but also developed and extended by experts
- Automatic Word and Phrase translation lexicon acquisition from parallel data
- acquisition from parallel data Transfer-rule Learning: apply ML-based methods to automatically acquire syntactic transfer rules for translation between the two languages Elicitation: use bilingual native informants to produce a small high-quality word-aligned bilingual corpus of translated phrases and sentences Rule Refinement: refine the acquired rules via a process of interaction with bilingual informants
- XFER + Decoder:
- XFER engine produces a lattice of possible transferred structures at all levels Decoder searches and selects the best scoring combination

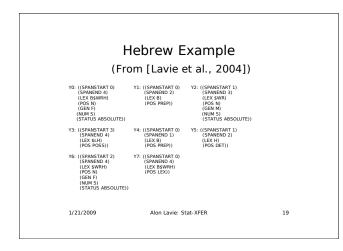

1/21/2009 Alon Lavie: Stat-XFER

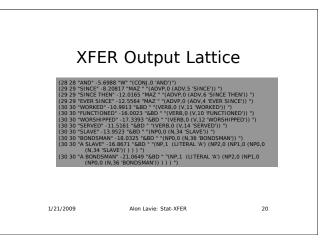

5

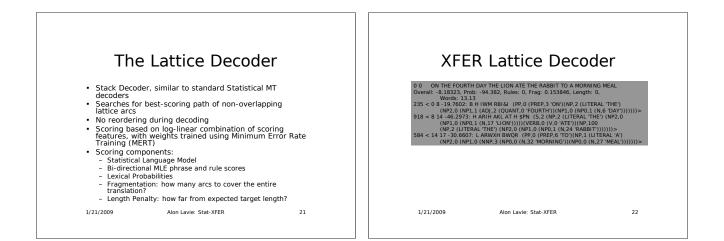


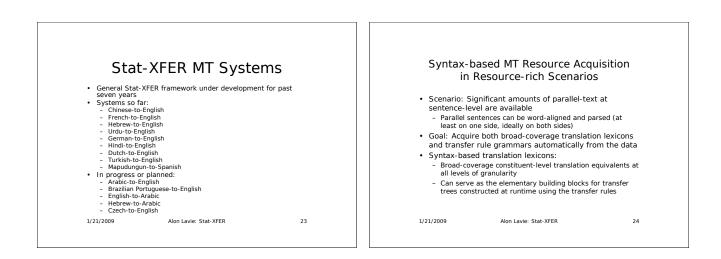


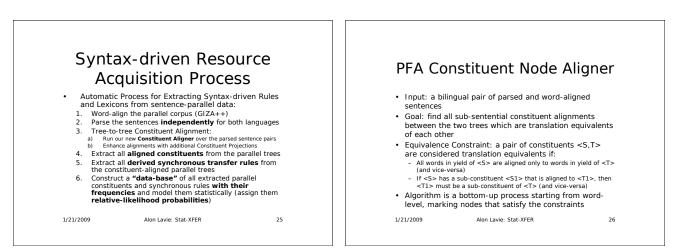


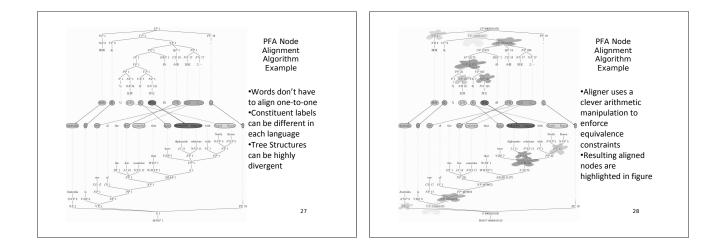


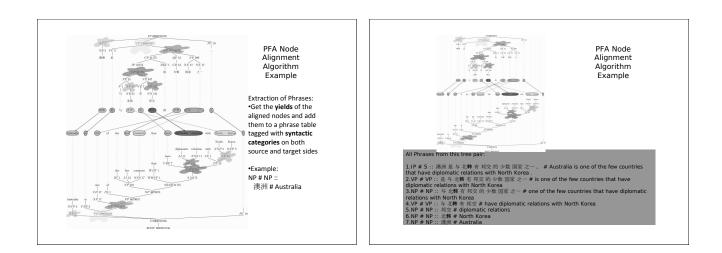


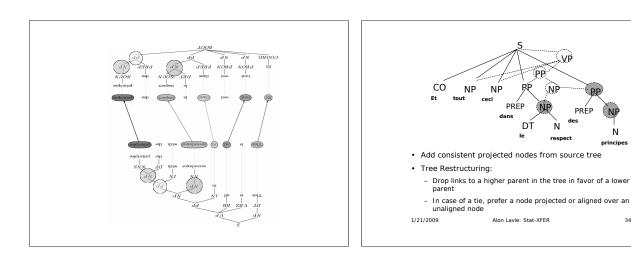

	le Rules developed)
{NP1,2} ;;SL: \$MLH ADWMH ;;TL: A RED DRESS	{NP1,3} ;;SL: H \$MLWT H ADWMWT ;;TL: THE RED DRESSES
NP1::NP1 [NP1 AD] -> [AD] NP1] ((X2::Y1) (X1::Y2) ((X1 def = -) ((X1 status) =< absolute) ((X1 num) = (X2 num)) ((X1 num) = (X2 gen)) (X0 = X1))	NP1::NP1 [NP1 "H" AD] -> [AD] NP1] ((X3::Y1) (X1:Y2) (X1 def) = +) (X1 status) =c absolute) (X1 status) =c absolute) (X1 num) = (X3 num)) (X1 gen) = (X3 gen)) (X0 = X1))



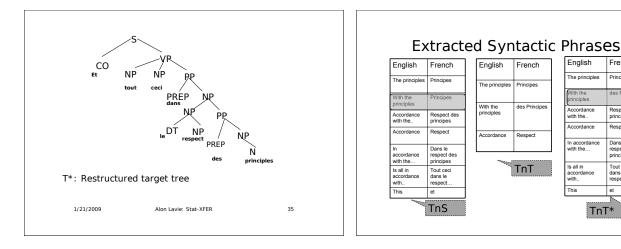


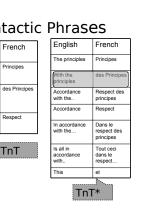






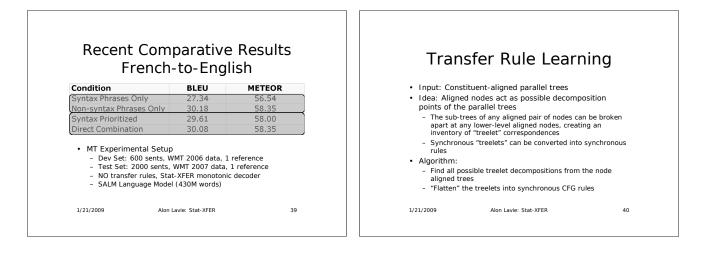
- The Tree-to-Tree (T2T) method is high precision but
- suffers from low recall Alternative: **Tree-to-String** (T25) methods (i.e. [Galley et al., 2006]) use trees on ONE side and project the nodes based on word alignments
 - High recall, but lower precision
- Recent work by Vamshi Ambati [Ambati and Lavie, 2008]: combine both methods (**T2T***) by seeding with the T2T correspondences and then adding in additional consistent projected nodes from the T2S method
- Can be viewed as restructuring target tree to be maximally isomorphic to source tree
- Produces richer and more accurate syntactic phrase tables that improve translation quality (versus T2T and T2S)

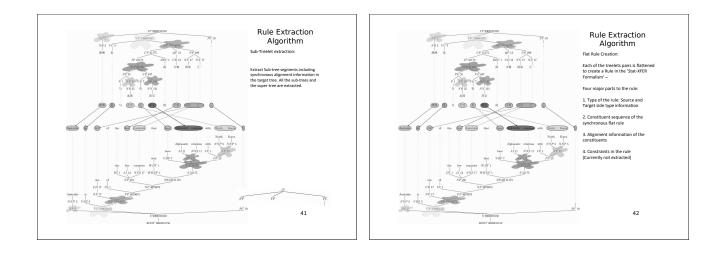

1/21/2009 Alon Lavie: Stat-XFER

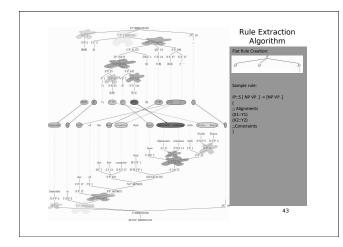

TnS vs TnT Comparison French-English

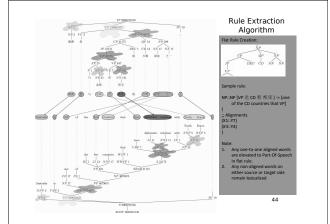
TYPE	Total	TnS	%	TnT	%	0%
ADJP	600104	412250	68.6	176677	29.4	90.7
ADVP	1010307	696106	68.9	106532	10.5	83.1
NP	11204763	8377739	74.7	4152363	37.1	93.8
VP	4650093	2918628	62.7	238659	5.1	67.9
PP	3772634	2766654	73.3	842308	22.3	89.4
S	2233075	1506832	67.4	248281	11.1	94.5
SBAR	912240	591755	64.8	42407	4.6	91.9
SBARQ	19935	9084	45.5	7576	38	99.6

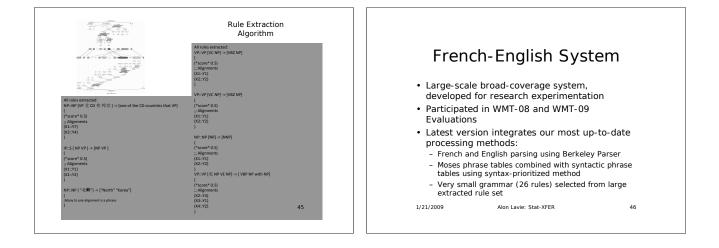
31

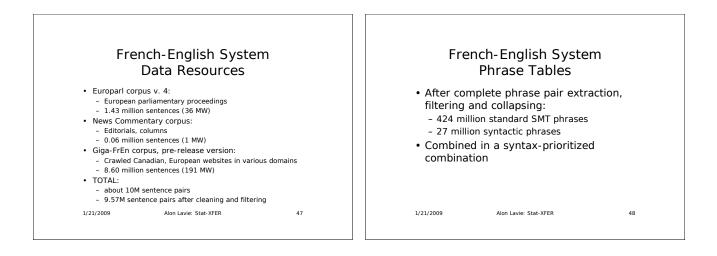


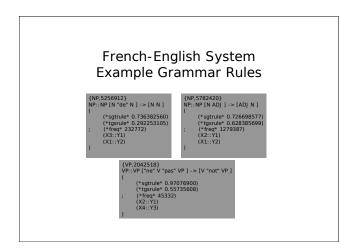

Ν

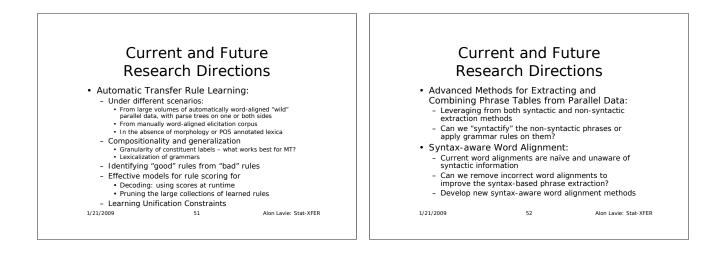

principes

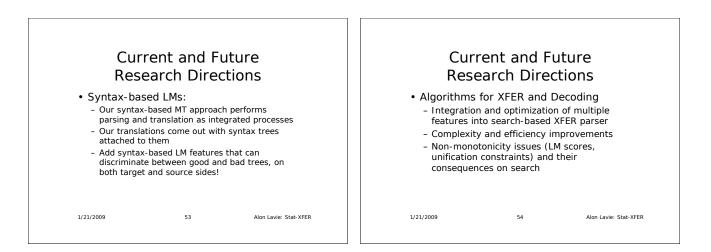

34

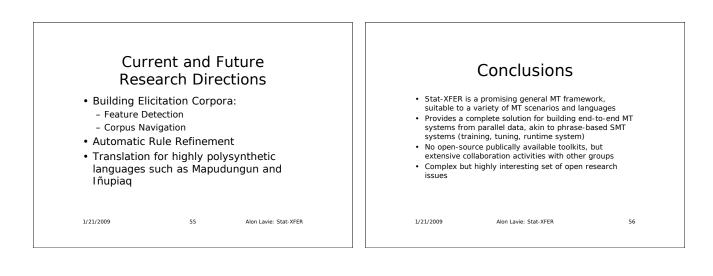

Comparative Res French-to-Engli		Combining Syntactic and Standard Phrase Tables
Xfer-TnS 26.57 27.02 57 Xfer-TnT 21.75 22.23 54 Xfer-TnT" 27.34 27.76 57	TEOR 4.68 1.05 82 4.13	 Recent work by Greg Hanneman, Alok Parlikar and Vamshi Ambati Syntax-based phrase tables are still significantly lower in coverage than "standard" heuristic-based phrase extraction used in Statistical MT Can we combine the two approaches and obtain superior results? Experimenting with two main combination methods: Direct Combination: Extract phrases using both approaches and then jointly score (assign ME probabilities) them Prioritized Combination: For source phrases that are syntactic - use the syntax-extracted method, for non-syntactic source phrases - take them from the "standard" extraction method Direct Combination appears to be slightly better so far Grammar builds upon syntactic phrases, decoder uses both
1/21/2009 Alon Lavie: Stat-XFER	37	1/21/2009 Alon Lavie: Stat-XEEB 38

