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Abstract
Corpus-based MT systems that analyse and
generalise texts beyond the surface forms of
words require generation tools to re-generate
the various internal representations into valid
target language (TL) sentences. While the gen-
eration of word-forms from lemmas is proba-
bly the last step in every text generation pro-
cess at its very bottom end, token-generation
cannot be accomplished without structural and
morpho-syntactic knowledge of the sentence to
be generated. As in many other MT models,
this knowledge is composed of a target lan-
guage model and a bag of information trans-
ferred from the source language.

In this paper we establish an abstracted, lin-
guistically informed, target language model.
We use a tagger, a lemmatiser and a parser to
infer a template grammar from the TL corpus.
Given a linguistically informed TL model, the
aim is to see what need be provided from the
transfer module for generation.

During computation of the template grammar,
we simultaneously build up for each TL sen-
tence the content of the bag such that the sen-
tence can be deterministically reproduced. In
this way we control the completeness of the ap-
proach and will have an idea of what pieces of
information we need to code in the TL bag.

1 Introduction
METIS-II1 investigates the possibilities to develop
a data-driven MT system using a huge monolingual
target language (TL) corpus and a bilingual dictio-
nary. While the dictionary is used to map SL items
onto the TL, the corpus serves as a model to gen-
erate the TL sentences. This translation strategy
parallels with shake & bake (S&B)(Whitelock, 1991;
Whitelock, 1992). In S&B the bilingual knowledge
is exhausted by the equivalence of basic expressions
and TL generation as parsing is under direct control
of the TL grammar.

Shake & bake generation starts from a bag of TL
items. The order of the items in the bag is irrelevant.

1METIS-II is sponsored by EU under the FET-STREP
scheme of FP6 (METIS-II, IST-FP6-003768).

Generation freely combines the items to produce all
sentences that are compatible with the constraints in
the bag and in the TL grammar. While the content
of the bag is obtained from the analysis of the source
language (SL) and a dictionary lookup, the main
challenge in S&B is the generation of TL sentences
from a bag of TL items.

In this paper we investigate a corpus-based ap-
proach to S&B generation. In contrast to S&B,
where the free combination of items in the bag is
restricted by constraints of a hand-made TL gram-
mar (Brew, 1992), we automatically induce a TL
grammar from a corpus of TL sentences. The TL
grammar serves as a model to select and serialise
items in the bag according to the TL syntax.

A similar strategy is also proposed by (Cao and
Li, 2000) who translate base noun phrases using a
dictionary and the web. As in (Habash and Dorr,
2002) we view machine translation as a ’generation
heavy’ process. We assume a large number of re-
sources in the TL, first of all a huge corpus of TL
sentences, so as to shift most of the processing from
SL analysis to the TL generation.

Current language modeling in corpus-based ma-
chine translation relies on n-grams (Stolcke, 2002;
Goodman, 2002; Badia, 2005). Probabilities of over-
lapping word n-grams are an excellent means to
generate and weight coherent sequences of words.
However, long distance dependencies cannot easily
be handled with n-gram models. In addition, n-
grams are usually obtained from inflected words. In
METIS, however, we assume lemmatised words in
the TL bags. There is thus a gap between lem-
matised forms in the input bag and n-gram models
based on full word forms.

We present a corpus-derived language model that
overcomes these shortcomings. A corpus of English
sentences is tagged, lemmatised and parsed. The
parsed structures are converted into a normalised
context-free grammar and stored in a database. Due
to the shape of the representations we call the result-
ing database a template grammar. The template
grammar is the basis of our language model that
contains the basic information required to generate
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English sentences.

Sentence templates have been studied and used
for some time. Templates consist of sequences of
constant and variable elements which emerge with
the identification of similarities and differences with
forms in memory. (Cicekli and Guvenir, 2003) give
a formalisation of this process while (Malavazos and
Piperidis, 2000) establishes a link between templates
and analogical modelling.

Recently (Cicekli, 2005; Carl, 2003) extend trans-
lation templates with type constraints. (Gough and
Way, 2004) produces a set of marker templates by
replacing the marker word by its relevant tag. Simi-
larly, we generalise templates from monolingual sen-
tences by replacing constituents by their relevant
tag.

