
Dependency Treelet Translation: The convergence of statistical and 
example-based machine-translation? 

Arul Menezes and Chris Quirk 
Microsoft Research 

One Microsoft Way, Redmond, WA 98052 
{arulm,chrisq}@microsoft.com 

 

Abstract 

We describe a novel approach to machine 
translation that combines the strengths of the 
two leading corpus-based approaches: 
Phrasal SMT and EBMT. We use a 
syntactically informed decoder and 
reordering model based on the source 
dependency tree, in combination with 
conventional SMT models to incorporate the 
power of phrasal SMT with the linguistic 
generality available in a parser. We show 
that this approach significantly outperforms 
a leading string-based Phrasal SMT decoder 
and an EBMT system. We present results 
from two radically different language pairs, 
and investigate the sensitivity of this 
approach to parse quality by using two 
distinct parsers and oracle experiments. We 
also validate our automated BLEU scores 
with a small human evaluation. 

1. Introduction 

Current example-based (EBMT) and statistical 
(SMT) machine translation systems both use 
phrases learned from parallel corpora, yet while 
the two approaches are closer than ever, some 
critical differences remain. (Way & Gough, 2005) 
On the one hand, while statistical systems excel at 
producing correct, even idiomatic translations at 
the local level, they are still challenged by many 
linguistic phenomena, such as global constituent 
ordering. While SMT excels at translating 
domain-specific terminology and fixed phrases, 
grammatical generalizations are poorly captured 
and often mangled in translation (Thurmair, 04).  

On the other hand, many EBMT systems do not 
fully exploit the power that results from a 
combination of multiple powerful statistical 
models. In particular, we believe that the recent 
dominance of SMT systems in competitive 

evaluations indicates that an end-to-end search 
over a weighted linear combination of statistical 
models is essential for high-quality translation. 
However, there is no indication that these models 
must necessarily be linguistically uninformed. 

1.1. Limitations of string-based phrasal SMT 

State-of-the-art phrasal SMT systems such as 
(Koehn et al., 03) and (Vogel et al., 03) model 
translations of phrases (here, strings of adjacent 
words, not syntactic constituents) rather than 
individual words. Arbitrary reordering of words is 
allowed within memorized phrases, but typically 
only a small amount of phrase reordering is 
allowed, modeled in terms of offset positions at 
the string level. This reordering model is very 
limited in terms of linguistic generalizations. For 
instance, when translating English to Japanese, an 
ideal system would automatically learn large-
scale typological differences: English SVO 
clauses generally become Japanese SOV clauses, 
English post-modifying prepositional phrases 
become Japanese pre-modifying postpositional 
phrases, etc. A phrasal SMT system may learn the 
internal reordering of specific common phrases, 
but it cannot generalize to unseen phrases that 
share the same linguistic structure. 

In addition, these systems are limited to 
phrases contiguous in both source and target, and 
thus cannot learn the generalization that English 
not may translate as French ne…pas except in the 
context of specific intervening words.  

1.2. Previous work on syntactic SMT and 
statistical EBMT 

The hope in the SMT community has been that 
the incorporation of syntax would address these 
issues, but that promise has yet to be realized1. 

                                                           
1 Note that as the focus of this paper is decoding, we do not discuss the large 
body of work incorporating syntax into the word alignment process. 

99



One simple means of incorporating syntax into 
SMT decoding is by re-ranking the n-best list of a 
baseline SMT system using various syntactic 
models, but Och et al. (04) found very little 
positive impact with this approach. However, an 
n-best list of even 16,000 translations captures 
only a tiny fraction of the ordering possibilities of 
a 20 word sentence; re-ranking provides the 
syntactic model no opportunity to boost or prune 
large sections of that search space.  

Inversion Transduction Grammars (Wu, 97), or 
ITGs, treat translation as a process of parallel 
parsing of the source and target language via a 
synchronized grammar. To make this process 
computationally efficient, however, some severe 
simplifying assumptions are made, such as using 
a single non-terminal label. This results in the 
model simply learning a very high level 
preference regarding how often nodes should 
switch order without any contextual information. 
Also these translation models are intrinsically 
word-based; phrasal combinations are not 
modeled directly, and results have not been 
competitive with the top phrasal SMT systems.  

Along similar lines, Alshawi et al. (2000) treat 
translation as a process of simultaneous induction 
of source and target dependency trees using head-
transduction; again, no separate parser is used. 