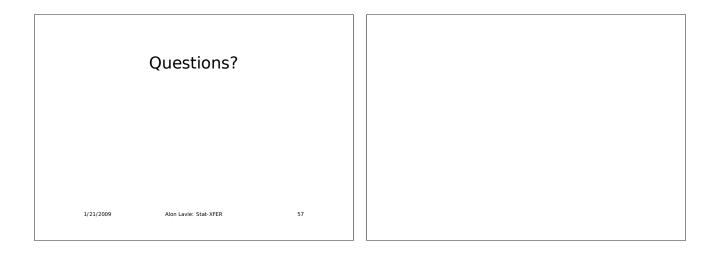


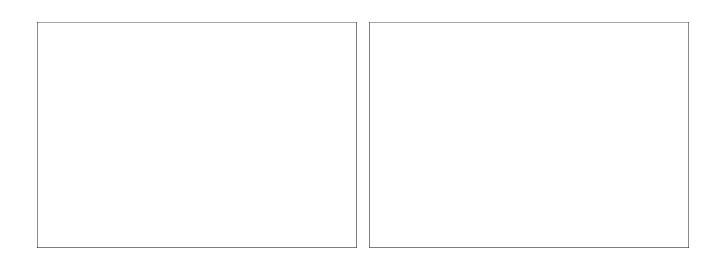


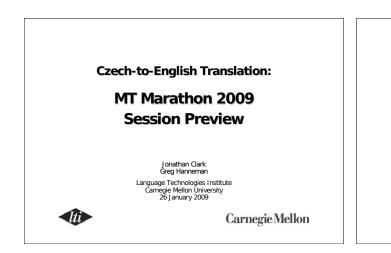


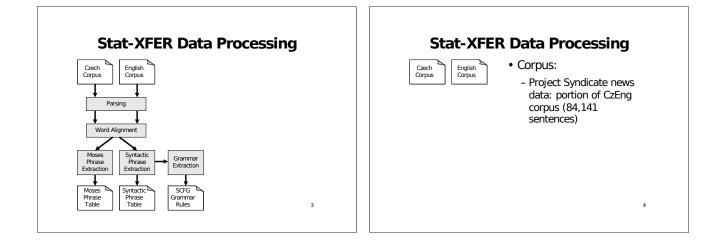


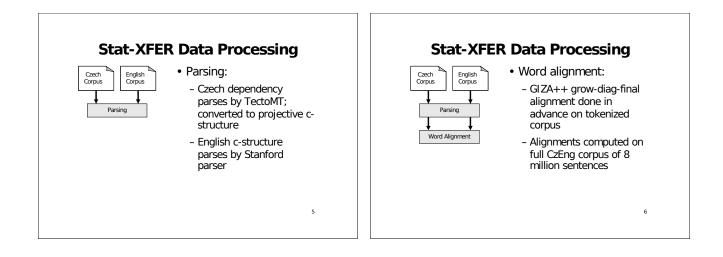


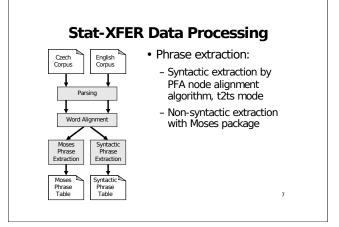


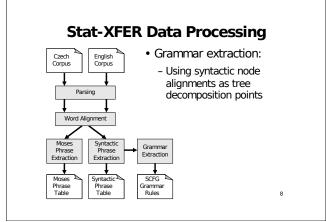

Standback S



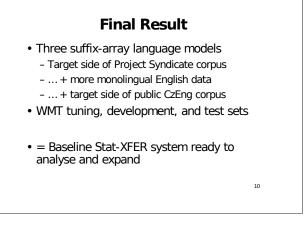


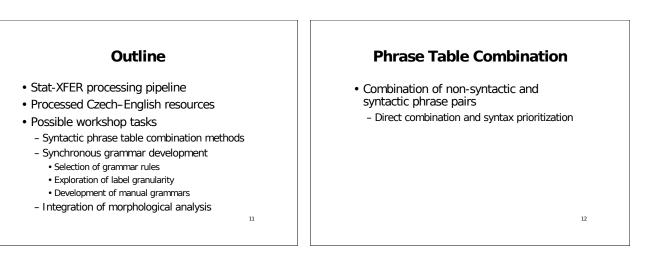

Outline


- Stat-XFER processing pipeline
- Processed Czech-English resources
- Possible workshop tasks
 - Syntactic phrase table combination methodsSynchronous grammar development


2

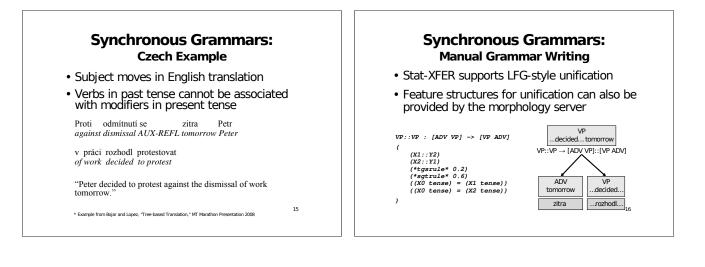
- Selection of grammar rules
- Exploration of label granularity
- Development of manual grammars
- Integration of morphological analysis

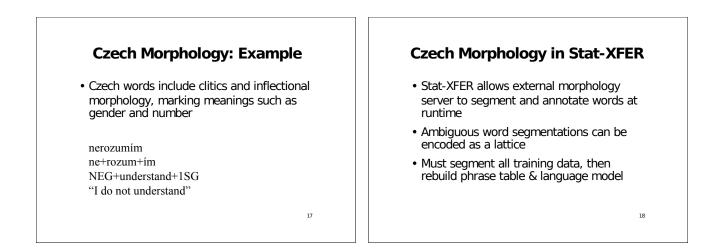




				1.4
			Final Res	ult
Г٧	vo n	hras	e tables, with o	counts:
1	NNS	NNS	rozumem	brains
3	NN	NN	rozumem	reason
4	NN	NN	rozumem	sense
1	NP	NP	rozumem	reason
1			rozumností	wisdom
1			rozumnou	sensible
1	ADJP	ADJP	rozumnou měrou jisté	reasonably certa
1	NP	NP	rozumnou politiku	sensible policy
_				
1	PHR	PHR	rozumem	brains
3	PHR	PHR	rozumem	reason
4	PHR	PHR	rozumem	sense
2	PHR	PHR	rozumem .	sense .
1	PHR	PHR	rozumem , a že	brains ; and that
1	PHR	PHR	rozumem , pokud	sense if
1	PHR	PHR	rozumem , pokud ne	annan if nat

Synchronous Grammars: Rule Selection


- Rule learning yields huge grammars
- Decoding with millions of abstract rules is intractable
- Open Question: How do we select the best grammar rules with regard to translation quality and decoding speed?


13

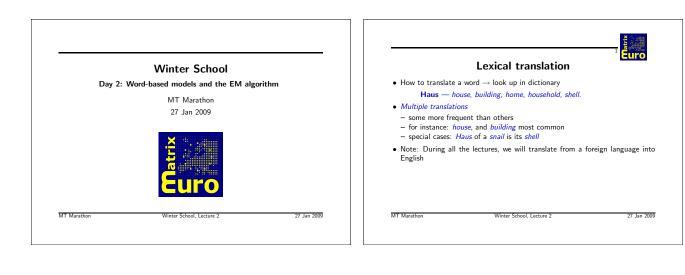
Synchronous Grammars: Label Granularity

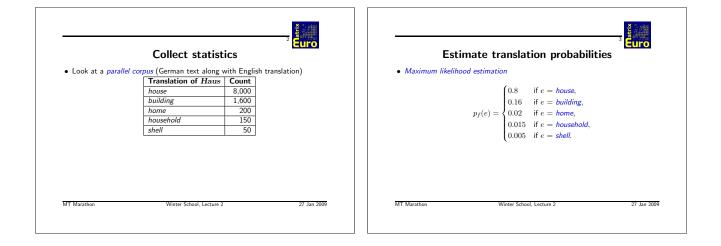
- Rule learning assigns non-terminal and POS labels from input parse trees
- Input labels are believed appropriate... - For a given single language
 - According to a particular theory of grammar
- Open Question: How do we expand or collapse these labels so that they are appropriate for translating a particular language pair?

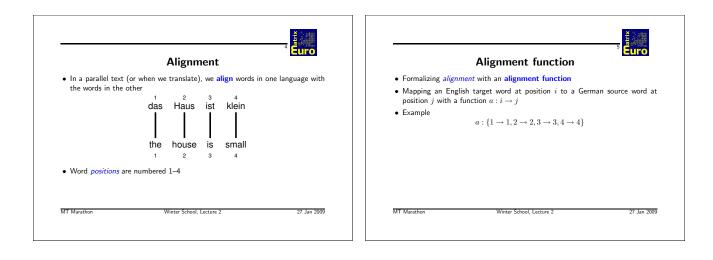
14

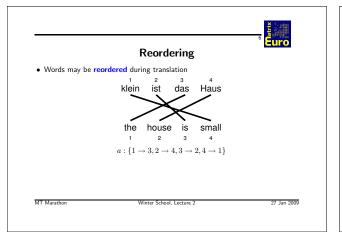
(Your I dea Here)	
• Any ideas about applying the statistical transfer framework to Czech–English translation are welcome!	
19	

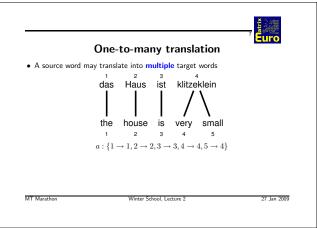
		Outline	ع ا ^ن ان	FAL
f	TectoMT for Plaintext Freaks	'A ⁻	n: Large-scale rich NLP. ents: CzEng and Czech monolingual corpus parsed	
Ondřej Bojar bojar@ufal.mff.cuni.cz Institute of Formal and Applied Linguistics Faculty of Mathematics and Physics Charles University, Prague		- Caveats:	Vhich bits of TectoMT you need. Mind your NFS. g someone else's code.	
		Application	ns: Suggestions for the MT Marathon week.	
Jan 26, 2009	TectoMT for Plaintext Freaks	Jan 26, 2009	TectoMT for Plaintext Freaks	1

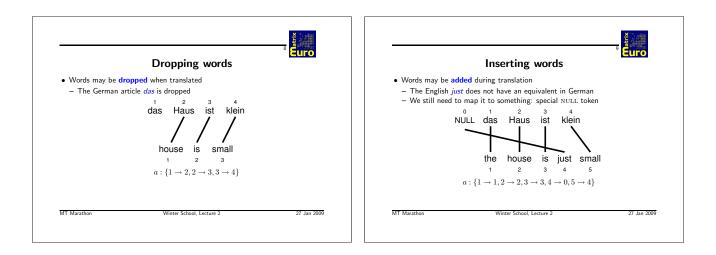

Motivati	on	ÚFAL	Achievements	ÚFA
TectoMT is gre	eat:		Sun Grid Engine on 40 4-CPU	•
• Bindings to	many tools (taggers, parsers, aligners, .).	We were able to annotate big (Czech monolingual corpus:
· Bindings bet	tween the tools.		Total sentences	51.6 mil.
 Easy to build 	d pipelines.		Sentences with a t-tree	51.1 mil.
• Easy to hack at various layers of NLP.			a-nodes, i.e. tokens	0.86 mld. (Gword)
2009 10 1100			t-nodes	0.60 mld. (G)
TectoMT was horrible:			files	> 1 mil.
			disk space in tree format (.tmt.g	gz) 72GB
 Rather verbo 	ose XML file format.		disk space in tab-delimited rich	
	y startup: init environment, then bash			l Corpus 73%, Web Collection 17%, gual Training Data 10%
launch "Perl	wrapped in btred" \Rightarrow pain to parallelize	e.		
 Inevitable to 	debug someone else's code!		We also parsed and aligned CzEng (of 7 million Czech-English parallel set	Bojar et al., 2008a), an extended versio ntences.
Jan 26, 2009	TectoMT for Plaintext Freaks	2	Jan 26, 2009 TectoMT fo	r Plaintext Freaks

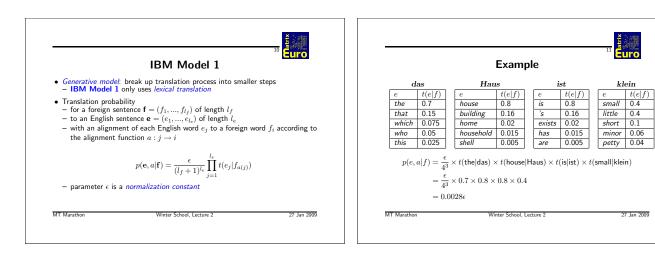

HowTo: Plaintext to TMT		HowTo: Scenarios on Grid
TectoMT's file format is called TMT:		1. Create filelist: find dir -name '*.tmt.gz' > filelist
 XML, an application of PML (Pajas and Štěpánek, 2005). ⇒ The first step needed is to wrap plaintext with XML tags. 		 2. Submit parallel execution of a TectoMT scenario: tools/cluster_utils/qrunblocks \ filelist \ "Miscel::SuicideIfMemFull Miscel::SuicideIfDiskFull Block1 Block2" \ jobs 20attempts 200 \ finished-contains "SCzechT" Suicides protect your environment. attempts restart your jobs after suicides or random deaths. finished-contains skips files that seem to contain the
E.g. tools/format_convertors/czeng07_to_tmt/czeng07_to_tmt.pl.		desired bit.
 Avoid > 50 to 100 sentences in a file. Avoid > 1000 files in a directory. 		Jobs run independently in the background.Independent log files (contain stdout).
\Rightarrow Clever convertors create nested directory structure.		
Jan 26, 2009 TectoMT for Plaintext Freaks	1	Jan 26, 2009 TectoMT for Plaintext Freaks 5

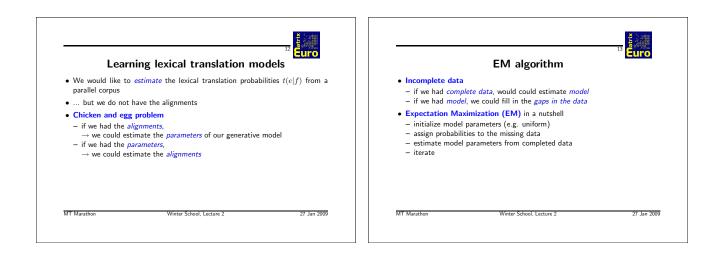

	Escape the Devillish XM KML yourself, make use of TectoM		qrunblocks s		
 Implement a simple block to print information to stdout. Submit parallel printing, e.g.: tools/cluster_utils/qrunblocks \ filelist \ "Print::Factored" \ jobs 20no-save \ join d_output 		out.	 Current workarounds: Reduce the number of jobs. Spread your files to many NFS servers, e.g.: /net/cluster/COMPUTER/tmp/ for various computers ⇒ inefficient processing of non-local files. Ultimate solution: 		
 no-save avoids saving TMT files, join waits for all the jobs to succeed and joins their stdouts preserving file order. 			 Know which files are local to a node. Submit jobs only to nodes with unfinished files. Jobs themselves figure out which (local) files need to be processed. 		
Jan 26, 2009	TectoMT for Plaintext Freaks	6	Jan 26, 2009	TectoMT for Plaintext Freaks	

