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Abstract

We evaluate several orthographic word
similarity measures in the context of bitext
word alignment. We investigate the rela-
tionship between the length of the words
and the length of their longest common
subsequence. We present an alternative
to the longest common subsequence ratio
(LCSR), a widely-used orthographic word
similarity measure. Experiments involv-
ing identification of cognates in bitexts
suggest that the alternative method outper-
forms LCSR. Our results also indicate that
alignment links can be used as a substitute
for cognates for the purpose of evaluating
word similarity measures.

1 Introduction

It has been shown that the quality of word alignment
in bitexts can be improved if the actual orthographic
form of words is considered (Kondrak et al., 2003).
Words that look or sound similar are more likely
to be mutual translations than words that exhibit no
similarity. The explanation of of this phenomenon
lies in the fact that orthographic similarity is a hall-
mark of cognates. Because of their common origin,
cognates normally coincide both in form and mean-
ing.
The concept of cognates is largely language-

independent. In the context of machine transla-
tion, cognates encompass not only genetic cog-
nates (e.g. name/nom), but also borrowings (e.g.
computer/komputer) and proper names. Even non-
lexical types, such as numbers and punctuation, are

sometimes included as well. While genetic cognates
occur only between related languages, other kinds
of cognates can be found in virtually any bitext. If
languages use different scripts, the identification of
cognates must be preceded by a transliteration or
transcription process.
In the context of bitexts, cognates have been em-

ployed in several bitext-related tasks, including sen-
tence alignment (Simard et al., 1992; Church, 1993;
McEnery and Oakes, 1996; Melamed, 1999), induc-
ing translation lexicons (Mann and Yarowsky, 2001;
Koehn and Knight, 2001), and improving statisti-
cal machine translation models (Al-Onaizan et al.,
1999; Kondrak et al., 2003). All those applications
depend on an effective method of identifying cog-
nates, which performs a well-defined task: given
two words from different languages, compute a nu-
merical score reflecting the likelihood that the words
are cognates.
In this paper, we focus on identifying cognates

on the basis of their orthographic similarity in the
context of word alignment. So far, few comparisons
of similarity measures have been published (Brew
and McKelvie, 1996; McEnery and Oakes, 1996),
We evaluate several measures of orthographic simi-
larity, with the emphasis on the measures based on
computing the longest common subsequence length.
Many word similarity/distance measures (includ-

ing the ones based on letter n-grams, the longest
common subsequence, edit distance, and Hidden
Markov Models) compute an overall score that is bi-
ased towards shorter or longer words. A solution
that is often adopted is to normalize the score by
the average or the maximum of word lengths (Brew
and McKelvie, 1996; Nerbonne and Heeringa, 1997;
Melamed, 1999). Although such a straightforward
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normalization method is preferable to using an un-
normalized score, it is not necessarily optimal. In
this paper, we investigate the possibility of deriv-
ing an alternative normalization formula by analyz-
ing the behaviour of randomly generated strings. We
present the results of experiments involving identifi-
cation of cognates in bitexts that suggest that the al-
ternative normalization method performs better than
the straightforward normalization. Although our fo-
cus is on LCS-based measures, a similar approach
could be applicable to other types of measures as
well.
Although cognates are well suited for the pur-

pose of evaluating word similarity measures, man-
ual identification of cognates is expensive. Can
manually or automatically aligned corpora be used
as a substitute for cognates? Another objective of
our experiments with bitexts is to investigate how
closely the cognation relationship correlates with
word alignment links.

2 Orthographic similarity

The simplest methods of identifying cognates on
the basis of orthographic similarity are binary. A
baseline-type approach is to accept as cognates only
words that are identical (henceforth referred to as
IDENT). Simard (1992) employs a slightly more
flexible condition: the identity of the first four let-
ters. The method can be generalized to yield a non-
binary coefficient in the [0, 1] range by dividing the
length of the longest common prefix by the length
of the longer of the two words (henceforth PRE-
FIX). For example, applying PREFIX to colour and
couleur yields 2

7 , because their longest common pre-
fix is “co-”.
Dice’s similarity coefficient (DICE), originally

developed for the comparison of biological speci-
mens, was first used to compare words by Adamson
and Boreham (1974). DICE is determined by the ra-
tio of the number of shared character bigrams to the
total number of bigrams in both words:

DICE(w1, w2) =
2 · |bigrams(w1) ∩ bigrams(w2)|

|bigrams(w1)| + |bigrams(w2)|

where bigrams(w) is a multi-set of character bigrams
in w. For example, applying DICE to colour and
couleur yields 6

11 because three bigrams are shared:
co, ou, and ur.