Yamada and Knight (01) employ a parser in the 
target language to train probabilities on a set of 
operations that convert a target language tree to a 
source language string. This improves fluency 
slightly (Charniak et al., 03), but fails to 
significantly impact overall translation quality. 
This may be because the parser is applied to MT 
output, which is notoriously unlike native 
language, and no additional insight is gained via 
source language analysis.  

Lin (04) translates dependency trees using 
paths. This is the first attempt to incorporate large 
phrasal SMT-style memorized patterns together 
with a separate source dependency parser and 
SMT models. However the phrases are limited to 
linear paths in the tree, the only SMT model used 
is a maximum likelihood channel model and there 
is no ordering model. Reported BLEU scores are 
far below the leading phrasal SMT systems. 

Aue et al. (04) recently reported incorporating 
a logical form (LF) or dependency tree-based 
statistical language model into an existing EBMT 
system. MSR-MT (Menezes & Richardson, 03) 

parses both source and target languages to obtain 
a logical form (LF), and translates source LFs 
using memorized aligned LF examples to produce 
a target LF. It utilizes a separate sentence 
realization component (Ringger et al., 04) to turn 
this into a target sentence. As a result, Aue could 
not use an end-to-end search over a linear 
combination of models, and the simple addition of 
a single target language model did not provide 
much improvement.  

2. Dependency Treelet Translation 

In this paper we propose a novel dependency tree-
based approach to phrasal SMT which uses tree-
based ‘phrases’ and a tree-based ordering model 
in combination with conventional SMT models to 
produce translations significantly better than a 
leading string-based system.  

Our system employs a source-language 
dependency parser, a target language word 
segmentation component, and an unsupervised 
word alignment component to learn treelet 
translations from a parallel sentence-aligned 
corpus. We begin by parsing the source text to 
obtain dependency trees and word-segmenting the 
target side, then applying an off-the-shelf word 
alignment component to the bitext.  

The word alignments are used to project the 
source dependency parses onto the target 
sentences. From this aligned parallel dependency 
corpus we extract a treelet translation model 
incorporating source and target treelet pairs, 
where a treelet is defined to be an arbitrary 
connected subgraph of the dependency tree. A 
unique feature is that we allow treelets with a 
wildcard root, effectively allowing mappings for 
siblings in the dependency tree. This allows us to 
model important phenomena, such as not …  
ne…pas. We also train a variety of statistical 
models on this aligned dependency tree corpus, 
including a channel model and an order model.  

To translate an input sentence, we parse the 
sentence, producing a dependency tree for that 
sentence. We then employ a decoder to find a 
combination and ordering of treelet translation 
pairs that cover the source tree and are optimal 
according to a set of models that are combined in 
a log-linear framework as in (Och, 03).  

This approach offers the following advantages 
over string-based SMT systems: Instead of 

100



limiting learned phrases to contiguous word 
sequences, we allow translation by all possible 
phrases that form connected subgraphs (treelets) 
in the source and target dependency trees. This is 
a powerful extension: the vast majority of 
surface-contiguous phrases are also treelets of the 
tree; in addition, we gain discontiguous phrases, 
including combinations such as verb-object, 
article-noun, adjective-noun etc. regardless of the 
number of intervening words. 

Another major advantage is the ability to 
employ more powerful models for reordering 
source language constituents. These models can 
incorporate information from the source analysis. 
For example, we may model directly the 
probability that the translation of an object of a 
preposition in English should precede the 
corresponding postposition in Japanese, or the 
probability that a pre-modifying adjective in 
English translates into a post-modifier in French. 

2.1. Parsing and alignment 

We require a source language dependency parser 
that produces unlabeled, ordered dependency 
trees and annotates each source word with a part-
of-speech (POS). An example dependency tree is 
shown in Figure 1. The arrows indicate the head 
annotation, and the POS for each candidate is 
listed underneath. For the target language we only 
require word segmentation.  

To obtain word alignments we currently use 
GIZA++ (Och & Ney, 03). We follow the 
common practice of deriving many-to-many 
alignments by running the IBM models in both 
directions and combining the results heuristically. 
Our heuristics differ in that they constrain many-
to-one alignments to be contiguous in the source 
dependency tree. A detailed description of these 
heuristics can be found in (Quirk et al, 2004). 