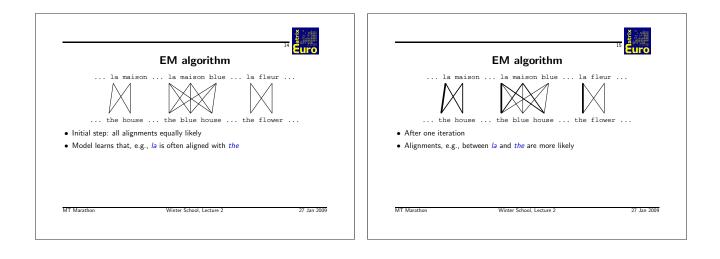

Debugging Someone Else's Code UFAL • Your particular data may crash some of the TectoMT blocks.	Suggested Applications U NLP hacking: V		
Debugging with huge datasets is slow or impossible.Need to send a small bug report if unable to fix the bug yourself.	 Remove useless case markings, insert fake articles and preps: English ^{Perl} Czenglish ^{ISI ReWrite} English (Cuřín, 2006) 		
 Find one of the problematic files (e.g. study qrunblocks logs). Apply auto-diagnose: \$TMT_ROOT/tools/tests/auto_diagnose.plcleanup \ file.tmt.gz targetdir 'block1 block2' 	 Move verbs to the end of the clause: English ^{TectoMT}/_→ Hinglish ^{Moses}/_→ Hindi (Bojar et al., 2008b) We needed [~]230 lines of code, SVO→SOV alone is 12 lines. Truecasing based on names as marked by a lemmatizer/NER. 		
 Run the test as instructed: ./targetdir/test.sh Or simply send the targetdir to the assumed author. Auto-diagnose finds the first crashing sentence, the first crashing block from the scenario, and construct a TMT file with just the sentence. The test.sh is just the command line to run the minimized test. 	 Feature fishing: Rich features for your favourite MT: Highlight non-local information, e.g. subject-verb agreement: Cattalked →talked+sg vs. Catstalked →talked+pl More details in Thursday and Friday lectures. 		
Jan 26, 2009 TectoMT for Plaintext Freaks 8	Jan 26, 2009 TectoMT for Plaintext Freaks 9		

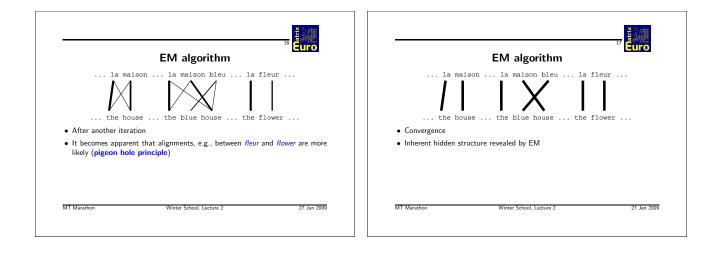

Summary UF	≧ L	References		Ű <mark>F</mark> ≩L
 TectoMT can be used on large data. Debugging is just a regular nightmare, not worse. Suggested workflow for your TectoMT Project at Marathon: Get a brilliant idea, find friends. Adapt tools/format_convertors to load your input. Setup your annotation scenario. Add your own blocks for NLP hacking. Use qrunblocks to annotate huge data. Export to plaintext. Train/apply/test your favourite MT system. 	A	CzEng 0.7: Parallel Corp Sixth International Langua ELRA. Ondřej Bojar, Pavel Straňá Proceedings of the 6th Inte NLP Tools Contest, Pune, Jan Cuřín. 2006. Statisti ÚFAL, MFF UK, Prague, 0 Petr Pajas and Jan Štěpár	nek. 2005. A Generic XML-Based Format for Structured Li ation to Prague DependencyTreebank 2.0. Technical Rep	s of the co, May. days. In N-2008) . thesis, nguistic
Jan 26, 2009 TectoMT for Plaintext Freaks	10	Jan 26, 2009	TectoMT for Plaintext Freaks	11