To produce a sentence (or a text) from a template
grammar, we need additional information from the
TL bag. The items and constraints in the bag se-
lect and activate a subset of rules in the grammar
which then produces a TL sentence. By mapping
the bag on the template grammar, word order is de-
termined and features for morpho-syntactic genera-
tion are fixed. Thus, the content of the bag should
interact with the template grammar such that infor-
mation is complete to resolve all major morphologi-
cal and syntactic ambiguities for generation. In the
same time the model should be flexible enough to
produce all desirable sentences in the TL.

Obviously, the content of the bags depend on the
information available in the template grammar and
vice versa. In many MT systems, TL generation is
seen a consequence of SL analysis. Thus, almost
all (symbolic) approaches to MT start from SL sen-
tences and design TL generation according to the
information available after transfer. However, statis-
tical (IBM) approaches have shown that a reversed
method is not only possible but also leads to a rea-
sonable decomposition of the translation task: To
find the most likely translation SL → TL, Bayes’
theorem allows to train probabilities TL → SL and
an (independent) target language model. Thus pa-
rameters are trained in the inverted order of the in-
tended translation direction while for translation the
reversed model is used.

In this paper we follow this intuition for the gen-
eration of a language model from a TL corpus. Si-
multaneously to the language model, we generate
for each sentence a bag of items and constraints that
complements the language model such that the orig-
inal sentences can be reproduced. That is, for each
step in the construction of an abstracted TL model,
we compute and assemble the bits of information
that enable the reproduction of the original sentence.
In this way we obtain a template grammar and a set
of bags for the English sentences. The bags contain
lemmas, structural and morpho-syntactic informa-

tion such that the original text can be reproduced.
Only if we know how a bag looks like in order

to generate a particular sentence with a given (tem-
plate) grammar, we can try to obtain similar bags
as a result of transfer and through a bilingual dictio-
nary from a SL sentence. Further research will show
whether and to what extent this is an appropriate
basis for S&B translation.

We incrementally build a target language model
on four levels:

• First we have trained the TnT tagger(Brants,
2000) with the BNC data to obtain tagged sen-
tences.

• Section 2 describes a reversible lemmatisa-
tion/token generation tool that takes as its in-
put the tagged text2.

• Section 3 describes a number of experiments to
generate word forms from lemmas with partial
information.

• Section 4 describes reversible parsing and mor-
phological processing

It turns out that constraints are essentially de-
termined by the way we implement parsing and
morphological processing. To make the process re-
versible, the bags need to be extended with addi-
tional structural and morpho-syntactic information,
while near perfect token generation can be obtained
even with restricted information.

2 Reversible Lemmatisation
This section describes a reversible
lemmatiser/token-generator for English. The
lemmatiser produces a normalized form for word-
tokens in the following sense:

1. convert the lemma into lower-case alphabetical
characters

2. apply rules or a token-lemma dictionary to gen-
erate the lemma

Lemmatisation rules are used to strip off or modify
regular inflection suffixes from the tokens. A lemma-
tisation lexicon is used for the irregular cases.

The lemmatiser reads a CLAWS5-tagged3 file,
generates a lemma together with two additional fea-
tures indicating the orthographic properties (O) and
the inflection rule (IR) that applies to the word.
The token-generator reads a lemma together with a
CLAWS5-tag (henceforth CTAG) and the O and the
IR feature. Token generation is to a 100% reversible,
that is: a token set {token,CTAG} is equivalent to a
lemma set {lemma,CTAG,O,IR} and both sets can

2The lemmatiser can be obtained from the authors
3http://www.comp.lancs.ac.uk/computing/research/

ucrel/claws/
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be transformed without loss of information into each
other.

In section 2.1 we give a small introduction to the
CLAWS5 tag set. The material is essentially copied
from their web-site at http://www.comp.lancs.ac.
uk/computing/research/ucrel/claws/.

Orthographic normalisation is described in sec-
tion 2.2. The lemmatiser makes use of a lemmati-
sation lexicon and lemmatisation rules as described
in section 2.3 and 2.4. Section 2.5 explains token-
generation under the assumption that all required
information is available.