2.2. Projecting dependency trees 

Given a word aligned sentence pair and a source 
dependency tree, we use the alignment to project 
the source structure onto the target sentence. One-
to-one alignments project directly to create a 

target tree isomorphic to the source. Many-to-one 
alignments project similarly; since the ‘many’ 
source nodes are connected in the tree, they act as 
if condensed into a single node. In the case of 
one-to-many alignments we project the source 
node to the rightmost2 of the ‘many’ target words, 
and make the rest of the target words dependent 
on it. 

Unaligned target words3 are attached into the 
dependency structure as follows: assume there is 
an unaligned word tj in position j. Let i < j and k 
> j be the target positions closest to j such that ti 
depends on tk or vice versa: attach tj to the lower 
of ti or tk. If all the nodes to the left (or right) of 
position j are unaligned, attach tj to the left-most 
(or right-most) word that is aligned. 

The target dependency tree created in this 
process may not read off in the same order as the 
target string, since our alignments do not enforce 
phrasal cohesion. For instance, consider the 
projection of the parse in Figure 1 using the word 
alignment in Figure 2a. Our algorithm produces 
the dependency tree in Figure 2b. If we read off 
the leaves in a left-to-right in-order traversal, we 

                                                           
2 If the target language is Japanese, leftmost may be more appropriate. 
3 Source unaligned nodes do not present a problem, with the exception that if 
the root is unaligned, the projection process produces a forest of target trees 
anchored by a dummy root.  

startup properties and options
Noun Noun Conj Noun  

Figure 1. An example dependency tree. 

startup properties and options

propriétés et options de démarrage  
(a) Word alignment. 
 

 

startup properties and options

propriétés de démarrage et options

 
 

 (b) Dependencies after initial projection. 
 

 

startup properties and options

propriétés et options de démarrage

 
(c) Dependencies after reattachment step. 

 

Figure 2. Projection of dependencies. 

101



do not get the original input string: de démarrage 
appears in the wrong place. 

A second reattachment pass corrects this 
situation. For each node in the wrong order, we 
reattach it to the lowest of its ancestors such that 
it is in the correct place relative to its siblings and 
parent. In Figure 2c, reattaching démarrage to et 
suffices to produce the correct order.  

2.3. Extracting treelet translation pairs 

From the aligned pairs of dependency trees we 
extract all pairs of aligned source and target 
treelets along with word-level alignment linkages, 
up to a configurable maximum size. We also keep 
treelet counts for maximum likelihood estimation.  

2.4. Order model 

Phrasal SMT systems often use a model to score 
the ordering of a set of phrases. One approach is 
to penalize any deviation from monotone 
decoding; another is to estimate the probability 
that a source phrase in position i translates to a 
target phrase in position j (Koehn et al., 03). 

We attempt to improve on these approaches by 
incorporating syntactic information. Our model 
assigns a probability to the order of a target tree 
given a source tree. Under the assumption that 
constituents generally move as a whole, we 
predict the probability of each given ordering of 
modifiers independently. That is, we make the 
following simplifying assumption (where c is a 
function returning the set of nodes modifying t): 

∏
∈

=
Tt

TStcorderTSTorder ),|))((P(),|)(P(  

Furthermore, we assume that the position of each 
child can be modeled independently in terms of a 
head-relative position: 

),|),(P(),|))((P(
)(

TStmposTStcorder
tcm

∏
∈

=  

Figure 3a demonstrates an aligned dependency 
tree pair annotated with head-relative positions; 
Figure 3b presents the same information in an 
alternate tree-like representation. 

We currently use a small set of features 
reflecting very local information in the 
dependency tree to model P(pos(m,t) | S, T): 
• The lexical items of the head and modifier. 
• The lexical items of the source nodes aligned 

to the head and modifier. 

• The part-of-speech ("cat") of the source nodes 
aligned to the head and modifier. 

• The head-relative position of the source node 
aligned to the source modifier. (One can also 
include features of siblings to produce a 
Markov ordering model. However, we found 
that this had little impact in practice). 