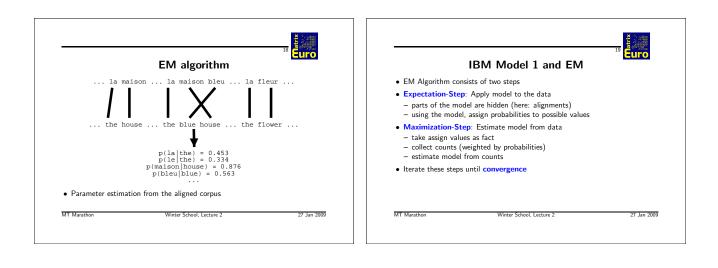


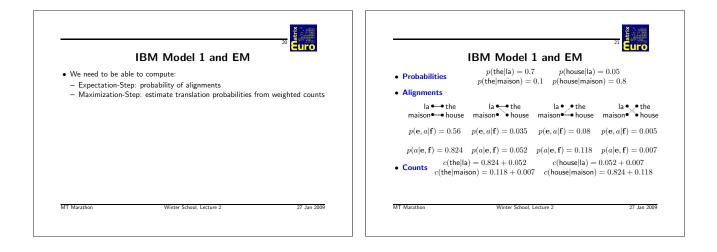


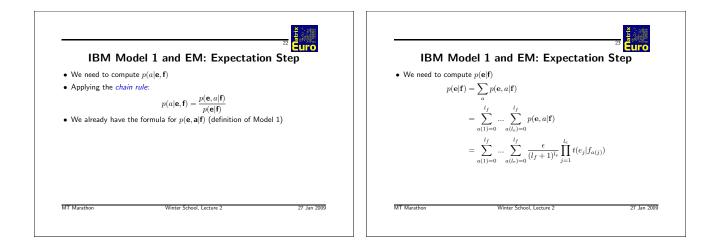


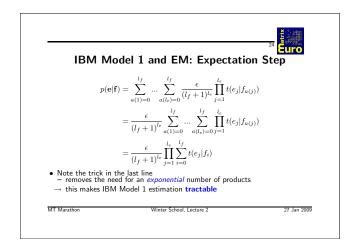

klein

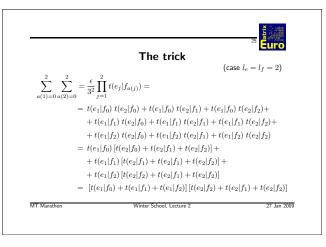

27 Jan 2009

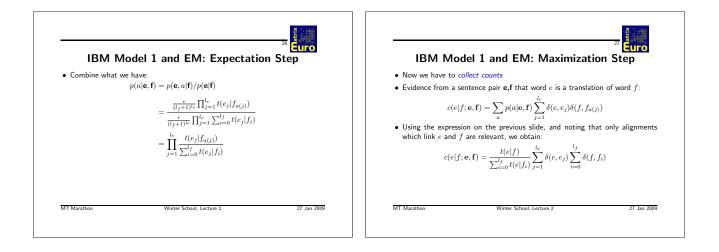


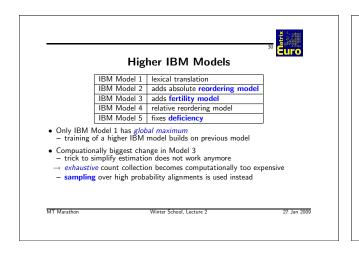


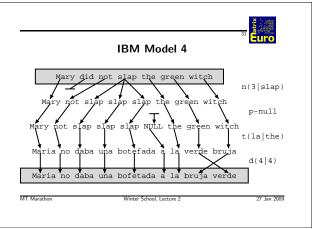


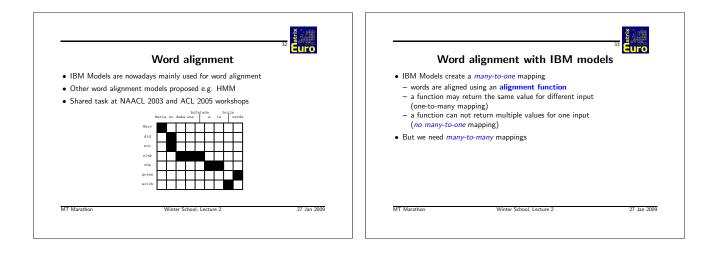


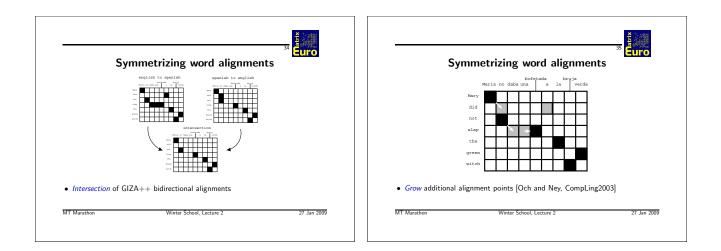


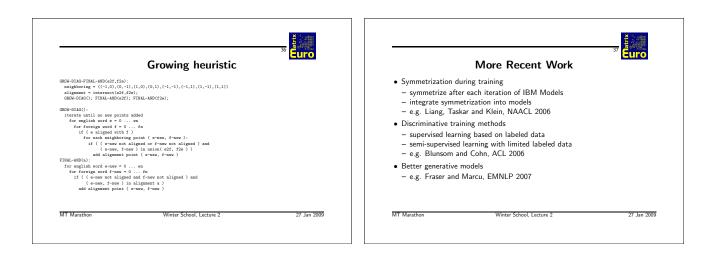


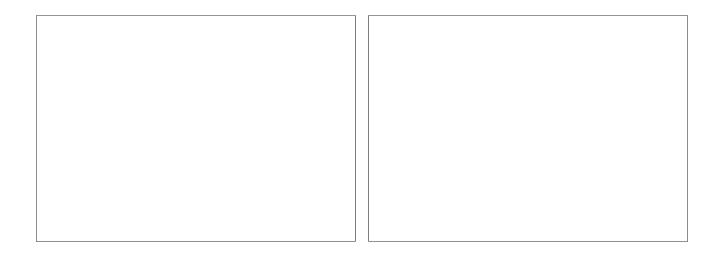


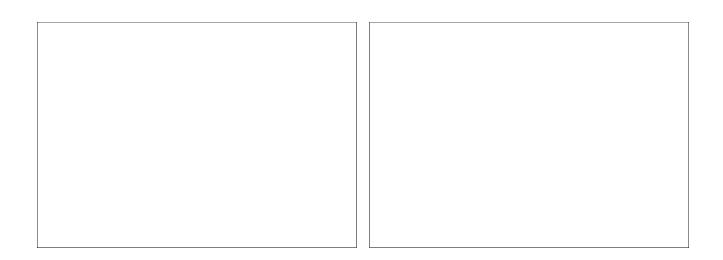


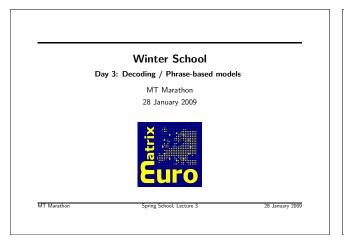


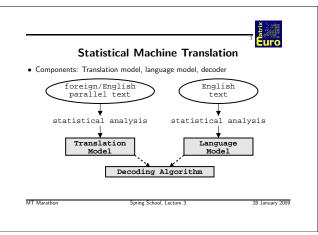


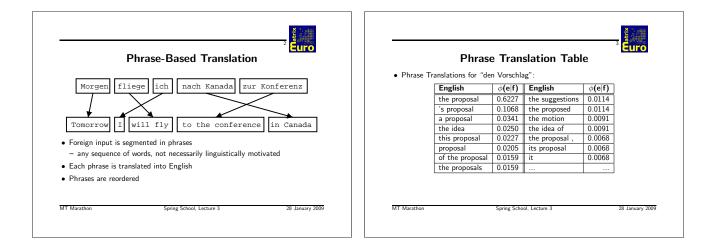


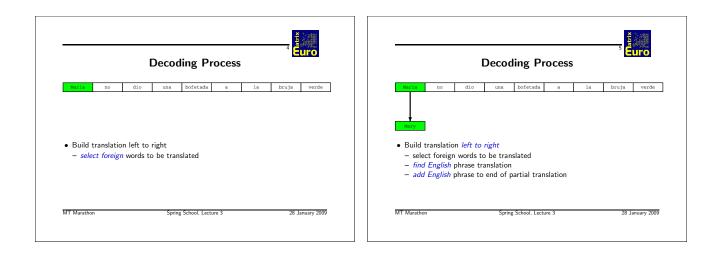


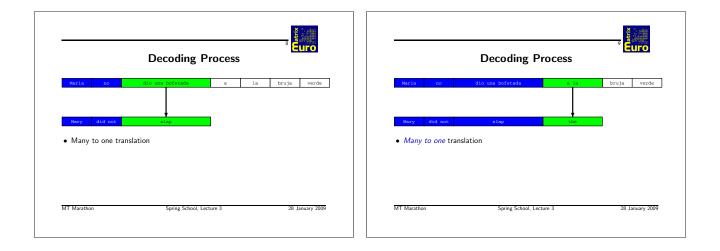


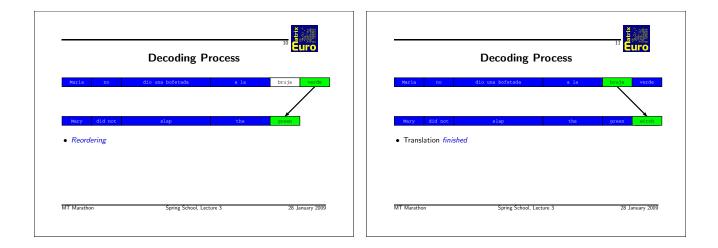


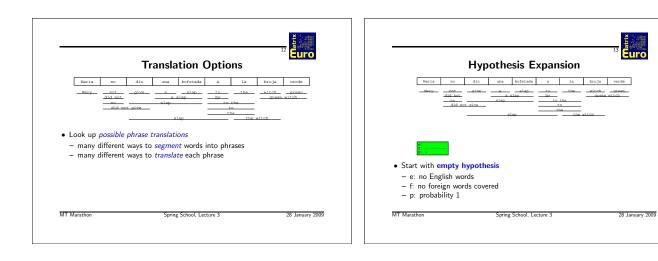


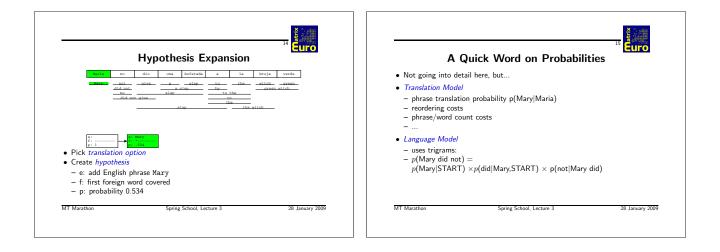


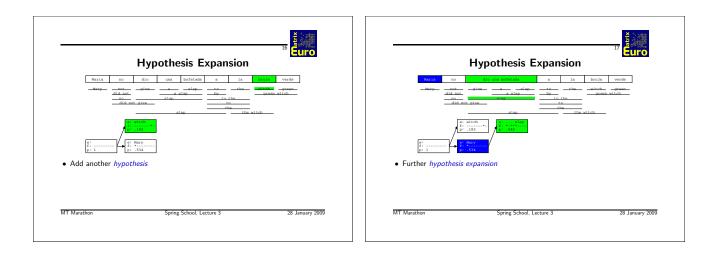


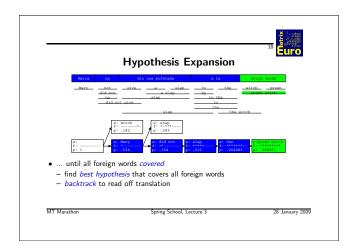


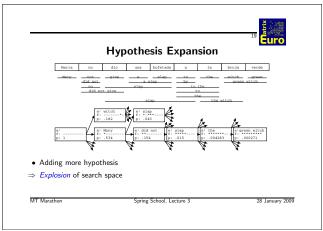


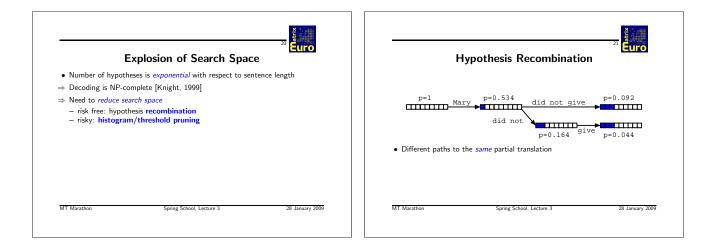


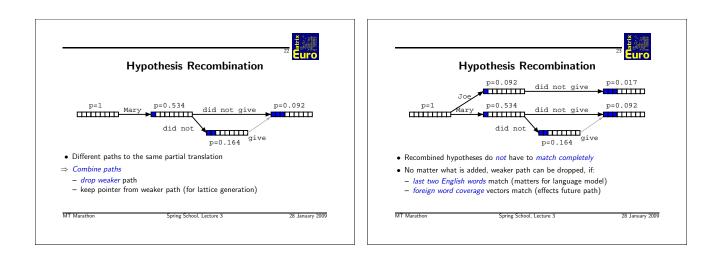


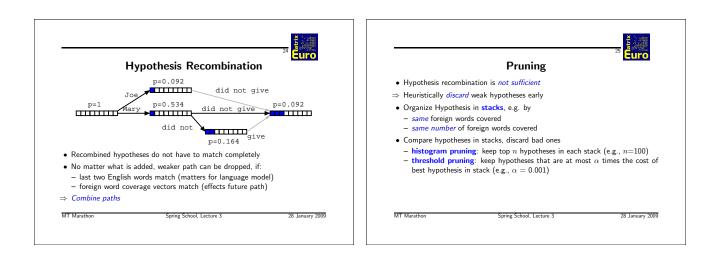


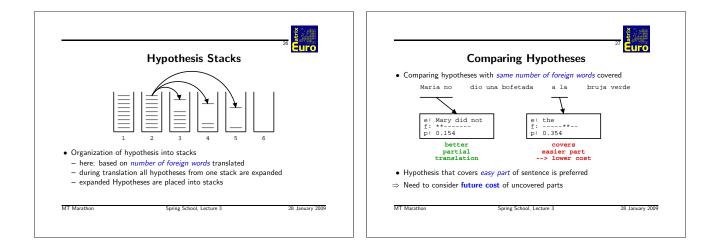


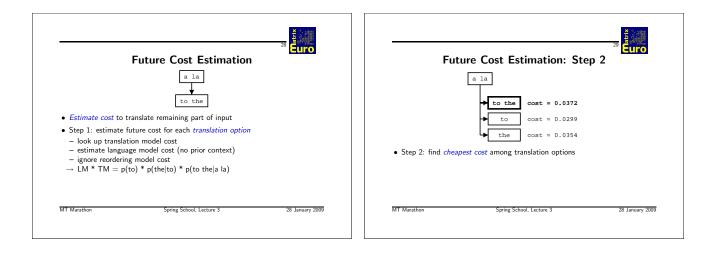


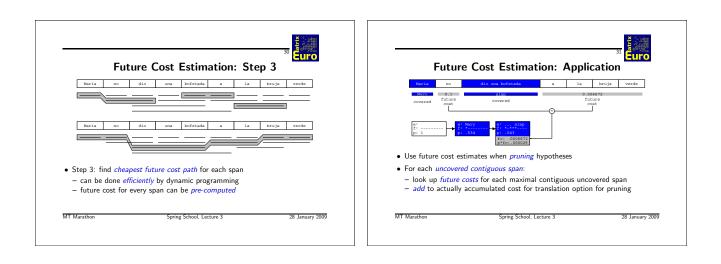


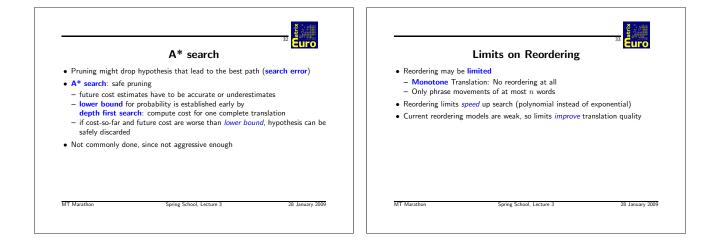


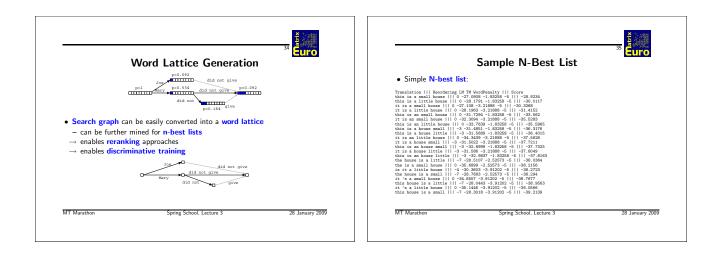


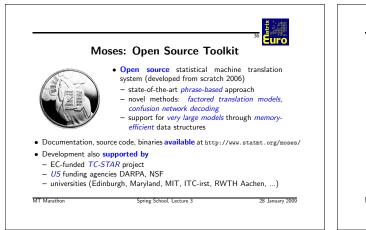


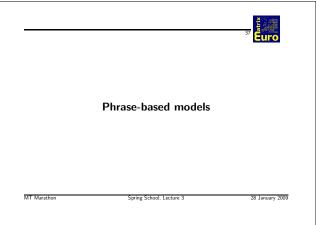


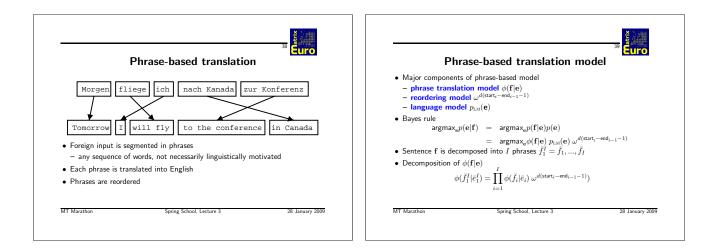


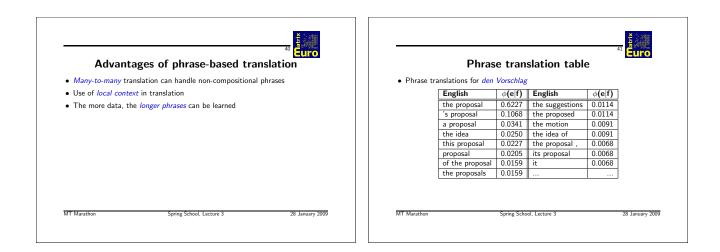


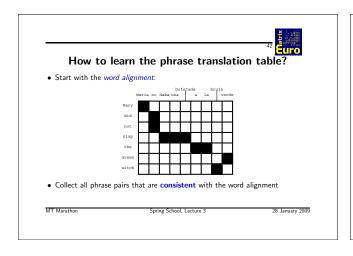




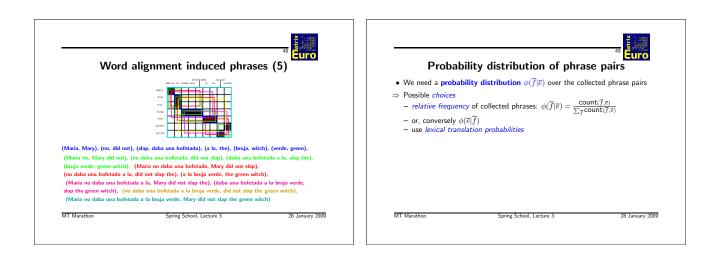


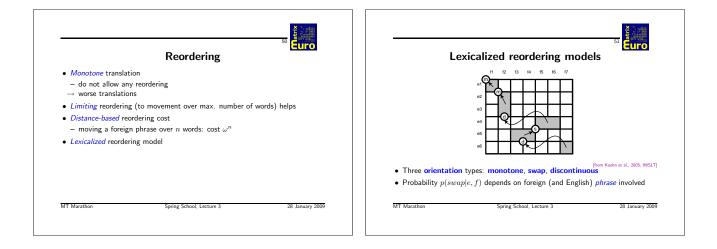


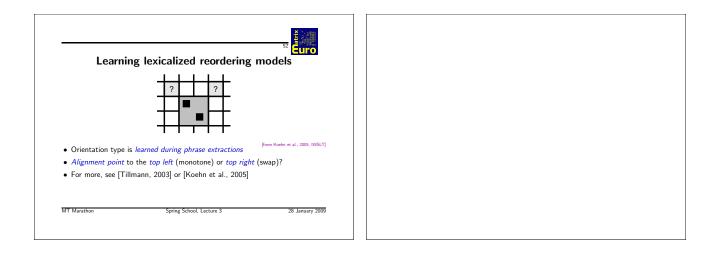


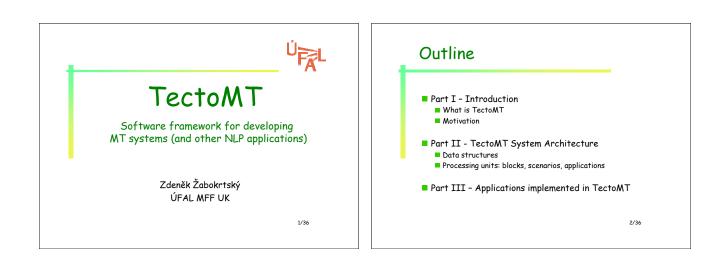


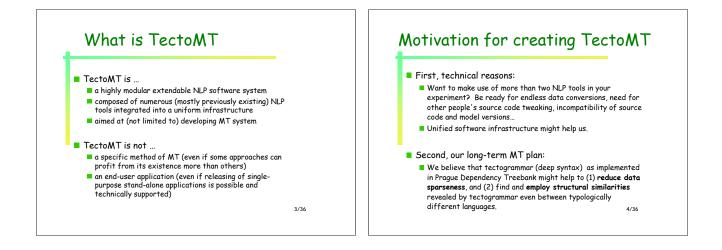


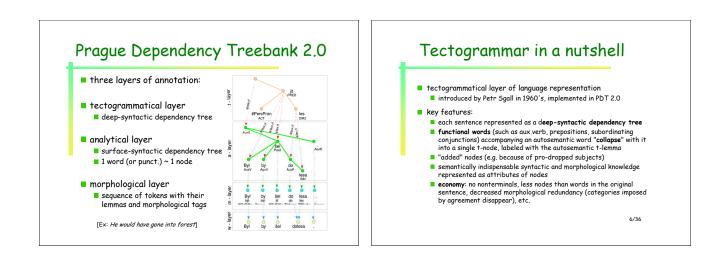


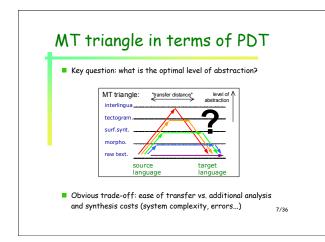


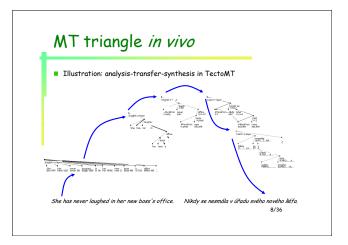


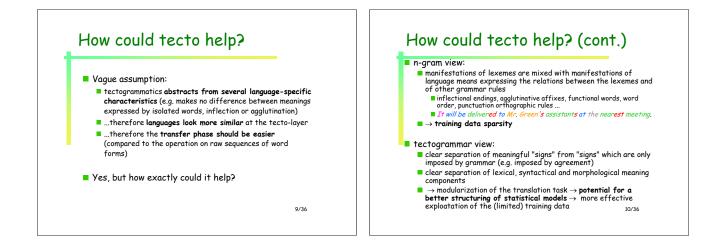


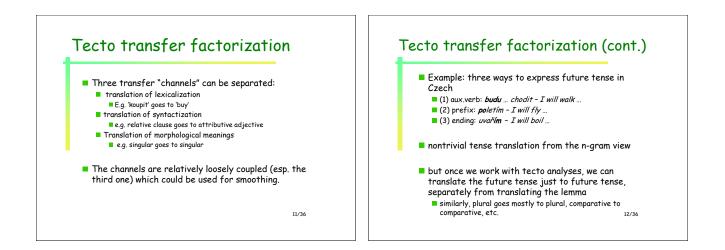


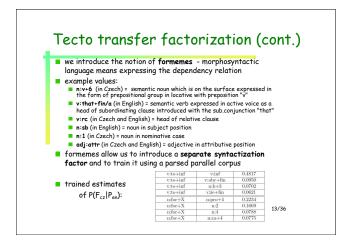


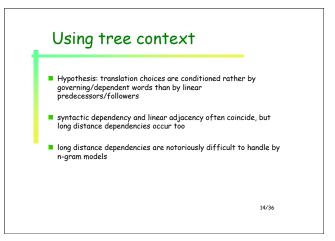


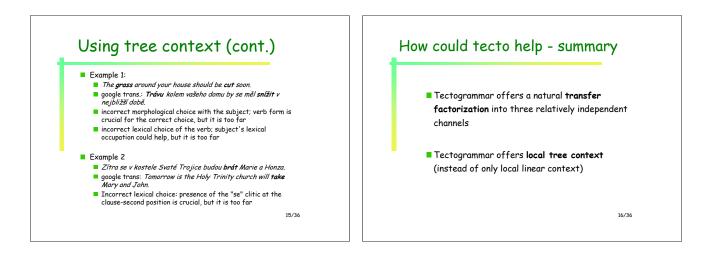


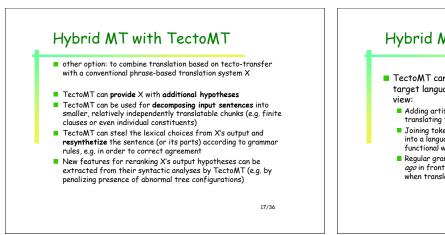


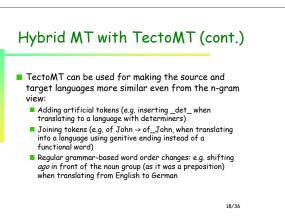


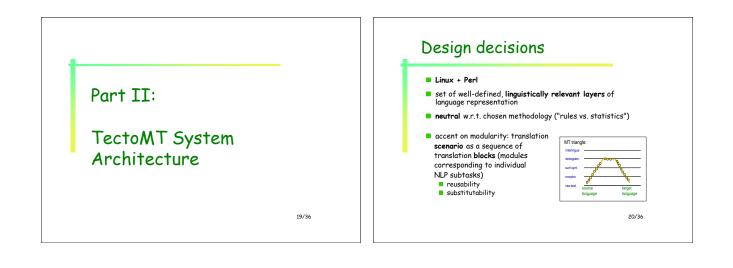


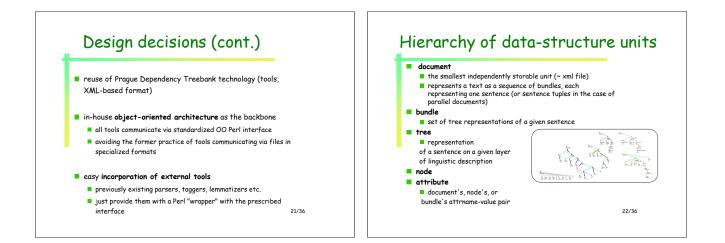


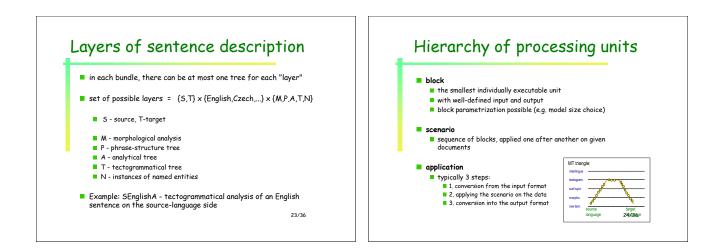




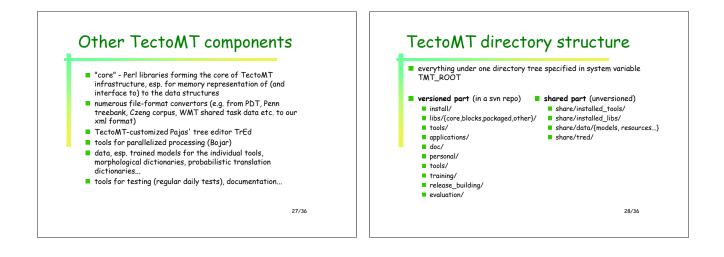


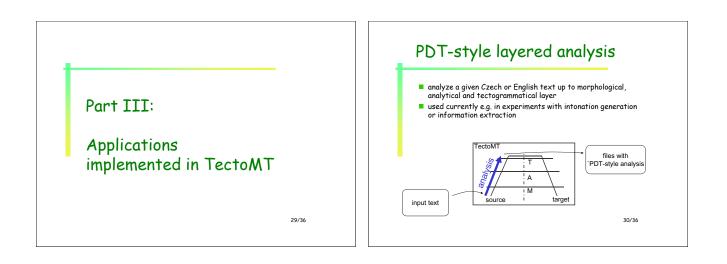


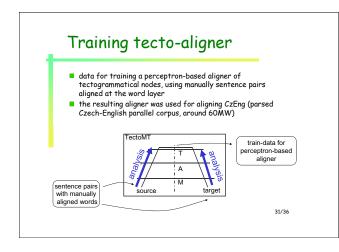


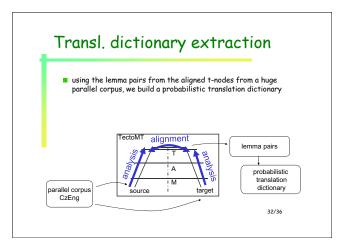


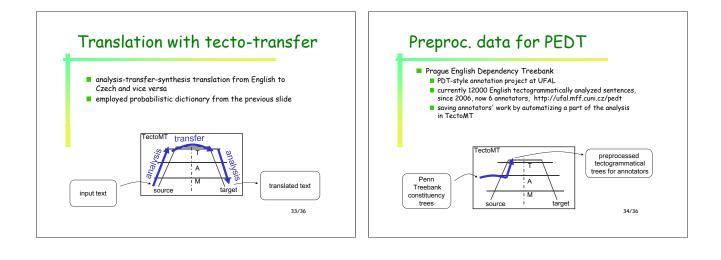


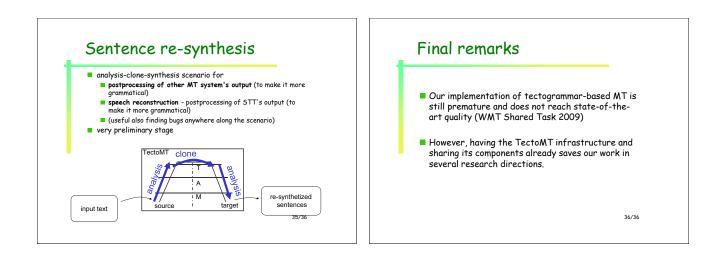






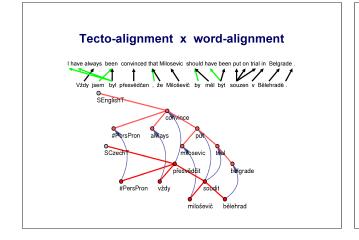

English-Czech tecto-based translation currently composes of roughly 80 blocks 25/36

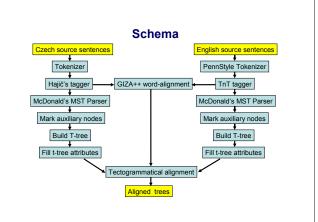




Analysis and alignment of parallel data in TectoMT

David Mareček marecek@ufal.mff.cuni.cz


MT Marathon 2009, January 26 - 30, Prague


Task and motivation

INPUT: set of English-Czech parallel sentences OUTPUT: set of aligned tectogrammatical trees (+ lower layers)

Advantage of tectogrammatical alignment over word alignment: Functional words (e.g. articles, prepositions, auxiliary verb 'be', modal verbs ...), that are often problematic to align (they can have different functions in different languages), don't have their own node in the tectogrammatical layer – we needn't align them. The tree structure may help.