NN0 Common noun, neutral for number (e.g.
aircraft, data, committee)

NN1 Singular common noun (e.g. pencil,
goose, time, revelation)

NN2 Plural common noun (e.g. pencils,
geese, times, revelations)

NP0 Proper noun (e.g. London, Michael,
Mars, IBM)

VVB The finite base form of lexical verbs
(e.g. forget, send, live, return) [Includ-
ing the imperative and present subjunc-
tive]

VVD The past tense form of lexical verbs
(e.g. forgot, sent, lived, returned)

VVG The -ing form of lexical verbs (e.g. for-
getting, sending, living, returning)

VVI The infinitive form of lexical verbs (e.g.
forget, send, live, return)

VVN The past participle form of lexical verbs
(e.g. forgotten, sent, lived, returned)

VVZ The -s form of lexical verbs (e.g. for-
gets, sends, lives, returns)

Table 1: Subset of the CLAWS5 tag set

2.1 The CLAWS Tag set

The POS tagging software for English text, CLAWS
(the Constituent Likelihood Automatic Word-
tagging System), has been continuously developed
since the early 1980s (see http://www.comp.lancs.
ac.uk/computing/research/ucrel/claws/).

Accuracy CLAWS has consistently achieved 96-
97% accuracy (the precise degree of accuracy vary-
ing according to the type of text). Judged in terms
of major categories, the system has an error-rate
of only 1.5%, with c.3.3% ambiguities unresolved,
within the BNC. The amount of error in the tag-
ging of the corpus varies greatly from one tag to
another. The most error prone-tag, by a large mar-
gin, is VVB, with more than 17 per cent error, while
many of the tags are associated with no errors at
all, and well over half the tags have less than a 1 per
cent error.

The CLAWS5 tagset for the BNC has just over
60 tags. This tagset was kept small because it was
designed for handling much larger quantities of data
than were dealt with up to that point. For instance
there are four different tags for nouns and six for
verbs as shown in table 1.

In addition, there are 30 “Ambiguity Tags”.
These are applied wherever the probabilities as-
signed by the CLAWS automatic tagger to its first
and second choice tags were considered too low for
reliable disambiguation. So, for example, the am-
biguity tag AJ0-AV0 indicates that the choice be-
tween adjective (AJ0) and adverb (AV0) is left open,
although the tagger has a preference for an adjec-
tive reading. The mirror tag, AV0-AJ0, again shows
adjective-adverb ambiguity, but this time the more
likely reading is the adverb.

The term ‘multiwords’ denotes multiple-word
combinations which function as one wordclass - for
example, a complex preposition, an adverbial, or
a foreign expression naturalised into English as a
compound noun.

AV0 of course (adverb)
PRP according to (preposition)
NN1 persona non grata

(’naturalised’ compound noun)

2.2 Orthographic Normalisation

The lemmatiser converts characters into lower case.
The O feature keeps track of the orthographic prop-
erties of the original word. The O feature has the
following values:

n the token consists only of digits [0-9]

s the token does not contain alphabetical charac-
ters

l the token consists only of lower-case alphabeti-
cal characters, and may contain digits and the
special characters -\’

c the token consists only of upper-case alphabet-
ical characters, and may contain digits and the
special characters -\’

f the first character is upper-case and all others
are lower-case, digits or the special characters
-\’

m for all other tokens.

The lemma is identical to the word form for the
cases n, s, and m. That is, no explicit lemma con-
version takes place if the token is not a proper word.
For l, c and f, the lemma is converted into lower-case
characters and inflection is checked4

4We allow digits to occur in proper words because some
special symbols (e.g. blanks) in (compound) words can be
escaped with a backslash (\) followed by their ASCII code.
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Lemmatisation Rules
{CTAG, IR} token-suffix ⇒ lemma-suffix
VVG 1 ffing ⇒ ff
VVG 2 ^(.{1,3}ll)ing ⇒ \$1
VVG 3 ssing ⇒ ss
VVG 4 ([bcdfghjklmnpqrstvwxz])\1ing ⇒ \$1

Token-generation Rules
{CTAG, IR} lemma-suffix ⇒ token-suffix
VVG 1 ff ⇒ ffing
VVG 2 (.{1,3}ll) ⇒ $1ing
VVG 3 ss ⇒ ssing
VVG 4 ([bcdfghjklmnpqrstvwxz]) ⇒ $1$1ing

Table 3: First four rules of the VVG paradigm: rules are reversed for token-generation

CTAG IR token lemma
NN2 L8 analyses analysis
VVN L28 gone go
VVD L29 went go
VVZ L6 goes go
PNQ whom whom who
PNQ whose whose who
AJC 1 better good
AJS 17 best good

Table 2: Excerpt from the Lemmatisation Lexicon

2.3 The Lemmatisation Lexicon

The lemmatisation lexicon encodes a word token to-
gether with a CTAG, its lemma and an IR as shown
in table 2. Each {token,CTAG} combination is asso-
ciated with one {lemma,IR} combination. To ensure
reversibility of lemmatisation, the IR must be chosen
such that each {lemma,CTAG,IR} is unique. In this
way every {token,CTAG} combination is equivalent
to exactly one {lemma,CTAG,IR}.