As an example, consider the children of 
propriété in Figure 3. The head-relative positions 
of its modifiers la and Cancel are -1 and +1, 
respectively. Thus we try to predict as follows: 

P(pos(m1) = -1 | 
lex(m1)="la", lex(h)="propriété", 
lex(src(m1))="the", lex(src(h)="property", 
cat(src(m1))=Determiner, cat(src(h))=Noun, 
position(src(m1))=-2) · 

P(pos(m2) = +1 | 
lex(m2)="Cancel", lex(h)="propriété", 
lex(src(m2))="Cancel", lex(src(h))="property", 
cat(src(m2))=Noun, cat(src(h))=Noun, 
position(src(m2))=-1) 

The training corpus acts as a supervised training 
set: we extract a training feature vector from each 
of the target language nodes in the aligned 
dependency tree pairs. Together these feature 
vectors are used to train a decision tree 
(Chickering, 02). The distribution at each leaf of 
the DT can be used to assign a probability to each 
possible target language position. A more detailed 
description is available in (Quirk at al, 2004). 

the-2 Cancel-1 property-1 uses these-1 settings+1

la-1 propriété-1 Cancel+1 utilise ces-1 paramètres+1

 
(a) Head annotation representation 
 

uses

property-1              settings+1

the-2 Cancel-1                 these-1

la-1             Cancel+1         ces-1

propriété-1                        paramètres+1

utilise  
(b) Branching structure representation. 
 

Figure 3.  Aligned dependency tree pair, annotated with 
head-relative positions 

102



2.5. Other models 

Channel Models: We incorporate two distinct 
channel models, a maximum likelihood estimate 
(MLE) model and a model computed using 
Model-1 word-to-word alignment probabilities as 
in (Vogel et al., 03). The MLE model effectively 
captures non-literal phrasal translations such as 
idioms, but suffers from data sparsity. The word-
to-word model does not typically suffer from data 
sparsity, but prefers more literal translations.  

Given a set of treelet translation pairs that 
cover a given input dependency tree and produce 
a target dependency tree, we model the 
probability of source given target as the product 
of the individual treelet translation probabilities: 
we assume a uniform probability distribution over 
the decompositions of a tree into treelets.  
Target Model: Given an ordered target language 
dependency tree, it is trivial to read off the surface 
string. We evaluate this string using a trigram 
model with modified Kneser-Ney smoothing.  
Miscellaneous Feature Functions: The log-linear 
framework allows us to incorporate other feature 
functions as ‘models’ in the translation process. 
For instance, using fewer, larger treelet translation 
pairs often provides better translations, since they 
capture more context and allow fewer possibilities 
for search and model error. Therefore we add a 
feature function that counts the number of phrases 
used. We also add a feature that counts the 
number of target words; this acts as an 
insertion/deletion bonus/penalty.  

3. Decoding 

The challenge of tree-based decoding is that the 
traditional left-to-right decoding approach of 
string-based systems is inapplicable. Additional 
challenges are posed by the need to handle 
treelets—perhaps discontiguous or overlapping—
and a combinatorially explosive ordering space.  

Our decoding approach is influenced by ITG 
(Wu, 97) with several important extensions. First, 
we employ treelet translation pairs instead of 
single word translations. Second, instead of 
modeling rearrangements as either preserving 
source order or swapping source order, we allow 
the dependents of a node to be ordered in any 
arbitrary manner and use the order model 
described in section 2.4 to estimate probabilities. 

Finally, we use a log-linear framework for model 
combination that allows any amount of other 
information to be modeled.  

We will initially approach the decoding 
problem as a bottom up, exhaustive search. We 
define the set of all possible treelet translation 
pairs of the subtree rooted at each input node in 
the following manner: A treelet translation pair x 
is said to match the input dependency tree S iff 
there is some connected subgraph S’ that is 
identical to the source side of x. We say that x 
covers all the nodes in S’ and is rooted at source 
node s, where s is the root of matched subgraph 
S’.  

We first find all treelet translation pairs that 
match the input dependency tree. Each matched 
pair is placed on a list associated with the input 
node where the match is rooted. Moving bottom-
up through the input dependency tree, we 
compute a list of candidate translations for the 
input subtree rooted at each node s, as follows:  

Consider in turn each treelet translation pair x 
rooted at s. The treelet pair x may cover only a 
portion of the input subtree rooted at s. Find all 
descendents s' of s that are not covered by x, but 
whose parent s'' is covered by x. At each such 
node s'' look at all interleavings of the children of 
s'' specified by x, if any, with each translation t' 
from the candidate translation list4 of each child 
                                                           
4 Computed by the previous application of this procedure to s' during the 
bottom-up traversal. 

installed

software is on

the computer

your  
 (a) Example input dependency tree. 

installed

on

computer

your

votre

ordinateur

sur

installés  
(b) Example treelet translation pair. 
 

Figure 4.  Example decoder structures. 

103



s'. Each such interleaving is scored using the 
models previously described and added to the 
candidate translation list for that input node. The 
resultant translation is the best scoring candidate 
for the root input node. 