Melamed (1999) detects orthographic cognates by
thresholding the Longest Common Subsequence Ra-
tio (LCSR). The LCSR of two words is computed by
dividing the length of their longest common subse-
quence (LCS) by the length of the longer word:

LCSR(w1, w2) =
|LCS(w1, w2)|

max(|w1|, |w2|)
.

For example, LCSR(colour,couleur) = 5
7 , as their

longest common subsequence is “c-o-l-u-r”. Brew
and McKelvie (1996) propose a variation in which
the denominator is the average of both word lengths.
The orthographic measures described in this sec-

tion disregard the fact that alphabetic symbols ex-
press actual sounds, instead employing a binary
identity function on the level of character compar-
ison. While such measures seem to be preferred
in practice, a number of more complex approaches
have been proposed, including phonetic-based meth-
ods, which take advantage of the phonetic character-
istics of individual sounds in order to estimate their
similarity (Kessler, 1995; Nerbonne and Heeringa,
1997; Kondrak, 2000), and HMM-based methods,
which build a similarity model on the basis of train-
ing data (Mann and Yarowsky, 2001; Mackay and
Kondrak, 2005). Although such methods fall out-
side the scope of this paper, the problem of length
normalization applies to them as well.

3 Normalization

In this section, we investigate the relationship be-
tween the similarity score and the word length, fo-
cusing on the methods based on the length of the
longest common subsequence. We chose LCSR
not only because it’s a method of choice in several
bitext-oriented papers (Melamed, 1999; Brew and
McKelvie, 1996; Tiedemann, 1999), but also be-
cause of its particularly transparent way of comput-
ing the similarity score.
The reason for dividing the LCS length by the

word length is to avoid bias towards longer words.
For example, the length of the LCS is 4 in both
ideas/idées and vegetables/victimes. Obviously the
former is more orthographically similar. However,
the division by word length introduces an oppo-
site bias, albeit less pronounced, towards shorter
words. For example, the LCSR of both saw/osa
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and jacinth/hyacinthe is 2
3 . Moreover, when the

words being compared are completely identical, the
LCSR score is always one, regardless of their length.
This seems counter-intuitive because longer identi-
cal words are more likely to be related. We would
like to have a principled method to take length of
words into account, without bias in either direction.
A variety of methods have been proposed for a

related problem of computing the statistical signifi-
cance of alignment scores in bioinformatics (Water-
man and Vingron, 1994). However, those methods
are approximate in nature, and since they were de-
signed for long DNA and protein sequences, they are
not directly applicable to short strings like words.
One possible approach would be to compare the

likelihood predicted by two different models: one
for the related (cognate) words, and another for un-
related (random) words. The random model is de-
scribed in the following section. For the cognate
model, we could assume that two words originate
from a single ancestor word, and that the letters in
either word can independently change or disappear
with a given probability, which could be estimated
empirically from cognate training data. However,
our experiments suggest that the inclusion of the
cognate model does not improve the overall cog-
nate identification accuracy. Since our objective is
the ranking of the candidate pairs rather than binary
classification, we focus exclusively on the random
model.

3.1 The random model

In order to derive a normalization formula, we con-
sider the probability of seeing a given number of
matches among a given number of letters in a ran-
dom model. We adopt a simplifying assumption
that letters are randomly and independently gener-
ated from a given distribution of letter frequencies.
Let p be the probability of a match of two randomly
selected letters. For the uniform distribution of let-
ters p = 1

t
, where t is the size of the alphabet. Oth-

erwise, p =
∑t

i=1 p2
i , where pi is the probability of

the i-th letter occurring in a string, which can be es-
timated empirically from data. We are interested in
estimating the probability that the longest common
subsequence of two strings of length m and n has
the length of k, denoted as P (Lm,n = k). Without
loss of generality, we assume thatm ≤ n.