Lexical lemmatisation looks up a {token,CTAG}
in the dictionary and retrieves a {lemma,CTAG,IR}.

The IR can encode morpho-syntactic and even se-
mantic information in a systematic way such that
it can be used during processing in subsequent pro-
cesses. For instance, a finer grained distinction can
be modeled between ”us” and ”we” or ”whom” and
”whose” while both forms can be reduced to the
same lemma. Otherwise the IR can also consist of
any distinguishing string or number as shown in the
case of ”best” and ”better” in table 2. Lemmatisa-
tion should be lexicalised only one of the following
conditions apply:

1. the word belongs to a closed class

2. the word is an inflectional exception or irregular
form such as ”better” and ”best”

3. further morphological information is required
that can be coded in the IR

2.4 Lemmatisation Rules

Lemmatisation rules map a word on its lemma by
modifying the suffix of the word. This is particularly
important for regular inflection of open class words.

A CTAG represents an inflection paradigm that
is covered by a number of lemmatisation rules. For
each {token,CTAG} — if it is not lexicalised —
the lemmatiser applies a number of lemmatisation
rules in a predefined order. If a lemmatisation rule
matches the token, it is modified and thereby trans-
formed into a lemma. The lemmatiser returns the
lemma together with a CTAG, the O feature and the
IR.

For instance, the ”VVG” paradigm is associated
with a list of 28 lemmatisation rules. The first 4
lemmatisation rules are shown in table 3.

The body of the rules are regular expressions that
are mapped on the word tokens. A matching to-
ken suffix is substituted be a lemma suffix. Parts
of in the token-suffix can be enclosed in brackets, as
in rule 2. The variable $1 in the lemma-suffix will
be instantiated with the bracketed sequence of the
token-suffix such that sequences are copied from the
token-suffix to the lemma-suffix.

2.5 Token Generation

The lemmatisation process is reversed for token gen-
eration. Reversing the lemmatisation lexicon (see
section 2.3) becomes a tokenisation lexicon: For
every lemma set {lemma,CTAG,IR} that is found
in the lexicon, the associated {tag,CTAG} is re-
turned. Reversing the lemmatisation rules (see
section 2.4) becomes token-generation rules: The
token-generator looks up the lemmatisation rule in-
dicated by IR in the CTAG paradigm and applies
the retrieved lemmatisation rule in the reversed or-
der as shown in table 3

As outlined above, token generation is to a 100%
reversible if the lemma set is complete. That is: a to-
ken set {token,CTAG} is equivalent to a lemma set
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token CTAG ⇔ lemma CTAG O IR
sniffing VVG ⇔ sniff VVG l 1
dialling VVG ⇔ dial VVG l 2
DRESSING VVG ⇔ dress VVG c 3
Setting VVG ⇔ set VVG f 4

Table 4: Input and Output of Lemmatisation and
Token-generation

{lemma,CTAG,O,IR} and both sets can be trans-
formed without loss of information into each other.
In the remainder of this paper we abstract from or-
thographic properties (upper/lower case characters)
of the word forms as coded in the O feature. That
is, we restrict the lemma set to {lemma,CTAG,IR}
and consider it equivalent to a token set.

3 Generating Incomplete Lemma
Sets

However, we cannot always assume to have all the
bits of information even in a reduced lemma set
available. Assume, for instance, a verb has to be re-
generated in present tense, or a singular noun should
be transformed into a plural noun to adjust a stored
sentence fragment to a new context. In these cases
we still know the lemma of the word and the CTAG.
It is unclear, however, what inflection rule should
apply to generate the correct word-form.

In this section we report on some experiments to
“guess” an appropriate IR for an incomplete lemma
set {token,CTAG}. We show that lemmas can be
re-converted into word tokens with a very high de-
gree of accuracy even if only partial information is
available. We investigate several methods to infer an
appropriate inflection rule for generation from cor-
pora and achieve accuracy of more than 99.5%.