As an example, see the example dependency 
tree in Figure 4a and treelet translation pair in 4b. 
This treelet translation pair covers all the nodes in 
4a except the subtrees rooted at software and is. 
We first compute (and cache) the candidate 
translation lists for the subtrees rooted at software 
and is, then construct full translation candidates 
by attaching those subtree translations to installés 
in all possible ways. The order of sur relative to 
installés is fixed; it remains to place the translated 
subtrees for the software and is. Note that if c is 
the count of children specified in the mapping and 
r is the count of subtrees translated via recursive 
calls, then there are (c+r+1)!/(c+1)! orderings. 
Thus (1+2+1)!/(1+1)! = 12 candidate translations 
are produced for each combination of translations 
of the software and is. 

3.1. Optimality-preserving optimizations 

Dynamic Programming 
Converting this exhaustive search to dynamic 
programming relies on the observation that 
scoring a translation candidate at a node depends 
on the following information from its 
descendents: the order model requires features 
from the root of a translated subtree, and the 
target language model is affected by the first and 
last two words in each subtree. Therefore, we 
need to keep the best scoring translation candidate 
for a given subtree for each combination of (head, 
leading bigram, trailing bigram), which is, in the 
worst case, O(V5), where V is the vocabulary size. 
The dynamic programming approach therefore 
does not allow for great savings in practice 
because a trigram target language model forces 
consideration of context external to each subtree.  

3.2. Lossy optimizations 

The following optimizations do not preserve 
optimality, but work well in practice. 

N-best lists 
Instead of keeping the full list of translation 
candidates for a given input node, we keep a top-
scoring subset of the candidates. While the 

decoder is no longer guaranteed to find the 
optimal translation, in practice the quality impact 
is minimal with a list size ≥ 10 (see Table 5.6).  

Variable-sized n-best lists: A further speedup 
can be obtained by noting that the number of 
translations using a given treelet pair is 
exponential in the number of subtrees of the input 
not covered by that pair. To limit this explosion 
we vary the size of the n-best list on any recursive 
call in inverse proportion to the number of 
subtrees uncovered by the current treelet. This has 
the intuitive appeal of allowing a more thorough 
exploration of large treelet translation pairs (that 
are likely to result in better translations) than of 
smaller, less promising pairs.  

Pruning treelet translation pairs 
Channel model scores and treelet size are 
powerful predictors of translation quality. 
Heuristically pruning low scoring treelet 
translation pairs before the search starts allows 
the decoder to focus on combinations and 
orderings of high quality treelet pairs.  
• Only keep those treelet translation pairs with 

an MLE probability above a threshold t. 
• Given a set of treelet translation pairs with 

identical sources, keep those with an MLE 
probability within a ratio r of the best pair.  

• At each input node, keep only the top k treelet 
translation pairs rooted at that node, as ranked 
first by size, then by MLE channel model 
score, then by Model 1 score. The impact of 
this optimization is explored in Table 5.6.  

Greedy ordering 
The complexity of the ordering step at each node 
grows with the factorial of the number of children 
to be ordered. This can be tamed by noting that 
given a fixed pre- and post-modifier count, our 
order model is capable of evaluating a single 
ordering decision independently from other 
ordering decisions. 

One version of the decoder takes advantage of 
this to severely limit the number of ordering 
possibilities considered. Instead of considering all 
interleavings, it considers each potential modifier 
position in turn, greedily picking the most 
probable child for that slot, moving on to the next 
slot, picking the most probable among the 
remaining children for that slot and so on. 

104



The complexity of greedy ordering is linear, 
but at the cost of a noticeable drop in BLEU score 
(see Table 5.4). Under default settings our system 
tries to decode a sentence with exhaustive 
ordering until a specified timeout, at which point 
it falls back to greedy ordering. 

4. Experiments 

We evaluated the translation quality of the system 
using the BLEU metric (Papineni et al., 02) under 
a variety of configurations. We compared against 
two radically different types of systems to 
demonstrate the competitiveness of this approach:  
• Pharaoh: A leading phrasal SMT decoder 

(Koehn et al., 03). 
• The MSR-MT system described in Section 1, 

an EBMT/hybrid MT system.  

4.1. Language pairs 

We ran experiments in English French and 
English Japanese. The latter was chosen 
deliberately to highlight the challenges facing 
string-based MT approaches in language pairs 
with significant word-order differences. 