- Usage: Extracting probabilistic translation dictionary from tectogramatically aligned parallel corpora

T-Aligner

- Greedy algorithm based on features
- A score is assigned to each possible connection (pair of Czech and English node)

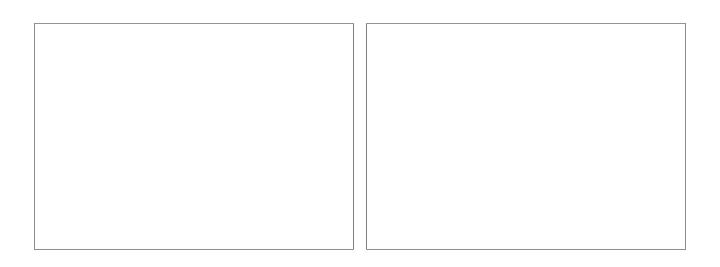
 $score(en, cs) = \sum w_i f_i(en, cs)$

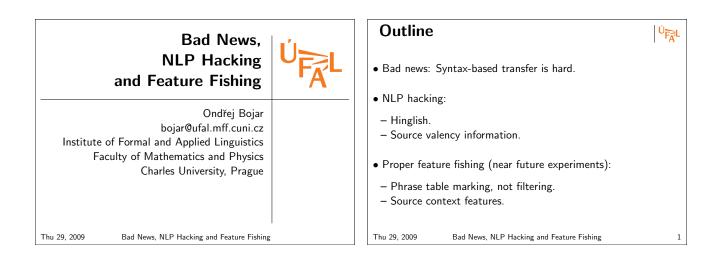
- The weights ${\bm w}$ of the features ${\bm f}$ were obtained by perceptron learning Examples of features:
- Iranslation probability between tectogrammatical lemmas
 similar position of nodes in the tree
 similarities in other attributes
 child/parent nodes similarities
- In each step, the algorithm finds the pair with the highest score. If both the nodes are free and the score is higher than a threshold, we connect them. (only on-to-one connections are allowed)

Alignment evaluation

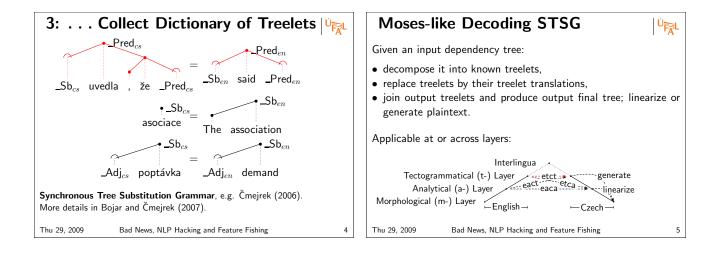
2500 parallel sentences (E-Books, newspaper articles, EU-laws) were manually aligned on the word level, each by two annotators.

The acquired word-alignment was then transferred to the tectogrammatical layer through the lex.rf references

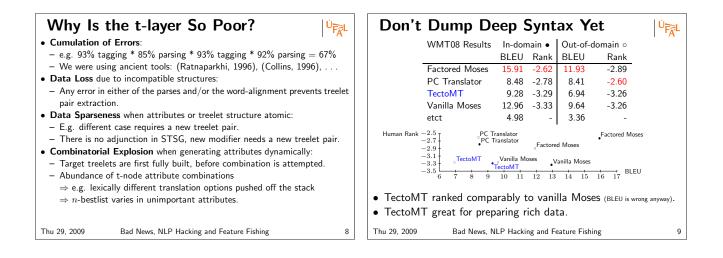

lex.rf – attribute of a tectogrammatical node, refers to the analytical node from which it acquired its lexical meaning.


Aligner	F-measure
Our T-aligner	88.5 %
GIZA++ word-alignment transferred to t-trees	85.7 %
Our T-aligner using also GIZA++ word-alignment	91.0 %
(Inter-annotator agreement)	94.8 %
Tectogrammatical alignment results	

References


David Mareček, Zdeněk Žabokrtský, Václav Novák: Automatic Alignment of Czech and English Deep Syntactic Dependency Trees. In Proceedings of EAMT08, Hamburg, Germany, 2008

Franz Josef Och, Hermann Ney: A Systematic Comparison of Various Statistical Alignment Models. Computational Linguistics 29(1), p.19-51, 2003



In Reality, t-nodes are not Ator	mic! 🛛	L	BLEU Sco
t-nodes have ~25 attributes: t-lemma, functor, gender, person, tense, iterativeness, dis	oositional modality,		Identical decode
Upper Bound on MT Quality via t-layer:			
 Analyse Czech sentences to t-layer. Optionally ignore some node attributes. Generate Czech surface. Evaluate BLEU against input Czech sentences. 	generate -t)-parse Czech -Czech-		Layers \ Langua epcp, atomic no eaca, atomic no etct, generated a
Full automatic t-layer, no attributes ignored Ignore sentence mood (assume indicative) Ignore verbal fine-grained info (resultativeness,) Ignore verbal tense, aspect,	BLEU 36.6±1.2 36.6±1.2 36.6±1.2 24.9±1.1		etct, atomic nod
Ignore all grammatemes \Rightarrow Node attributes obviously very important.	5.3±0.5		t: =
Thu 29, 2009 Bad News, NLP Hacking and Feature Fishing		6	Thu 29, 2009 B

BLEU Scores for STSG	Transfe	r Ú _{Fa} l
• Identical decoder, only the structure	+ node labe	els differ.
Layers \setminus Language Models	no LM	with LM
epcp, atomic nodes	$8.65{\pm}0.55$	$10.90 {\pm} 0.63$
eaca, atomic nodes	$6.59{\pm}0.52$	$8.75{\pm}0.61$
etct, generated attrs, fixed structure	$5.31{\pm}0.53$	$5.61 {\pm} 0.50$
etct, atomic nodes, all attributes	$1.61{\pm}0.33$	$2.56{\pm}0.35$
etct, atomic nodes, just t-lemmas	$0.67{\pm}0.19$	-
t: a:	p:	
Thu 29, 2009 Bad News, NLP Hacking and F	eature Fishing	7