Depending on what information is available we
distinguish three cases:

1. if the full lemma set is available proceed as de-
scribed in section 2.5.

2. else if IR is missing, look up the lem-
matised BNC whether it contains a form
{lemma,CTAGnew} and retrieve the associated
IR. This approach is described in section 3.1

3. else if the BNC does not contain a suitable lem-
matised form, “guess” an IR by comparing suf-
fixes of the lemmas. This is described in sec-
tion 3.2

3.1 Re-generating known Wordforms

In this first model we retrieve an IR of an incom-
plete lemma set {lemma,CTAGnew} from the lem-
matised BNC. The word-form is re-generated that
corresponds to the most frequent IR associated to a
{lemma,CTAG} in the BNC. We call this model the

token lemma CTAG IR freq generated

burned burn VVD 29 542 burned

burnt burn VVD L29 150 burned
focussed focus VVD L29 34 focused
focused focus VVD L29a 411 focused

brothers brother NN2 10 3511 brothers
brethren brother NN2 L8 157 brothers

aquariums aquarium NN2 10 48 aquaria
aquaria aquarium NN2 L8 82 aquaria

cookin’ cook VVG 29 303 cooking
cooking cook VVG 28 1043 cooking
coming come VVG 27 17726 coming

comeing come VVG 28 2 coming
comin’ com VVG 29 89 coming

comming com VVG 4 5 coming

Table 5: Regenerating word tokens in the Frequency
model

F model since the sought IR is available in the BNC
it has access to their frequency distribution.

As plotted in table 8, from a set of 244,500 dif-
ferent words, this produces 0.3648% ‘noise’. That
is, 892 re-generated words differ from their original
form.

In some cases a given {lemma,CTAG} combina-
tion occurs with several IR in the BNC. Some ex-
amples are given in table 5. For many of these cases
several writing variants are possible as e.g. British
vs. American writing. When regenerating the word
the more frequent variant is chosen. This caused
’noise’ in the case of burnt ⇒ burned and focussed
⇒ focused where both variants are correctly reduced
to the same {lemma,CTAG} but the more frequently
occurring variant is re-generated. Note that the orig-
inal variant could have been re-generated with the
appropriate IR. Thus, {focus,VVD,L29} would gen-
erate “focussed” and {burn,VVD,L29} would gener-
ate “burnt”.

In some cases an erroneous regular form is de-
tected by an inflection rule but the irregular, cor-
rect form is re-generated (e.g. aquariums ⇒ aquaria,
comeing ⇒ coming). Note also here that the incor-
rect forms would be re-generated with the appropri-
ate IR.

Most of the ‘noise’ is, however, due to speech sub-
scription which is part of the BNC (e.g. cookin’,
comin’). These spoken forms are regenerated in their
correct written form (cooking, coming) as shown in
table 5. It is 324 -in’ forms out of the 892 noisy re-
generated words that are reproduced as -ing which
accounts for more than 1/3 of the ‘noise’.

3.2 Guessing a new IR

In case a {lemma,CTAGnew} does not occur in the
BNC and in the tokenisation lexicon, we have to find
some other means to infer an appropriate IR.

As a first method we have applied the token gen-
eration rules in their pre-defined order. When a
lemma suffix matches a generation rule, a word to-
ken would be produced. When no token-generation
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token lemma CTAG IR re-generated
surfing surf VVG 4 surffing
boiling boil VVG 4 boilling
aborting abort VVG 4 abortting

Table 6: Erroneous token generated in the base-line
model

lemma-suffix CTAG IR rel.freq
Suffix Model S1

t VVG 28 0.6092
t VVG 4 0.3022
t VVG 18 0.0800
t VVG L28 0.0072
t VVG 29 0.0013

Suffix Model S2

rt VVG 28 0.9989
rt VVG 29 0.0011

Suffix Model S3

ort VVG 28 0.9998
ort VVG 29 0.0001

Suffix Model S4

bort VVG 28 1

Table 7: Lemma suffixes from the BNC with CTAG,
IR and relative frequencies of IR

model # noise % noise
F 892 0.365%
base 17357 7.099%
S1 5220 2.135%
S2 3095 1.266%
S3 1798 0.735%
S4 1756 0.718%
Sdyn 1023 0.418%

Table 8: Comparing noise of different IR estimation
models from a set of 244,500 different words.

rule matches, the token is assumed to be identical to
the lemma. The method can be seen as a base-line
since it just inverses the lemmatisation process.