Word order in Japanese is fundamentally very 
different from English. English is generally SVO 
(subject first, then verb, then object), where 
Japanese is SOV with a strong bias for head-final 

structures. Several other differences include: 
• Word order is more flexible, since verbal 

arguments are generally indicated by 
postpositions, e.g. a direct object is indicated 
by the postposition を (o), a subject by が 
(ga).  

• Most post-modifying English phrases (such as 
relative clauses and prepositional phrases) are 
translated as Japanese pre-modifiers; 
demonstratives and adjectives remain pre-
modifiers. 

• Verbal and adjectival morphology in Japanese 
is relatively complex: information contained 
in English pre-modifying modals and 
auxiliaries is often represented as verbal 
morphology. 

• Japanese nouns and noun phrases are not 
marked for definiteness or number. 

The word-aligned sentence pair in Figure 1 
demonstrates many of these phenomena. 

4.2. Data 

We used a corpus of Microsoft technical data 
(e.g., support articles, product documentation) 
containing over 1 million sentence pairs for each 
language-pair. We excluded sentences containing 
XML or HTML tags and for each language pair 
randomly selected training data sets ranging from 
1,000 to 500,000 sentence pairs as well as 10,000 
sentences for development testing and parameter 
tuning, 250 sentences for lambda training and 
10,000 sentences for testing. Table 4.1 presents 
some characteristics of this corpus. 

4.3. Training 

We parsed the source (English) side of the corpus 
using two different parsers: NLPWIN, a broad-
coverage rule-based parser developed at 
Microsoft Research able to produce syntactic 
analyses at varying levels of depth (Heidorn, 02)  

Figure 1. English-Japanese word alignment 

  English French English Japanese 
Training Sentences 500,000 500,000 
 Words 6,598,914 7,234,153 7,909,198 9,379,240 
 Vocabulary 72,440 80,758 66,731 68,048 
 Singletons 38,037 39,496 50,381 52,911 
Test Sentences 10,000 10,000 
 Words 133,402 153,701 175,655 211,139 

Table 4.1 Data characteristics 

105



and a Treebank parser (Bikel, 04). For the 
purposes of these experiments we used a 
dependency tree output with part-of-speech tags 
and unstemmed, case-normalized surface words.  

For word alignment, we used GIZA++, 
following a standard training regimen of five 
iterations of Model 1, five iterations of the HMM 
Model, and five iterations of Model 4, in both 
directions.  

The target language models were trained using 
only the French and Japanese sides, respectively, 
of the parallel corpus; additional monolingual 
data may improve its performance. Finally we 
trained lambdas via Maximum BLEU (Och, 03) 
on 250 held-out sentences with a single reference 
translation, and tuned the decoder optimization 
parameters (n-best list size, timeouts etc) on the 
development test set. 

Pharaoh 
The same GIZA++ alignments as above were 
used in the Pharaoh decoder. We used the 
heuristic combination described in (Och & Ney, 
03) and extracted phrasal translation pairs from 
this combined alignment as described in (Koehn 
et al., 03). Except for the order model (Pharaoh 
uses a penalty on the deviance from monotone), 
the same models were used: MLE channel model, 
Model 1 channel model, target language model, 
phrase count, and word count. Lambdas were 
trained in the same manner (Och, 03). 

MSR-MT 
MSR-MT used its own word alignment approach 
as described in (Menezes & Richardson, 03) on 
the same training data. MSR-MT does not use 
lambdas or a target language model. 

5. Results 

We present BLEU scores on an unseen 10,000 
sentence test set using a single reference 
translation for each sentence. Speed numbers are 
the end-to-end translation speed in sentences per 
minute. Unless otherwise specified all results are 
based on a phrase size of 4 and a training set size 
of 100,000 sentences for English French and 
500,000 sentences for English  Japanese. Unless 
otherwise noted all the differences between 
systems are statistically significant at P < 0.01 

Comparative results are presented in Table 5.1. 
Pharaoh monotone refers to Pharaoh with phrase 
reordering disabled. 

Table 5.2 compares the systems at different 
training corpus sizes. All the differences are 
statistically significant at P < 0.01 except for 
English Japanese at training set sizes less than 
30K.  Note that in English French, where word 
order differences are mainly local, the gap 
between the systems narrows slightly with larger 
corpus sizes, however in English Japanese, with 
global ordering differences, the treelet system’s 
margin over Pharaoh (initially negative) actually 
increases with increasing corpus size. 