It is relatively easy to come up with the exact
probability for some special cases. If k = m = n,
the probability clearly is equal to pn. Assuming
a uniform letter distribution, the following formula
gives exact probability value for k = 0:

P (Lm,n = 0) =
1

tn+m

max(n,t)∑
i=1

(
t

i

)
S(n, i)(t − i)m

where t is the alphabet size, and S(n, i) is the Stir-
ling number of the second kind (the number of ways
of partitioning a set of n elements into i nonempty
sets). The formula is derived by dividing the num-
ber of string pairs of length n and m that have no
common letters by the total number of string pairs
of length n andm. Unfortunately, the case of k = 0
is of little use for the purpose of cognate identifica-
tion.
It is unlikely that an exact analytical formula

for the LCS distribution exists in the general case.
Such a formula would provide the precise value of
the so-called Chvatal-Sankoff constant (Chvatal and
Sankoff, 1975), which has been an open problem
for three decades. The exact expected value and the
variance of the distribution are not known either.
In the absence of an exact formula, one possible

approach is to estimate the probability distribution
by sampling. However, sampling may not be reli-
able for the probability values that are very small.
Unfortunately, this includes cases when the number
of matches is close to the word length, which are the
most interesting ones from the point of view of cog-
nate identification. Furthermore, sampling results
are specific for a given alphabet size and letter fre-
quencies. Therefore, we focus our efforts on finding
an approximate formula for P (Lm,n = k).

3.2 Approximation

The first of two formulas that we propose in this sec-
tion aims at providing a lower bound for the prob-
ability P (Lm,n < k) by making a simplifying in-
dependence assumption.1 There are exactly

(
n
k

)(
m
k

)
possible pairs of subsequences of length k. The
probability that there is a mismatch between a pair
of randomly selected subsequences of length k is

1The formula was suggested by Daniel J. Lizotte (private
communication).
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1 − pk. The simplifying assumption is that the mis-
matches between pairs of subsequences are indepen-
dent of each other. Then, for 1 ≤ k ≤ m,

P (Lm,n < k) ≥ (1 − pk)(
m

k
)(n

k
)

If we adopt the above lower bound as our approx-
imation, then, for 1 ≤ k < m,

P (Lm,n = k) = (1)
= P (Lm,n < k + 1) − P (Lm,n < k)

≈ (1 − pk+1)(
m

k+1)(
n

k+1) − (1 − pk)(
m

k
)(n

k
)

In particular,

P (Lm,n = 0) = P (Lm,n < 1) ≥ (1 − p)mn

and

P (Ln,n = n) = 1 − P (Lm,n < n) = pn

Formula 1 it is not exact in general. For example,
for k = 0 and t = n = m = 2, formula 1 pre-
dicts 1

16 , whereas the formula given in Section 3.1
correctly yields 1

8 .
The second formula calculates the expected num-

ber ETk of pairs of k-letter subsequences, one from
each of the two words, that are identical.2 The prob-
ability that a pair of randomly selected sequences of
length k match perfectly is pk, and there are

(
n
k

)(
m
k

)
such pairs. Therefore,

ETk =

(
n

k

)(
m

k

)
pk (2)

When ETk is very small, we may take its value
as an approximation of P (Lm,n = k). In particular,
ETn = pn = P (Ln,n = n), form = n.
For values of k that are close to max(m,n), both

formulas are good approximations to P (Lm,n = k),
and return very similar values. However, as the k/n
ratio decreases, the approximations become less pre-
cise until they become completely unreliable. For
certain small ratios, formula 1 actually produces
negative values, while formula 2 yields values ex-
ceeding 1. However, since our objective is cognate
identification, we are mainly interested in words that
exhibit higher ratios of k/n.

2The second formula was suggested by Robert B. Israel (pri-
vate communication). Steele (1982) proposed a similar formula
as an alternative to the length of the longest common subse-
quence for measuring genetic proximity of DNA strings.

3.3 An alternative similarity measure

Either of the formulas porpoised in Section 3.2 can
serve a basis of a similarity measure. In this sec-
tion, we define a similarity measure based on for-
mula 2. We chose formula 2 because it is simpler
and appears more robust against numerical under-
flow problems in the case of very long words.
Recall that LCSR(w1, w2) = k/n, where k =

|LCS(w1, w2)| and n = max(|w1|, |w2|). We define
a new measure celled the Longest Common Subse-
quence Formula (LCSF):

LCSF (w1, w2) = max(−log(

(
n

k

)(
n

k

)
pk), 0)

In the above definition, the lengthm of the shorter
word, which appears in formula 2, is replaced by the
length n of the longer word. This introduces a desir-
able bias against words of different lengths, which
are less likely to represent cognates.
In practice, computing LCSF is as fast as LCSR.