NLP Hacking vs. Feature Fishing	NLP Hacking: Hinglish
NLP Hacking:	Bojar et al. (2008) use TectoMT for rule-based reordering:
 Hardcoded behaviour based on some (rich/deep) feature. Well motivated but not well built into general search. Usually equivalent to deterministic modification of the source language. 	 Parse English using MST parser (McDonald et al., 2005), Move finite verbs to the end of the clause, Transform prepositions to postpositions. Hinglish→Hindi translation using Moses:
Feature Fishing:	• Baselines: Distance-based or lexicalized reordering,
= Search properly considers additional features.	• Improved: (Rule-base Reord. and) Suffix LM with + Optional
• Each feature softly steers the search.	EILMT TIDES
Data (training/optimization) decide which feature is important.The research goal is to have a few most informative features.	Baseline Moses, Distance Reordering 18.88±2.05 10.06±0.76 Baseline Moses, Reordering Using en+hi Forms 19.77±2.03 10.95±0.75 Suffix LM+Reord 20.09±2.18 10.18±0.74 Rule-based Reordering + Suffix LM+Reord 21.01±2.18 10.29±0.69
Feature Fishing \sim Discriminative Training; also tomorrow.	Join TectoMT tutorial lab session for SVO—SOV in 12 lines of Perl.
Thu 29, 2009 Bad News, NLP Hacking and Feature Fishing 10	Thu 29, 2009 Bad News, NLP Hacking and Feature Fishing 11

NLP	Hacking: Val	ency Information	Ú F∡L	Fishing:	: Phrase Table Marking	
# The as To produc the said assoc Remember the assoc. sain Details and furthe • Should	ssociation said domestic ce "verbose tokens": said said- domestic grew de r to back-off with reg d domestic demand grew in S er explanation: "Alternative decodir	mand grew grew said in grew September gular tokens: eptember g paths" in Friday lecture. nder verbs (verb revealed). er prepositions.		 Instead of with an ad MERT (se marked entineuropa in europas in europa , E.g. mark ph confirmed consistent consistent 	traints always hurt. Also e.g. Ambati and Lavie (f dropping phrase/treelet table entries, ma dditional score/feature. ee Friday class) will decide how much she tries be penalized. .n europe 0.829007 0.207955 0.801493 0.492402 2.7 europe 0.0251019 0.066211 0.0342506 0.0079563 2. in europe 0.011371 0.207955 0.207843 0.492402 2 mases in phrase table: by a printed/on-line dictionary, with surface syntax, with deep syntax and t-alignment Václav Novák, happy to join others.	rk them ould the
Thu 29, 2009	Bad News, NLP Ha	cking and Feature Fishing	12	Thu 29, 2009	Bad News, NLP Hacking and Feature Fishing	13

Fishing: Source-Context Features	Summary
Some scores phrase translations could be computed on-line:	• Syntax as a hard constraint is bad.
 Create translation options for a span as usual. Feed them to an external scorer. Obtain an additional score for each translation option. Such "dynamic scores" can condition on source sentence context: syntactic structure, 	 More so, if your tagger+parser+ are not perfect. Rich annotation is dangerous when not treated carefully. Occam's razor: think twice before adding an attribute. Avoid data sparseness, always provide a back-off. Avoid complex models, they are hard to tune (set parameters).
• detailed attributes (e.g. case), without causing data sparseness. Consider "John loves Mary":	TectoMT is great for rich annotation and NLP hacking.
 Translation options for Mary: Marie_{nom} Marii_{acc,dat}, Given "Mary" is object, "Marii_{acc,dat}" should be promoted. Better than relying on the presence of 2-word phrase "loves Mary" in the phrase table. 	Feature fishing for Moses proposed:
Me and Kamil Kos are looking for collaborators. The "backdoor" from Moses to arbitrary external scorer implemented, we need to train the scorer. Inspired by Carpuat and Wu (2007) and Trevor Cohn (pers.comm.).	Marking phrases compatible/confirmed by an additional source.Dynamic source-context features.
Thu 29, 2009 Bad News, NLP Hacking and Feature Fishing 14	Thu 29, 2009 Bad News, NLP Hacking and Feature Fishing 15

References	Ú _{FA} L
Vamshi Ambati and Alon Lavie. 2008. Improving Syntax-Driven Translation Models by Re-structurir and Nonisomorphic Parse Tree Structures. In <i>Proc. of AMTA</i> , pages 235–244.	ng Divergent
Ondřej Bojar and Martin Čmejrek. 2007. Mathematical Model of Tree Transformations. Project E Deliverable 3.2, ÚFAL, Charles University.	Euromatrix -
Ondréj Bojar, Pavel Straňák, and Daniel Zeman. 2008. English-hindi translation in 21 days. In Pri the 6th International Conference On Natural Language Processing (ICON-2008) NLP Tools Contest, NLP Association of India.	
Marine Carpuat and Dekai Wu. 2007. Improving statistical machine translation using word sense disa In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Pro Computational Natural Language Learning (EMNLP-COULL), Prague, Czech Republic.	
Martin Čmejrek. 2006. Using Dependency Tree Structure for Czech-English Machine Translation. F ÚFAL, MFF UK, Prague, Czech Republic.	Ph.D. thesis,
Michael Collins. 1996. A New Statistical Parser Based on Bigram Lexical Dependencies. In Procee 34th Annual Meeting of the Association for Computational Linguistics, pages 184–191.	edings of the
Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-Projective Dependency F Spanning Tree Algorithms. In Proceedings of HLT/EMNLP 2005, October.	Parsing using
Adwait Ratnaparkhi. 1996. A Maximum Entropy Part-Of-Speech Tagger. In Proceedings of th Methods in Natural Language Processing Conference, University of Pennsylvania, May.	he Empirical
Thu 29, 2009 Bad News, NLP Hacking and Feature Fishing	16

TectoMT Tutorial

Jana Kravalová

Welcome at TectoMT Tutorial. This tutorial should take about 3 hours.

What is TectoMT

TectoMT is a highly modular NLP (Natural Language Processing) software system implemented in Perl programming language under Linux. It is primarily aimed at Machine Translation, making use of the ideas and technology created during the Prague Dependency Treebank project. At the same time, it is also hoped to facilitate and significantly accelerate development of software solutions of many other NLP tasks, especially due to re-usability of the numerous integrated processing modules (called blocks), which are equipped with uniform object-oriented interfaces.

Prerequisities

In this tutorial, we assume

- Your system is Linux
- Your shell is bash
- You have basic experience with bash and can read basic Perl

Installation and setup

• Checkout SVN repository. If you are running this installation in computer lab in Prague, you have to checkout the repository into directory /BIG (because bigger disk quota applies here):

```
cd ~/BIG
svn --username mtm co https://svn.ms.mff.cuni.cz/svn/tectomt_devel/trunk tectomt
```

• In tectomt/install/ run ./install.sh:

```
cd tectomt/install
./install.sh
```

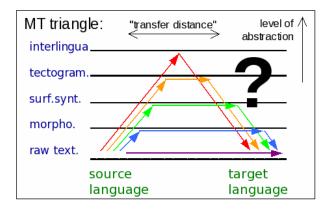
• In your .bashrc file, add line (or source the specified file every time before experimenting with TectoMT):

source ~/BIG/tectomt/config/init_devel_environ.sh

• In your .bash_profile file, add line

source .bashrc

TectoMT Architecture


Blocks, scenarios and applications

In TectoMT, there is the following hierarchy of processing units (software components that process data):

- The basic units are blocks. They serve for some very limited, well defined, and often linguistically interpretable tasks (e.g., tokenization, tagging, parsing). Technically, blocks are Perl classes inherited from TectoMT::Block, each saved in a separate file. The blocks repository is in libs/blocks/.
- To solve a more complex task, selected blocks can be chained into a block sequence, called also a scenario. Technically, scenarios are instances of TectoMT::Scenario class, but in some situations (e.g. on the command line) it is sufficient to specify the scenario simply by listing block names separated by spaces.
- The highest unit is called application. Applications correspond to end-to-end tasks, be they real end-user applications (such as machine translation), or 'only' NLP-related experiments. Technically, applications are often implemented as Makefiles, which only glue the components existing in TectoMT. Some demo applications can be found in applications.

This tutorial itself has its blocks in libs/blocks/Tutorial and the application in applications/tutorial.

Layers of Linguistic Structures

The notion of 'layer' has a combinatorial nature in TectoMT. It corresponds not only to the layer of language description as used e.g. in the Prague Dependency Treebank, but it is also specific for a given language (e.g., possible values of morphological tags are typically different for different languages) and even for how the data on the given layer were created (whether by analysis from the lower layer or by synthesis/transfer).

Thus, the set of TectoMT layers is a Cartesian product $\{S,T\} \times \{English, Czech, ...\} \times \{W, M, P, A, T\}$, in which:

- {S,T} distinguishes whether the data was created by analysis or transfer/synthesis (mnemonics: S and T correspond to (S)ource and (T)arget in MT perspective).
- {English,Czech...} represents the language in question
- {W,M,P,A,T...} represents the layer of description in terms of PDT 2.0 (W word layer, M morphological layer, A analytical layer, T tectogrammatical layer) or extensions (P phrase-structure layer).

Blocks in block repository libs/blocks are located in directories indicating their purpose in machine translation. *Example*: A block adding Czech morphological tags (pos, case, gender, etc.) can be found in libs/blocks/SCzechW_to_SCzechM/Simple_tagger.pm.

There are also other directories for other purpose blocks, for example blocks which only print out some information go to libs/Print. Our tutorial blocks are in libs/blocks/Tutorial/.

First application

Once you have TectoMT installed on your machine, you can find this tutorial in applications/tutorial/. After you cd into this directory, you can see our plain text sample data in sample.txt.

Most applications are defined in Makefiles, which describe sequence of blocks to be applied on our data. In our particular Makefile, four blocks are going to be applied on our sample text: sentence segmentation, tokenization, tagging and lemmatization. Since we have our input text in plain text format, the file is going to be converted into tmt format beforehand (the in target in the Makefile).

We can run the application:

make all

Our plain text data sample.txt have been transformed into tmt, an internal TectoMT format, and saved into sample.tmt. Then, all four blocks have been loaded and our data has been processed. We can now examine sample.tmt with a text editor (vi, emacs, etc).

- One physical tmt file corresponds to one document.
- A document consists of a sequence of bundles (<bundle>), mirroring a sequence of natural language sentences originating from the text. So, for one sentence we have one <bundle>.
- Each bundle contains tree shaped sentence representations on various linguistic layers. In our example sample.tmt we have morphological tree (SEnglishM) in each bundle. Later on, also an analytical layer (SEnglishA) will appear in each bundle as we proceed with our analysis.
- Trees are formed by nodes and edges. Attributes can be attached only to nodes. Edge's attributes must be stored as the lower node's attributes. Tree's attributes must be stored as attributes of the root node.

Changing the scenario

We'll now add a syntax analysis (dependency parsing) to our scenario by adding three more blocks. Instead of

```
analyze:
```

```
brunblocks -S -o \
        SEnglishW_to_SEnglishM::Sentence_segmentation_simple \
        SEnglishW_to_SEnglishM::Penn_style_tokenization \
        SEnglishW_to_SEnglishM::TagMxPost \
        SEnglishW_to_SEnglishM::Lemmatize_mtree \
-- sample.tmt
```

we'll have:

```
analyze:
```

```
brunblocks -S -o \
        SEnglishW_to_SEnglishM::Sentence_segmentation_simple \
        SEnglishW_to_SEnglishM::Penn_style_tokenization \
        SEnglishW_to_SEnglishM::TagMxPost \
        SEnglishW_to_SEnglishM::Lemmatize_mtree \
        SEnglishM_to_SEnglishA::McD_parser_local \
        SEnglishM_to_SEnglishA::Fix_McD_Tree \
        SEnglishM_to_SEnglishA::Fill_afun_after_McD \
```

```
-- sample.tmt
```

Note: Makefiles use tabulators to mark command lines. Make sure your lines start with a tabulator (or two tabulators) and not, for example, with 4 spaces.

After running

make all

we can examine our sample.tmt again. Really, an analytical layer SEnglishA describing a dependency tree with analytical functions (<afun>) has been added to each bundle.

Blocks can also be parametrized. For syntax parser, we might want to use a smaller but faster model. To achieve this, replace the line

SEnglishM_to_SEnglishA::McD_parser_local \

with

SEnglishM_to_SEnglishA::McD_parser_local TMT_PARAM_MCD_EN_MODEL=conll_mcd_order2_0.1.model \

You can view the trees in sample.tmt with TrEd by typing

tmttred sample.tmt

Try to click on some nodes to see their parameters (tag, lemma, form, analytical function etc).

Note: For more information about tree editor TrEd, see TrEd User's Manual.

If you are not familiar with Makefile syntax, another way of running a scenario in TectoMT is using .scen file (see applications/tutorial.scen). This file lists the blocks to be run – one block on a single line.

eval \\${TMT_ROOT}/tools/format_convertors/plaintext_to_tmt/plaintext_to_tmt.pl English sample.txt brunblocks -S -o --scen tutorial.scen -- sample.tmt

Finally, yet another way is to use a simple bash script (see applications/tutorial/run_all.sh):

./run_all.sh

Adding a new block

The linguistic structures in TectoMT are represented using the following object-oriented interface/types:

- document TectoMT::Document
- bundle TectoMT::Bundle
- node TectoMT::Node

You can get TectoMT automatically execute your block code on each document or bundle by defining the main block entry point:

- sub process_document run this procedure on each document
- sub process_bundle run this procedure on each bundle (sentence)

Each block must have exactly one entry point.

We'll now examine an example of a new block in file libs/blocks/Tutorial/Print_node_info.pm. This block illustrates some of the most common methods for accessing objects:

- my @bundles = \$document->get_bundles() an array of bundles contained in the document
- my \$root_node = \$bundle->get_tree(\$layer_name) the root node of the tree of the given type in the
 given bundle
- my @children = \$node->get_children() array of the node's children
- my @descendants = \$node->get_descendants() array of the node's children and their children and children of their children ...
- my **\$parent = \$node->get_parent()** parent node of the given node, or undef for root
- my \$root_node = \$node->get_root() the root node of the tree into which the node belongs

Attributes of documents, bundles or nodes can be accessed by attribute getters and setters, for example:

- \$node->get_attr(\$attr_name)
- \$node->set_attr(\$attr_name, \$attr_value)

Some interesting attributes on morphologic layer are form, lemma and tag. Some interesting attributes on analytical layer are afun (analytical function) and ord (surface word order). To reach form, lemma or tag from analytical layer, that is, when calling this attribute on an a-node, you use \$a_node->get_attr('m/form') and the same way for lemma and tag. The easiest way to see the node attributes is to click on the node in TrEd:

tmttred sample.tmt

Our tutorial block Print_node_info.pm is ready to use. You only need to add this block to our scenario, e.g. as a new Makefile target:

print_info:

brunblocks -S -o Tutorial::Print_node_info -- sample.tmt

We can observe our new block behaviour:

make print_info

Try to change the block so that it prints out the information only for verbs. (You need to look at an attribute tag at the m level). The tagset used is Penn Treebank Tagset.