Table 5.3 compares Pharaoh and the Treelet 
system at different phrase sizes. The wide gap at 
smaller phrase sizes is particularly striking. It 
appears that while Pharaoh depends heavily on 
long phrases to encapsulate reordering, our 
dependency tree-based ordering model enables 
credible performance even with short 
phrases/treelets. Our treelet system with two-word 
treelets outperforms Pharaoh with six-word 
phrases. 

 English French, 100K English Japanese, 500K 
 BLEU Sents/min BLEU Sents/min 
Pharaoh monotone 37.06 4286 25.06 1600 
Pharaoh 38.83 162 30.58 82 
MSR-MT 35.26 453 - - 
Treelet 40.66 10.1 33.18 21 

Table 5.1 System comparisons 

  1k 3k 10k 30k 100k 300k 500K 
English  French Pharaoh 17.20  22.51  27.70  33.73  38.83  42.75  - 
 Treelet 18.70 25.39 30.96 35.81 40.66 44.32 - 
English  Japanese Pharaoh 14.85 15.99 18.18 21.89 23.01 26.67 30.58 
 Treelet 13.90 15.39 18.94 23.99 25.68 29.97 33.18 

Table 5.2 BLEU scores at different training set sizes, phrase/treelet size 4  

106



Table 5.4 compares different ordering 
strategies. In contrast to results reported for 
English-Chinese (Vogel et al., 03), monotone 
decoding severely degrades the performance of 
both systems in English Japanese, presumably 
due to the large ordering variation between the 
two languages. In English-French the degradation 
is less marked. 

 BLEU  
Pharaoh 23.01 
NLPWIN parser: top parse only 25.68 
Bikel parser: top parse only 24.15 

Table 5.5 Using different parsers  
(English Japanese, data size 100k, phrase size 4)  

Table 5.5 shows the translation results are not 
dependent on one particular parser, though a a 
parser trained on a different domain (here, the 
Treebank) is at a disadvantage. 

 BLEU 
Pharaoh 30.58 
Single NLPWIN parse 33.18 
Top 100 NLPWIN parses 34.13 
Oracle selection (top 100 NLPWIN parses) 36.91 

Table 5.6 Using multiple parses, parse oracle 
(English Japanese, data size 500k, phrase size 4)  

Table 5.6 shows the impact of using the top 100 
NLPWIN parses even without any parse scoring. 
The last line in the table is a parse oracle 
experiment to explore the potential quality impact 
of better parse selection – the oracle picks and 

translates the one best parse from the top 100 
parses. 

Table 5.7 is a translation oracle experiment that 
demonstrates the impact of model error. The 
oracle picks the translation with the highest 
BLEU score from among the top N translations 
produced by the treelet system. Better models 
may improve performance, though Och et al. (04) 
suggests achieving this gain this may be difficult. 

Number of translations 
available to oracle BLEU  
1 33.18 
4 35.30 
16 37.38 
64 38.56 
256 38.70 

Table 5.7 Translation oracle  
(English Japanese, data size 500k, phrase size 4) 

5.1. Human Evaluation 

Two human raters were presented (in random 
order) both Pharaoh and Treelet translations of 
100 sentences between 10 and 25 words and 
corresponding source and reference translations. 
They were asked to pick the more accurate 
translation. Table 5.8 shows that for most of the 
sentences, humans prefer the Treelet translations, 
which is consistent with the BLEU scores above.  

 English French, 100K English Japanese, 100K English Japanese, 500K 
Max size Treelet 

BLEU 
Pharaoh 
BLEU 

Treelet 
BLEU 

Pharaoh 
BLEU 

Treelet 
BLEU 

Pharaoh 
BLEU 

1 37.50 23.18  22.36 12.75 26.95 17.72 
2 39.84 32.07  24.53 18.63 31.33 24.30 
3 40.36 37.09  25.44 21.37 32.58 28.15 
4 (default) 40.66 38.83  25.68 23.01 33.18 30.58 
5 40.71 39.41  25.87 23.82 - - 
6 40.74 39.72  25.92 24.43 - - 

Table 5.3 Effect of maximum treelet/phrase size 

 English French, 100K English Japanese, 
500K 

  BLEU  Sents/min  BLEU Sents/min 
Monotone Pharaoh 37.06 4286 25.06 1600 
 Treelet with no order model  35.35 39.7 26.43 67 
Non-monotone Pharaoh (default) 38.83 162 30.58 82 
 Treelet: greedy ordering 38.85 13.1 31.99 43 
 Treelet: exhaustive (default) 40.66 10.1 33.18 21 