Since p is constant, the values of LCSF depend only
on k and n. Using the dynamic programming prin-
ciple, the values can be computed incrementally and
stored in a two-dimensional array. The same array is
then re-used for calculating the similarity of all pairs
of words.

4 Evaluation

In order to objectively evaluate similarity measures,
we need a gold standard that classifies pairs of words
as either similar or dissimilar. However, word simi-
larity is not a binary notion. At most, we can say that
some word pairs are more similar than others, but
such a judgment is necessarily subjective. Instead,
we can use the notion of cognation as a substitute
for similarity. Cognation is a binary notion, which
in the vast majority of cases can be objectively es-
tablished by human experts. Our assumption is that
most cross-language cognates are orthographically
similar mutual translations, and vice-versa.

4.1 Cognates vs. alignment links

Manual identification of cognates, although feasible
for small data sets, is expensive. Another possibil-
ity is using bitext word alignment as the gold stan-
dard. Although only a fraction of alignments corre-
spond to orthographically similar words, we hypoth-
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esize that the proportion of orthographically simi-
lar words among the words that are aligned is much
higher than among words that are not aligned. The
confirmation of the above hypothesis was one of the
objectives of our experiments. Another objective of
our experiments was to investigate whether manu-
ally aligned bitexts can be substituted with automat-
ically aligned bitexts for the purpose of evaluating
word similarity measures. The former are relatively
small and expensive to create, while the latter are
easily available, but have lower alignment accuracy.
It must be noted that the relationship between co-

gnates co-occurring in aligned sentences and word
alignment links is not completely straightforward.
First of all, the majority of aligned tokens are not
cognates — their surface forms provide no clue that
they are in fact translations. When word alignment
links are used to evaluate similarity measures, such
pairs constitute the majority of false negatives. For-
tunately, this problem uniformly affects all mea-
sures. On the other hand, not all co-occurring cog-
nates correspond to word alignment links. Quite
often, a word is cognate with several words in the
corresponding sentence, but it is correctly aligned
with just one of them. This phenomenon occurs
for instance when there are multiple occurrences
of the same word within a sentence. The result-
ing false positives make it virtually impossible to
achieve 100% precision even at low recall levels.

4.2 Evaluation methodology

Our approach to evaluating a word similarity mea-
sure on the basis of a word aligned bitext is to treat
each set of aligned sentences as bags of words, and
compute the similarity of each possible pairing of
words. Each pair is evaluated against a gold stan-
dard, which is either a list of cognate pairs or a
list of alignment links. If the method is binary, it
will divide the set of word pairings into likely cog-
nates and unlikely cognates. However, most of the
methods do not produce a binary cognation decision.
This provides a flexibility of adapting the similar-
ity threshold to the precision required by a specific
application. In such a case, the pairs are sorted in
the descending order of their similarity value. The
true positives should be dense at the top of the list
and become less frequent as we move down the list.
We measure precision at various cutoff levels in the

sorted list. If the total number of true positives in
the bitext is known, we set the cutoff levels to cor-
respond to specific recall levels; otherwise, we set
them in relation to absolute numbers of true posi-
tives.

4.3 Data

In our experiments, we used three different, ma-
nually aligned bitexts (Table 1). They contain on
average between two and five cognate pairs per sen-
tence.

Blinker Hansards Romanian
Sentences 250 500 248
Tokens (English) 7510 7937 5638
Tokens (other) 8191 8740 5495
Cognates 967 1080 1216
Alignment links 10097 4435 6201

Table 1: Breakdown of the bitexts used in the exper-
iments.

The Blinker bitext (Melamed, 1998) is a word-
aligned French-English bitext containing 250 Bible
verse pairs. The bitext is somewhat unusual for sev-
eral reasons: it is not a continuous text, both parts are
translations from a third language, and its style is not
representative of modern usage. Nevertheless, the
alignments are of high quality, produced by several
annotators. In our experiments, we used the align-
ments of a single annotator (A1).
We manually identified all cognate word pairs in

the Blinker bitext. The cognation judgments were
made on the basis of information in etymological
dictionaries. For words to be classified as cognate,
their roots, not just affixes, must share a common
origin. In the case of compound words with multi-
ple roots, a single cognate root was considered suf-
ficient. In total, there are 967 cognate pairs, which
can be classified as genetic cognates (10%), borrow-
ings (57%), and proper names (43%). 84% of the
cognate pairs correspond to word alignment links.
The total number of distinct cognate pairs is 584.
The second bitext used in our experiments is a

manually aligned sample from the Hansards - pro-
ceedings of the Canadian parliament (Och and Ney,
2000b). The alignment links are classified either as
sure (S) or probable (P). In our experiments we used
only the S links. The number of cognates in the bi-
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Figure 1: Performance of various similarity measures on the Blinker bitext evaluated against actual cognate
pairs (left), and manually annotated word alignment links (right).