Advanced block: finite clauses

Motivation

It is assumed that finite clauses can be translated independently, which would reduce combinatorial complexity or make parallel translation possible. We could even use hybrid translation – each finite clause could be translated by the most self-confident translation system. In this task, we are going to split the sentence into finite clauses.

Task

A block which, given an analytical tree (SEnglishA), fills each a-node with boolean attribute is_clause_head which is set to 1 if the a-node corresponds to a finite verb, and to 0 otherwise.

Instructions

There is a block template with hints in libs/blocks/Tutorial/Mark_heads.pm. You should edit the block so that the output of this block is the same a-tree, in addition with attribute is_clause_head attached to each a-node. There is also a printing block libs/blocks/Print_finite_clauses.pm which will print out the a-nodes grouped by clauses:

```
finite_clauses:
    brunblocks -S -o \
        Tutorial::Mark_heads \
        Tutorial::Print_finite_clauses \
        -- sample.tmt
```

You are going to need these methods:

• my \$root = \$bundle->get_tree('tree_name')

- my \$attr = \$node->get_attr('attr_name')
- \$node->set_attr('attr_name',\$attr_value)
- my @eff_children = \$node->get_eff_children()

Note: get_children() returns topological node children in a tree, while get_eff_children() returns node children in a linguistic sense. Mostly, these do not differ. If interested, see Figure 1 in btred tutorial. *Hint*: Finite clauses in English usually require grammatical subject to be present.

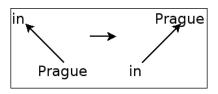
Advanced version

The output of our block might still be incorrect in special cases – we don't solve coordination (see the second sentence in sample.txt) and subordinate conjunctions.

Your turn: more tasks

SVO to SOV

Motivation: During translation from an SVO based language (e.g. English) to an SOV based language (e.g. Korean), we might need to change the word order from SVO to SOV.


Task: Change the word order from SVO to SOV.

Instructions:

- You can use block template in libs/blocks/BlockTemplate.pm.
- To find an object of a verb, look for objects among effective children of a verb (\$child->get_attr('afun') eq 'Obj'). That implies working on analytical layer.
- For debugging, a method returning surface word order of a node is useful: **\$node->get_attr('ord')**. It can be used to print out nodes sorted by attribute **ord**.
- Once you have the node **\$object** and the node **\$verb**, use the method **\$object->shift_before_node(\$verb)**. This method takes the whole subtree under the node **\$object** and recalculates the attributes **ord** (surface word order) so that all the nodes in the subtree under **\$object** have a smaller **ord** than **\$verb**. That is, the method rearranges the surface word order from VO to OV.

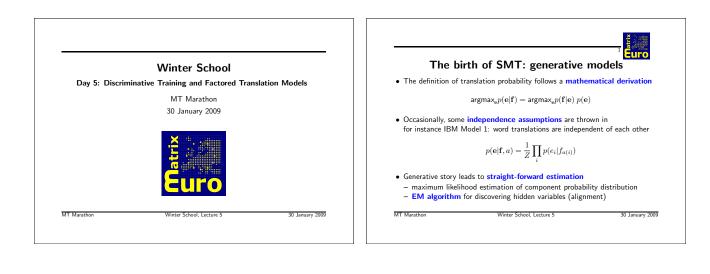
Advanced version: This solution shifts object (or more objects) of a verb just in front of that verb node. So f.e.: *Mr. Brown has urged MPs.* changes to: *Mr. Brown has MPs urged.* You can try to change this solution, so the final sentence would be: *Mr. Brown MPs has urged.* You may need a method <code>\$node->shift_after_subtree(\$root_of_that_subtree)</code> Subjects should have attribute 'afun' eq 'Sb'.

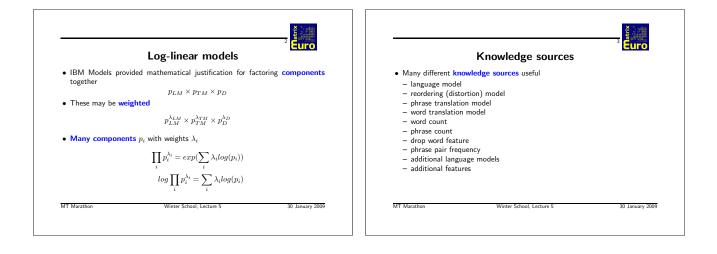
Prepositions

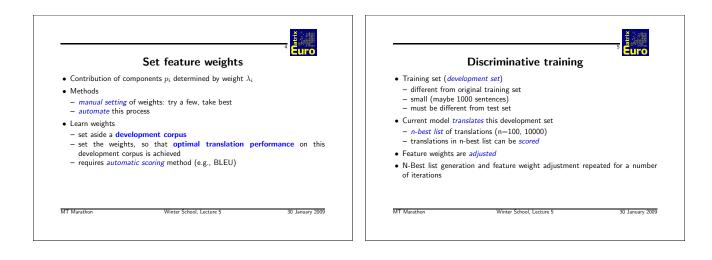
Motivation: In dependency approach the question "where to hang prepositions" arises. In the praguian style (PDT), prepositions are heads of the subtree and the noun/pronoun is dependent on the preposition. However, another ordering might be preferable: The noun/pronoun might be the head of subtree, while the preposition would take the role of a modifier.

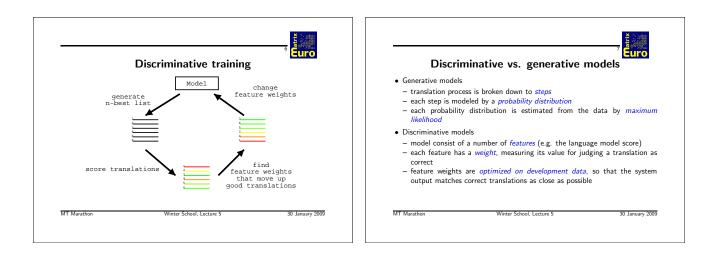
Task: The task is to rehang all prepositions as indicated at the picture. You may assume that prepositions have at most 1 child.

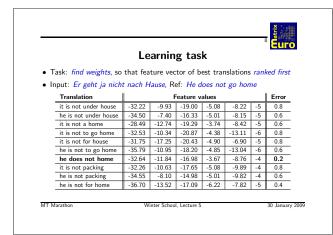
Instructions:

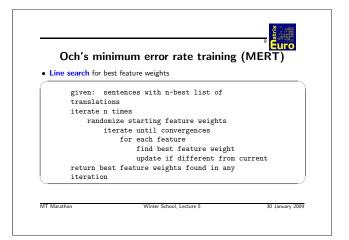

You are going to need these new methods:

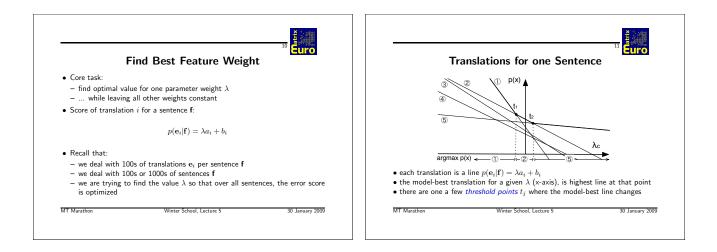

- my @children = \$node->get_children()
- my \$parent = \$node->get_parent()
- \$node->set_parent(\$parent)

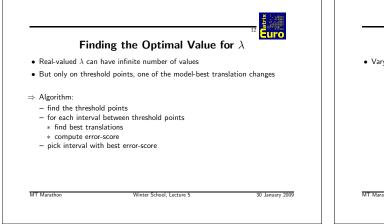

Hint:

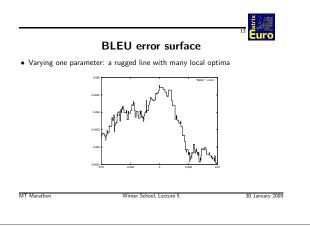

- On analytical layer, you can use this test to recognize prepositions: \$node->get_attr('afun') eq 'AuxP'
- To see the results, you can again use TrEd (tmttred sample.tmt)

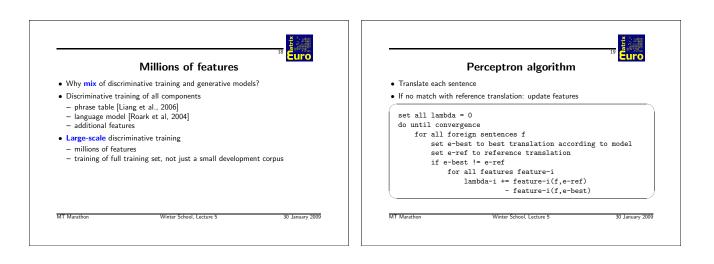

Advanced version: What happens in case of multiword prepositions? For example, because of, instead of. Can you handle it?

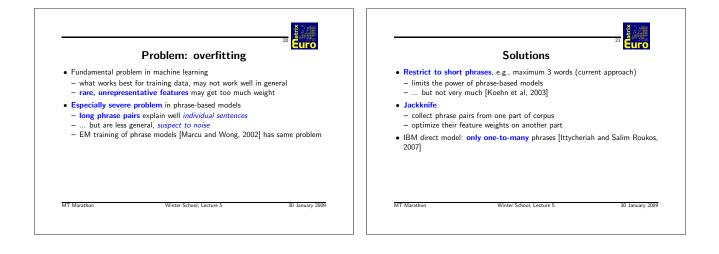


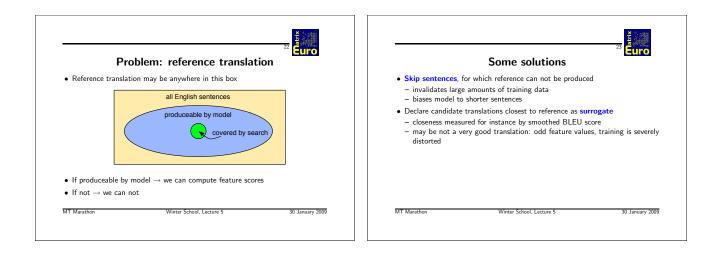


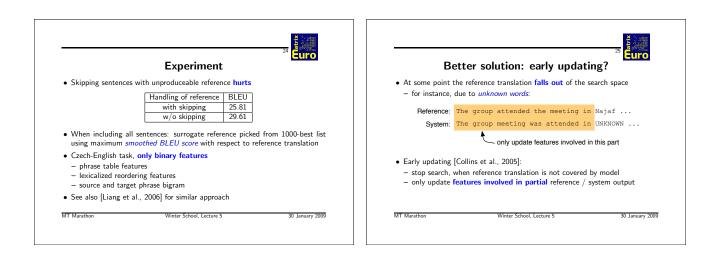


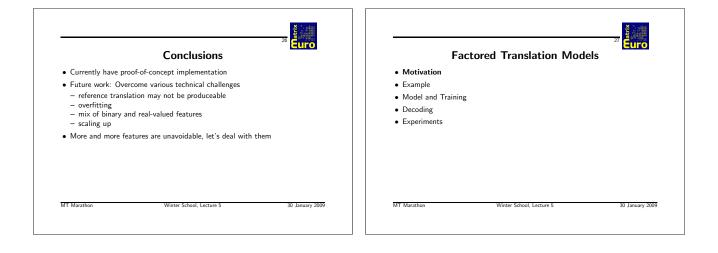


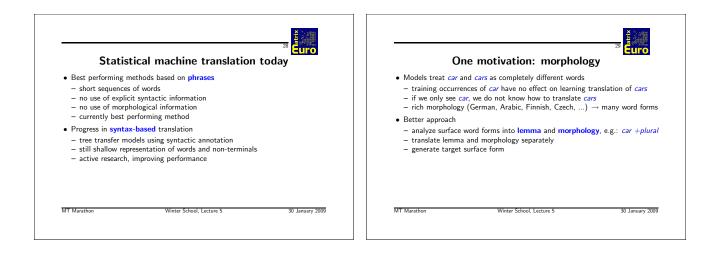


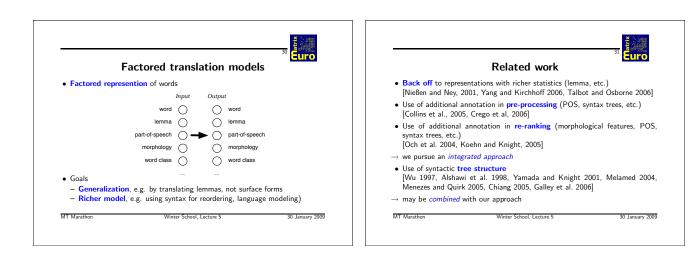


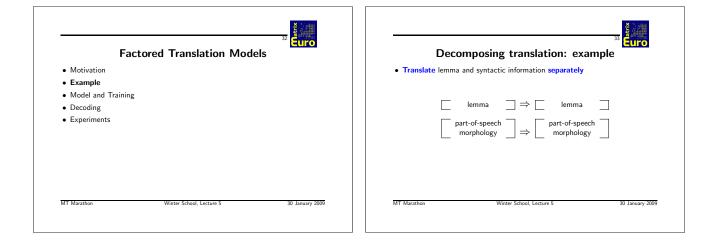

U	nstabl	e outc	omes:	weigh	ts var	v –
Ŭ	notabi	e oute	omeon	10.9	to tai	,
component	run 1	run 2	run 3	run 4	run 5	run 6
distance	0.059531	0.071025	0.069061	0.120828	0.120828	0.07289
lexdist 1	0.093565	0.044724	0.097312	0.108922	0.108922	0.06284
lexdist 2	0.021165	0.008882	0.008607	0.013950	0.013950	0.03089
lexdist 3	0.083298	0.049741	0.024822	-0.000598	-0.000598	0.02301
lexdist 4	0.051842	0.108107	0.090298	0.111243	0.111243	0.04750
lexdist 5	0.043290	0.047801	0.020211	0.028672	0.028672	0.05074
lexdist 6	0.083848	0.056161	0.103767	0.032869	0.032869	0.05024
lm 1	0.042750	0.056124	0.052090	0.049561	0.049561	0.05951
lm 2	0.019881	0.012075	0.022896	0.035769	0.035769	0.02641
lm 3	0.059497	0.054580	0.044363	0.048321	0.048321	0.05628
ttable 1	0.052111	0.045096	0.046655	0.054519	0.054519	0.04653
ttable 1	0.052888	0.036831	0.040820	0.058003	0.058003	0.06630
ttable 1	0.042151	0.066256	0.043265	0.047271	0.047271	0.05285
ttable 1	0.034067	0.031048	0.050794	0.037589	0.037589	0.03193
phrase-pen.	0.059151	0.062019	-0.037950	0.023414	0.023414	-0.06942
word-pen	-0.200963	-0.249531	-0.247089	-0.228469	-0.228469	-0.2525