This method performs quite poorly producing
7.099% noise from the 244,500 word tokens (see ta-
ble 8). That is, 17,357 words were re-produced dif-
ferently from how they appear in the original list.

Most error prone were (endings of) plural noun
and some verb forms. In the VVG paradigm, for in-
stance, the first matching rule was in many instances
IR 4. This rule transforms a double consonant into
a single consonant for token ⇒ lemma transforma-
tion. However, for lemma ⇒ token transformation
this produces many erroneous tokens as shown in
table 6.

In another approach, we have indexed the suffixes
of the lemmas from the BNC together with their
CTAG and IR. The idea was to match the suffix
of the lemmas to be re-generated together with its
CTAGnew on the indexed lemma suffixes and re-
trieve the associated IR.

Thus, to retrieve an IR for the incomplete lemma
set {abort,VVG} we would look into a list suffixes
as in table 7. By checking the last character “t” we
have a choice of 5 rules with their relative distribu-
tion in the BNC. Similar to the base-line model, we
apply the rules in the order of their relative frequen-
cies and generate the token with the first applying
rule. Thus, IR 28 is the most frequent inflection rule
for the VVG paradigm that occurs with lemmas end-
ing on “t”. The inferred set {abort,VVG,28} gener-
ates also the correct form “aborting”.

This model S1 can be seen as an extention of the
base-line model. It reorders the inflection rules ac-
cording to frequencies in the BNC. As shown in ta-
ble 8, the suffix model S1 reduces noise to 2.135%.

In further experiments we have extended the
length of the suffixes to 2, 3 and up to 5, where
each model Si includes the suffixes of the models
Si−1. The IR of the lemma to be generated would
be chosen from the longest possible suffix. As can be
seen in table 7, longer suffixes tend to be associated
with fewer IR and show a stronger discrimination
between different choices. With a suffix length of 4,
inflection rule 28 can be deterministically applied for
“abort”.

A further enhancement of the method consists in
keeping suffixes dynamically up to the length where
only one inflection rule applies. There is, for in-
stance, no point in storing {abort,VVG,29} in the
suffix lexicon when {bort,VVG,29} is already un-
ambiguous. This not only reduces the number of
stored suffixes to slightly more than 20,000 com-
pared to more than 30,000 for the S3 model, but
also increases accuracy considerably. Table 8 shows
that the model Sdyn is only marginally worse than
the frequency model F. With 0.05% more noise we
can assume to re-generate word tokens from incom-
plete lemma sets with reasonable precision.

This also means that word tokens can be repre-
sented as lemma sets {lemma,CTAG} little loss of
information. Lemma sets are the basic entities from
which the original word tokens can be re-generated
with high accuracy.

4 Reversible Parsing/Morphological
Generation

This section describes the morpho-syntactic level of
the language model. It builds up on the lemma sets
and formalises morpho-syntactic properties of the
BNC in a reversible manner.

First we parse the lemmatised English sentences.
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We use a flat parser that is implemented in KURD
(Carl, 2005). The parser consists of three sets of
rules which incrementally produce larger brackets:
the LEX set marks only the lexical items: nouns,
adjectives, adverbs and numbers. The PHRASE
set marks adjective phrases, noun phrases, conjunc-
tions of noun phrases and prepositional phrases. The
CLAUSE set marks subordinate clauses and sen-
tences.

The parser generates ’internal’ nodes that express
relations between terminal lemma sets similar to a
constituent tree. It uses a unique set of parsing tags
(PTAGs) that characterise the properties of the sub-
sumed nodes.

From the parses we extract two distinct sets: a
normalised context free grammar and a set of “con-
straints”. The set of “constraints” and the grammar
complement each other such that the original lem-
matised English sentences can be reproduced.

For parsing we consider the lemma sets
{lemma,CTAG} the leaves of a phrase-structure
tree. For internal nodes, the parser uses a distinct
set of ’internal’ tags and features.

4.1 Parsing

Partial parsing yields a bracketed structure, as
shown in the table 9. The proper noun “john”, the
noun “apple” and the noun phrase “an apple” are
bracketed.