text was estimated by counting all cognate pairs in
25 randomly selected sentences, and extrapolating
the result.
The third bitext is a manually aligned Romanian-

English corpus containing newspaper-style text (Mi-
halcea and Pedersen, 2003). The estimate of the
number of cognates in the bitext was based on 31
randomly selected sentences.

4.4 Results

Figures 1, 2, and 3 contain plots that compare the
interpolated precision values corresponding to var-
ious measures on the Blinker, Hansards, and the
Romanian-English bitexts, respectively. In all three
cases, we calculated the precision against a list of
manually identified word alignment links. In addi-
tion, we also calculated the precision against a com-
plete list of cognate pairs in the Blinker bitext, and
against a list of machine-generated links obtained
with the Giza statistical machine translation pack-
age (Och and Ney, 2000a) in the Hansards sample.
Since orthographic similarity by itself can only iden-
tify a fraction of word alignment links, we used fixed
cutoff levels instead of recall in all plots except the
first one. The cutoff levels correspond to absolute
numbers of correctly identified alignment links.
We performed statistical significance tests for all

pairs of similarity measures at various cutoff levels.

Following the method proposed by Evert (2004), we
applied Fisher’s exact test to counts of word pairs
that are accepted by only one of two similarity mea-
sures. The results of the significance tests are incor-
porated into the plots in a compact way: the points
that are superimposed on the plot curves indicate
cases where the corresponding measure achieves a
significantly higher precision than the measure im-
mediately below it (at 95% confidence level). As ex-
pected, the minimum spread necessary for statistical
significance decreases as the number of true posi-
tives increases.
There are three distinct phases that can be iden-

tified in the plots. The first phase, characterized by
relatively high precision, corresponds to the set of
easily identifiable cognate pairs and proper names.
In the second phase, there is a perceivable drop in
precision corresponding to the set of cognate pairs
that are more difficult to distinguish from acciden-
tal similarities. Finally, in the third phase, almost all
cognates have been identified, and the measures con-
verge to a random baseline level. This third phase is
nearly absent from the first plot of Figure 1 because
its x axis corresponds to cognate pairs rather than to
word alignment links.
The results imply a fairly consistent ranking of

the tested similarity measures. The IDENT mea-
sure almost immediately reaches the random base-
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Figure 2: Performance of various similarity measures on the Hansards sample evaluated against manually
annotated (left), and automatically generated (right) word alignment links.

line level. PREFIX is comparable to other mea-
sures during the first phase, but then its performance
drops off sharply. Although LCSR has worse (non-
linear) time complexity than DICE, in many cases
it is not significantly better, and is actually worse on
the Romanian-English corpus. LCSF, the newly pro-
posed measure based on the longest common subse-
quence length, consistently outperforms LCSR, and
the differences are generally statistically significant,
except in the third phase.
Apart from the comparison of specific measures,

the overall concordance between both pairs of plots
in Figures 1 and 2 suggests that for the purpose of
evaluating word similarity measures, cognate links
can be substituted with word alignment links, even
when the links are automatically generated.

5 Conclusion

We have presented an alternative to the longest com-
mon subsequence ratio (LCSR), a widely-used or-
thographic word similarity measure. Experiments
involving identification of cognates in bitexts sug-
gest that the alternative method outperforms LCSR.
We have also evaluated several other orthographic
word similarity measures in the context of bitext
word alignment. Our results indicate that alignment
links could be used as a substitute for cognates for
the purpose of evaluating word similarity measures.
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Figure 3: Performance of various similarity mea-
sures on the Romanian-English bitext evaluated
against manually annotated word alignment links.

In the future, we would like to extend our length
normalization approach to edit distance and other
similarity/distance measures. We also plan to exper-
iment with incorporating cognate identification di-
rectly into statistical machine translation models as
an additional feature function within the maximum
entropy framework (Och and Ney, 2002).
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