Table 5.4 Effect of ordering strategy 

107



  Rater 1  
  Treelet Neither Pharaoh  

Treelet 26 21 3 50 
Neither 4 27 3 34 

Rater 
2 

Pharaoh 0 11 5 16 
  30 59 11  

Table 5. 8 Human evaluation of 100 sentences 
 (English Japanese, data size 500k, phrase size 4) 

6. Conclusions and Future Work 

We presented a novel approach to syntactically-
informed statistical machine translation that 
leverages a parsed dependency tree representation 
of the source language via a tree-based ordering 
model and a syntactically informed decoder. We 
showed that it outperforms a leading phrasal SMT 
decoder in BLEU and human quality judgments. 
We also showed that it out-performed our own 
logical form-based EBMT/hybrid MT system. 

Even in the absence of a parse quality metric, 
we found that employing multiple parses could 
improve translation quality. Adding a parse 
probability may help further the gains from these 
additional possible analyses.  

The syntactic information used in these models 
is still rather shallow. Order modeling may 
benefit from additional information such as 
semantic roles or morphological features. 
Furthermore, different model structures, machine 
learning techniques, and target feature 
representations all have the potential for 
significant improvements. 

References 
Alshawi, Hiyan, Srinivas Bangalore, and Shona Douglas. 

Learning dependency translation models as collections of 
finite-state head transducers. Computational Linguistics, 
26(1):45–60, 2000. 

Aue, Anthony, Arul Menezes, Robert C. Moore, Chris Quirk, 
and Eric Ringger. Statistical machine translation using 
labeled semantic dependency graphs. TMI 2004. 

Charniak, Eugene, Kevin Knight, and Kenji Yamada. 
Syntax-based language models for statistical machine 
translation. MT Summit 2003. 

Cherry, Colin and Dekang Lin. A probability model to 
improve word alignment. ACL 2003. 

Chickering, David Maxwell. The WinMine Toolkit. 
Microsoft Research Technical Report: MSR-TR-2002-
103. 

Ding, Yuan and Martha Palmer. Automatic learning of 
parallel dependency treelet pairs. IJCNLP 2004. 

Heidorn, George. (2000). “Intelligent writing assistance”. In 
Dale et al. Handbook of Natural Language Processing, 
Marcel Dekker. 

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. 
Statistical phrase based translation. NAACL 2003. 

Lin, Dekang. A path-based transfer model for machine 
translation. COLING 2004. 

 Menezes, Arul and Stephen D. Richardson. A best-first 
alignment algorithm for automatic extraction of transfer 
mappings from bilingual corpora. In Recent Advances in 
Example-Based Machine Translation, M. Carl & A. Way, 
Eds, Kluwer Academic Publishers, 2003. 

Och, Franz Josef and Hermann Ney. A systematic 
comparison of various statistical alignment models, 
Computational Linguistics, 29(1):19-51, 2003.  

Och, Franz Josef. Minimum error rate training in statistical 
machine translation. ACL 2003. 

Och, Franz Josef, et al. A smorgasbord of features for 
statistical machine translation. HLT/NAACL 2004. 

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing 
Zhu. BLEU: a method for automatic evaluation of 
machine translation. ACL 2002. 

Quirk, Chris, Arul Menezes, and Colin Cherry. Dependency 
Tree Translation. Microsoft Research Technical Report: 
MSR-TR-2004-113. 

Ringger, Eric, et al. Linguistically informed statistical 
models of constituent structure for ordering in sentence 
realization. COLING 2004. 

 Thurmair, Gregor. Comparing rule-based and statistical MT 
output. Workshop on the amazing utility of parallel and 
comparable corpora, LREC, 2004. 

 Vogel, Stephan, Ying Zhang, Fei Huang, Alicia Tribble, 
Ashish Venugopal, Bing Zhao, and Alex Waibel. The 
CMU statistical machine translation system. MT Summit 
2003. 

Way, A. and N. Gough. Comparing Example-Based and 
Statistical Machine Translation. Journal of Natural 
Language Engineering,  June 2005 

Wu, Dekai. Stochastic inversion transduction grammars and 
bilingual parsing of parallel corpora. Computational 
Linguistics, 23(3):377–403, 1997. 

Yamada, Kenji and Kevin Knight. A syntax-based statistical 
translation model. ACL, 2001. 

108