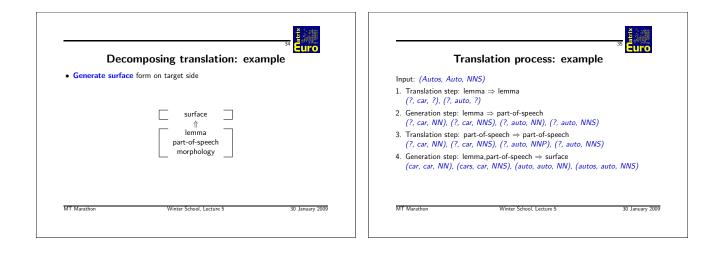

				cores vai	•
 Even differen 					v, 0.89 on test)
	run	iterations	dev score	test score	
	1	8	50.16	51.99	
	2	9	50.26	51.78	1
	3	8	50.13	51.59	1
	4	12	50.10	51.20	ĺ
	5	10	50.16	51.43	1
	6	11	50.02	51.66	1
	7	10	50.25	51.10	ĺ
	8	11	50.21	51.32	1
	9	10	50.42	51.79	ĺ
	9	10	50.42	51.79	J

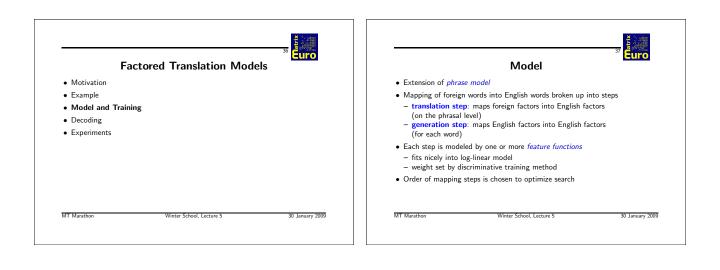


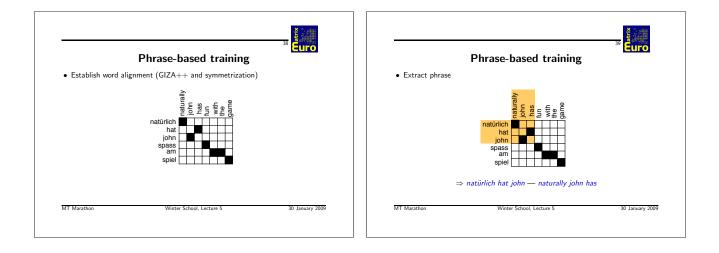


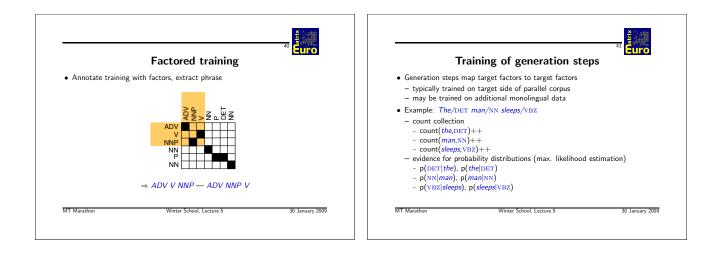


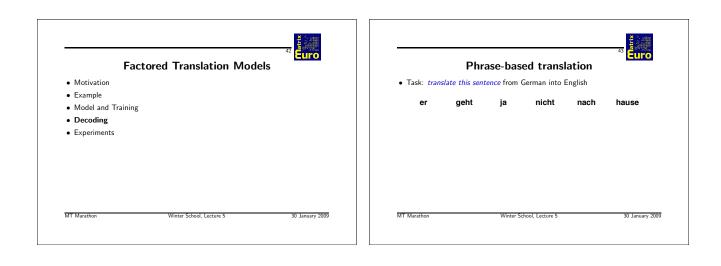


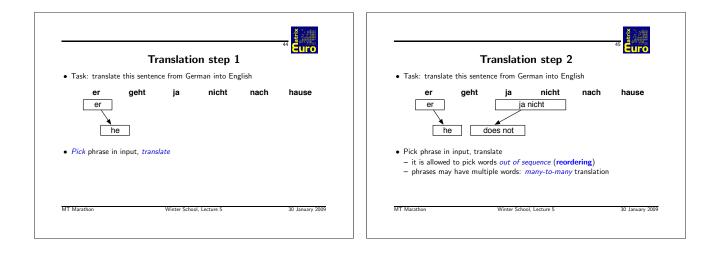


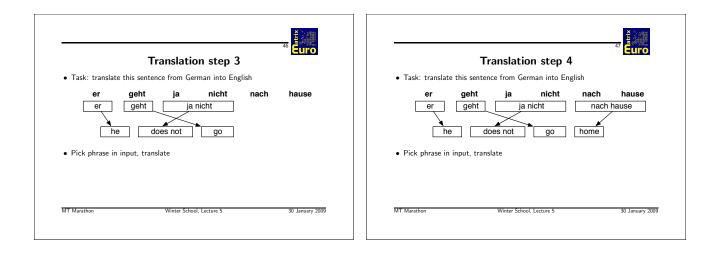


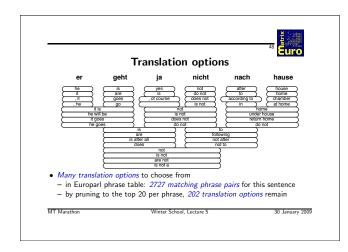


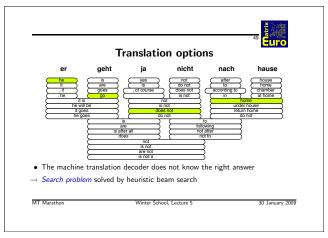


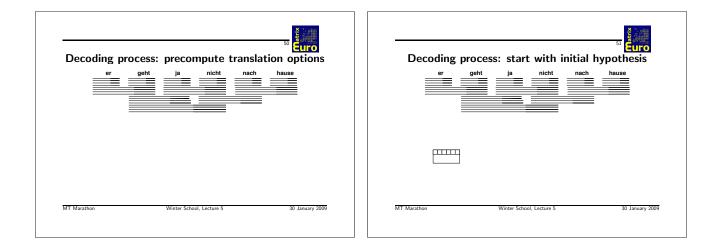


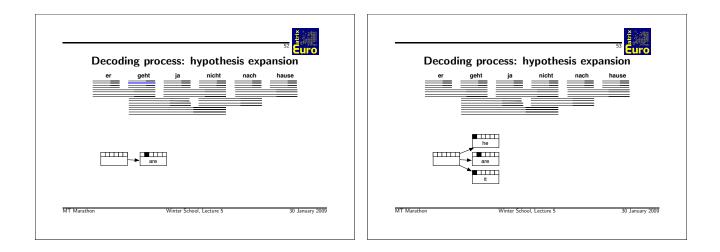


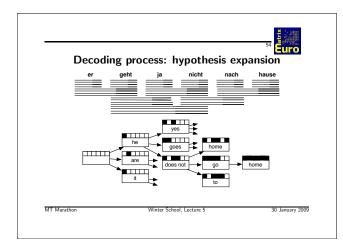


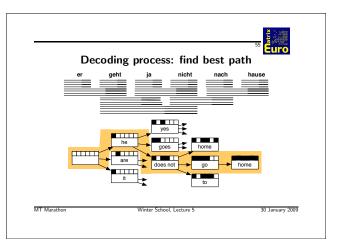


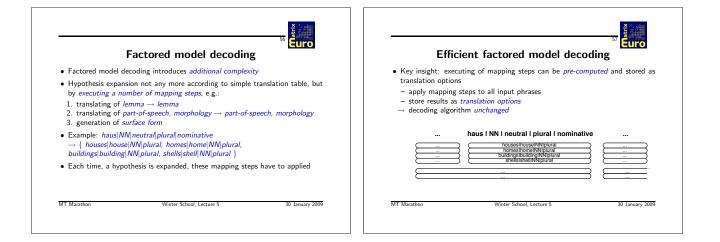


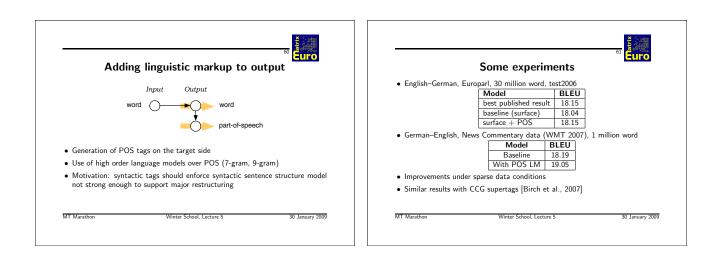


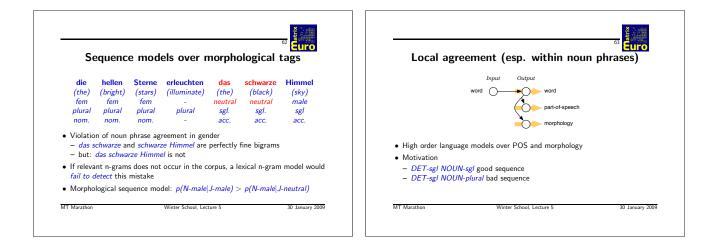


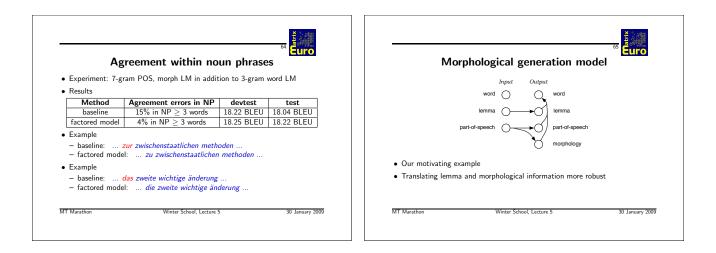


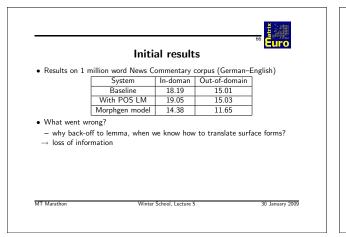


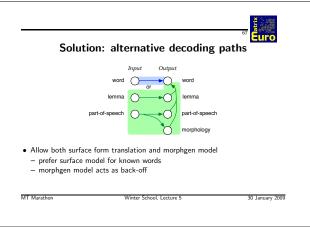


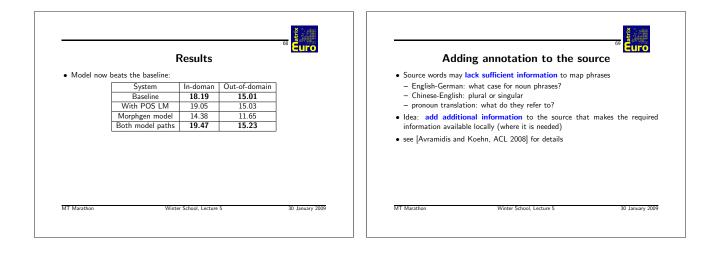


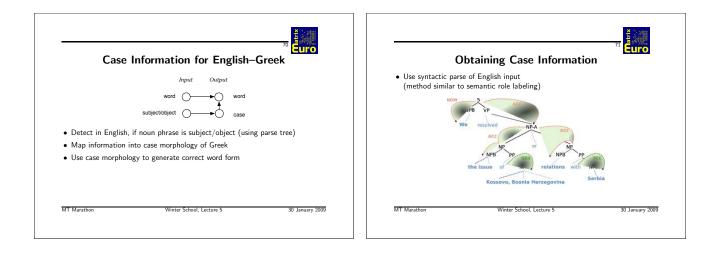


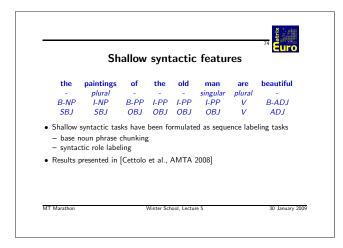


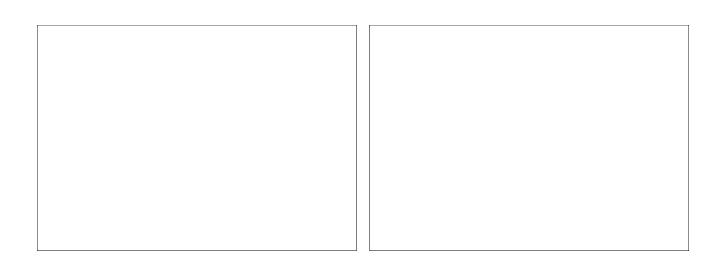












	Results English-Greek	Factored Template Mode	^{ra} <mark>Euro</mark> Is
 Automatic BLI 	EU scores System devtest test07 baseline 18.13 18.05 enriched 18.21 18.20	Long range reordering – movement often not limited to local changes – German-English: SBJ AUX OBJ V → SBJ AUX V O	BJ
Improvement i		 Template models some factor mappings (POS, syntactic chunks) may h others (words) larger mappings form template for shorter mappings computational problems with this 	ave longer scope tha
·	System NPs Errors Missing baseline 247 8.1% 3.2% enriched 239 5.0% 5.0% Illy applied to English-Czech State State State	 published in [Hoang and Koehn, EACL 2009] 	
AT Marathon	Winter School. Lecture 5	2009 MT Marathon Winter School, Lecture 5	30 January 20