{john,NP0}, {eat,VVZ}, {a,AT0}, {apple,NN1}

<s,pres>
|

<np,3sg,subj> {eat,VVZ} <np,3sg>

| |
{john,NP0} {a,AT0} <n,3sg>

|
{apple,NN1}

Table 9: Lemma sets and parsed sentence “John eats
an apple”

We do not allow overlapping and/or ambiguous
segmentation but enable recursive bracketing. Thus,
a noun can be bracketed within a larger noun phrase
which can be part of a prepositional phrase etc. For
instance, the bracketed noun “apple” is contained in
the larger noun phrase (an apple)np .

In addition we percolate agreement and other in-
formation into the internal nodes. Currently we
use three features <fcase>, <agr> and <tns>.
The <fcase> feature can take the values subject,
objective or genitive. The <agr> feature can
take (among others) the value 3sg, and the and
<tns> feature has the values pres and past.

4.2 Reversible Morphological Generation

Lemmatisation abstracts away from number in
nouns and number, person and tense in verbs. That
is, the PTAG features <agr> and <tns> exhaus-
tively describe the inflectional properties of the sub-
sumed terminal lemma sets. The structure of the
parse is designed such that all relevant inflection in-
formation for every lemma set is assembled and mir-
rored in the immediate dominating internal node.
Thus, a singular noun, coded as NN1 in the lemma
set, is represented as 3sg in the dominating node, a
VVZ verb is coded as 3sg.

To transform a singular noun into plural we need
to replace NN1 with NN2; to transform a past tense
verb into present we transform VVD into VVB or
VVZ for 3rd person singular.

In this way, by knowing the <agr> and <tns> val-
ues of the internal nodes we can re-produce the orig-
inal terminal CTAGs with 100% accuracy. Knowing
the lemma and the CTAG for each lemma set guar-
antee reversible deterministic generation of the word
token as shown in section 3.

CTAG information in the parse tree that is in-
dependent from the PTAGs remains untouched and
serves as a default for the token-generation.

We have verified reversibility of the parsed struc-
ture on a set of 1.000.000 sentences take from the
BNC. In future we also intend to tackle closed class
words such as articles, pronouns and prepositions in
the same way.

4.3 Grammar Inference

We extract a CFG grammar from the parse in the
following way. On the one hand, we extract rules
from the bracketed structures by transforming the
tag into the left-hand side (LHS) of the rules and
the content into the right-hand side RHS. Thus the
tag <noun> appears on the LHS in rule (4) while
the content of the bracketed expression {apple,NN1}
occurs in the RHS. On the other hand, templates are
generated by replacing the bracketed constituents
with their tags. A template consists of terminal sym-
bols and nonterminal symbols. Template (1) con-
sists of one leaf {eat,VVZ} and two non-terminals
<np,3sg,subj> and <np,3sg>.

LHS RHS
<snt> → <np,subj> , {eat,VVZ} , <np>

<np> → {a,AT0} , <np>

<np> → {john,NP0}
<n> → {apple,NN1}

Table 10: A sentence template grammar extracted
from the parse

The grammar extracted from the parse in table 9
consists of 4 context-free rules, where <snt> is the
top-level symbol and <np>, <n> are non-terminals.
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Note that at least one terminal symbol must occur
in the RHS of the rules.

To reduce the number of different rules in the
grammar and to make them consistent amongst each
other, some CTAGS are normalised. Thus, all plu-
ral nouns are converted into singular (NN2 ⇒ NN1)
and all finite verbs VVD and VVB are converted
into VVZ (3rd person singular). Internal features in
non-terminal nodes are set to 3sg and pres. In the
current example, all features correspond already to
the default setting.

4.4 Extraction of Constraints

In addition to the template grammar, a set of con-
straints is extracted from the parse. The constraints
contain features and structural information of the
internal nodes of the parse. Feature information in-
cludes the tags <fcase>, <agr> and <tns> as out-
lined in section 4.1. Examples of the extracted con-
straints are given in table 11.

The structural information is represented by the
numbers of the words that are matched in the struc-
ture. Each structural constraint consists of the word
numbers matched on the top-level template followed
by the sets of word numbers matched in the daughter
nodes.

For instance the <snt> node has three daughters
from which the first and the third nodes are non-
terminals. The terminal {eat,VVZ} is the second
word in the sentence. The subtrees of the first and
the third daughter nodes are instantiated by word
1 and the set of words 3 and 4 respectively. This
information is represented as “2 1 3|4”. That is, the
first set of number(s) (i.e. 2) represents the words
matched by the top-level template, while the words
matched in the successive daughter nodes are sepa-
rated by an underscore “ ”. This information is ex-
tracted for every internal node in the parse. Thus,
the <np> node covering “an apple” is linked to the
partial tree 3 4, where the 4th wort in the sentence
(apple) is a subi-structure of the 3rd word “the”.

wnr PTAG agr fcase tns
2 1 3|4 snt 3sg — pres
1 np 3sg subj —
3 4 np 3sg — —
4 n 3sg — —

Table 11: Constraints extracted from the parse

4.5 Reversible Syntactic Generation

In this section we show how the original parse tree
(as e.g. in table 9) can be reproduced from the bag
of TL lemmas (e.g. as in table 12), a sentence gram-
mar (as in table 10) and a set of constraints (as in
table 11).

Syntactic generation starts from a bag of TL lem-
mas. Each lemma in the bag is associated with

a unique index as shown in table 12. The bag is
mapped on the sentence grammar and the word in-
dexes are copied into the matching nodes (see ta-
ble 13). Thereafter the rules are stitched together
to form a parse tree taking into account structural
constrains.

wnr lemma
1 john
2 eat
3 a
4 apple

Table 12: Bag of TL lemmas

Since in the reversible setting, we have for each
sentence grammar a consistent set of structural con-
straints, an optimal combination of the grammar
rules can be found from any starting point. That
is, irrespectively with which grammar rule we start,
the constraints will always lead to the initial best
parse tree.

For instance, there is only one structural con-
straint (i.e. 3 4) that applies to rule #3 in table 13.
This constraint requires word number 3 (i.e. “a”) to
be linked to the template where a subtree is linked
to word number 4. The constraint thus favors the
partial structure (a (apple)) which combines rules
#3 and #4. This partial tree can be stored and in-
serted in the second slot of rule 2 as required be the
constraint “2 1 3|4”. Once an optimal parse tree is
generated, the internal nodes are instantiated with
PTAG features. The results is then input to mor-
phological generation as described in section 4.

# LHS RHS
1 <np> → 1: {john,NP0}
2 <snt> → <np> , 2: {eat,VVZ} , <np> .
3 <np> → 3: {a,AT0} , <np>

4 <n> → 4: {apple,NN1}

Table 13: Instantiated generation grammar

5 Conclusion and Outlook
In this paper we have presented a method to de-
compose sentences into three disjoint sets: a bag
of lemmas, a set of structural and morpho-syntactic
constraints and a template grammar. Several steps
of analysis are involved in the construction of these
sets: tagging, lemmatisation, and parsing. We have
shown that the decomposition is reversible to a very
high degree, i.e. the original sentence can be deter-
ministically re-composed from these sets with only
the token-generation remains with 0.05% noise be-
low an optimal result.

While the template grammar serves as an ab-
stracted language model, the bag of items and con-
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straints select their preferred combination combina-
tions and fix morphological properties of the senence
to be generated.

In the future we want to extend the approach in
several ways. We need to investigate in how far and
with what precision a particular sentence grammar
can be retrieved from a large set of templates and
grammar rules. This investigation will follow the
approach of a previous study in (Carl et al., 2005).
Sophisticated weighing and selecting strategies are
required. For instance, in many cases more than
200,000 rules are extracted from a templates gram-
mar with 1.8 million entries. The extracted rules
share one or more tokens with the lemmas in the
bag. Since exhaustive combination of all rules is in-
feasible, the matched rules have to be weighted and
graded using different knowledge resources.

Once we know what item and constraints are re-
quired in the TL bag to extract a particular sentence
grammar, we will try to generate new sentences that
are not in the original TL corpus.

Within the METIS-II consortium we plan to run
an experiment where TL bags obtained from a bilin-
gual dictionary are to be generated in the TL. These
bags can be expected to contain ambiguities and
noise and constraints be partially inconsistent with
the retrieved sentence grammar.

These experiments will shed more light on the use-
fulness of the approach proposed in this paper and
will show whether further constraints and mecha-
nisms that certainly will turn out to become nec-
essary can be implemented consistently in the pro-
posed framework.
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