
The Open A.I. KitTM: General Machine Learning Modules from
Statistical Machine Translation

Daniel J. Walker
The University of Tennessee

Knoxville, TN
USA

Abstract

The Open A.I. Kit implements the major com-
ponents of Statistical Machine Translation as
an accessible, extendable Software Development
Kit with broad applicability beyond the field of
Machine Translation. The high-level system de-
sign policies of the kit embrace the Open Source
development model to provide a modular archi-
tecture and interface, which may serve as a basis
for collaborative research and development for
endeavors in Artificial Intelligence.

1 Introduction

In the mid-twentieth century, the emerging
field of Artificial Intelligence (AI) embraced
the challenge of automatic Machine Transla-
tion (MT) of human languages as one of its
original goals. Throughout the subsequent
decades, MT researchers have adopted, fos-
tered and often originated many techniques
used across the numerous sub-disciplines of AI.
Examples include algorithms fundamental to
the so called “expert system” paradigm for em-
bedding knowledge in intelligent systems as well
as the “machine learning” paradigm for con-
structing systems that automatically acquire
problem-domain specific knowledge. Though
many of these techniques are frequently taught
in universities, well documented in original pa-
pers and textbooks, and widely understood by
the AI community at large, there remain barri-
ers to empirical research and teaching due to the
expense of implementing the necessary software
infrastructure. Similarly, development costs of-
ten hinder commercial deployment of these al-
gorithms, thereby depriving the general public
of potential benefits in the form of consumer
goods and services.

As an example, consider the Hidden Markov
Model (HMM), which has been applied success-
fully to several machine learning tasks. Auto-
matic speech recognition research pioneered the
use of HMMs for machine learning (Jelinek et

al., 1975). Later, (Brown et al., 1993) adapted
the HMM language model of speech recognition
systems for use in Statistical Machine Transla-
tion (SMT). They can be used for other Nat-
ural Language Processing (NLP) tasks such as
part-of-speech tagging and have broad applica-
bility beyond NLP for general problems related
to modeling sequential events. Several text-
books including (Charniak, 1993) and (Russell
and Norvig, 1995) provide instructional mate-
rial to aid in teaching HMMs. However, HMM
implementations for a particular problem do-
main are not readily available for examination,
modification, and unrestricted collaborative re-
search. The mathematics of HMMs are easily
taught on the blackboard but not in the lab,
due largely to the development costs of soft-
ware infrastructure. Though HMMs are com-
mon in commercial speech recognition applica-
tions in the telecommunication industry, their
lack of use in other markets is attributable, at
least in part, to development costs.

Over the past years, the software develop-
ment model commonly referred to as Open
Source has proven its potential to lower the
development costs of complicated engineer-
ing tasks. However, as famously noted in
(Raymond, 2001) the success of Open Source
projects is predicated on certain characteris-
tics of the problem addressed by the project,
the project’s target user group, and the access
granted that group to the project’s source code.
Among these criterion are a specific, tenable
need for the project, commonly available tools
and informational resources that can be lever-
aged by the project, and a wide user base with
the competence to manipulate the project’s im-
plementation. Above all, however, the project
must be implemented in terms of open, acces-
sible source code with few technical or legal re-
strictions to its use, modification, or distribu-
tion.

The field of MT provides fertile ground for

kong
1



Open Source development. The software infras-
tructure needs of MT practitioners are shared
by an even wider audience due to the applica-
bility of machine learning techniques to the NLP
and AI communities. Open Source develop-
ment may draw on abundant resources includ-
ing standard development tools, libraries, cor-
pora and the rich literature describing machine
learning in MT. This paper outlines the system
level goals, desiderata, constraints and priorities
of a Software Development Kit (SDK) providing
general purpose machine learning modules. To-
gether these modules may be used to construct
full SMT systems but also constitute an open
infrastructure for research and development in
Artificial Intelligence at large. The primary goal
of the system is to live up to its name: the Open
A.I. Kit (OAK).

The following sections provide rationales and
descriptions of the high-level system design poli-
cies of the kit. Existing systems with compara-
ble functionality are examined, followed by de-
scriptions of the architecture, interface, data,
documentation and licensing policies employed
by the project. These policies are intended to
increase the likelihood of success of the nascent
project in terms of providing useful functional-
ity and minimizing impediments to its adoption.
The concluding section briefly outlines the sta-
tus of the project’s initial release.

2 Comparable Preexisting Systems

Several comparable software packages inform
the high-level design of the Open A.I. Kit.1
A popular system for language modeling in
the NLP community is the CMU-Cambridge
toolkit2 (Clarkson and Rosenfeld, 1997). Also
of note are HTK, the Hidden Markov Model
toolkit3 (Odell, 1995), and SRILM4, the SRI
Language Modeling toolkit (Stolcke, 2002).
Several SMT toolkits have become available
recently including GIZA++5 (Och and Ney,
2003), the Rewrite Decoder6 (Germann et al.,

1It should be noted that the open source project Weka
(Witten and Frank, 2005) offers machine learning mod-
ules. Currently, Weka primarily consists of decision tree
related algorithms for data mining purposes. Though
Weka has been used in a variety of applications, it does
not include MT capabilities at the present time and
therefore does not directly relate to the immediate goals
of the Open A.I. Kit.

2http://www.speech.cs.cmu.edu/SLM info.html
3http://htk.eng.cam.ac.uk
4http://www.speech.sri.com/projects/srilm/
5http://www.fjoch.com/GIZA++.html
6http://www.isi.edu/licensed-sw/rewrite-decoder/

2001) and Pharaoh7 (Koehn, 2004). Though
all of these systems are representative of major
advancements and have served researchers well
over the years, their suitability as an adaptable
infrastructure for further research and develop-
ment is limited.

For example, non-commercial licensing
clauses restrict the use of many of the systems
to educational and research purposes. Some
flatly deny users redistribution rights for any
purpose. Restrictions such as these limit the
number of users who can work with the system,
both directly and via derivative works. The
licenses effectively isolate the systems from the
broader Open Source community by impeding
the projects’ ability to incorporate other Open
Source projects or to be incorporated into other
Open Source projects, which typically do not
limit their audience to academia. Additionally,
the licenses negatively impact the systems’
potential to serve as a common framework
for collaboration, thereby seriously decreasing
their likelihood of reaping the full benefits of
the Open Source development model.8

As importantly, the architectures of many of
the above systems impose technical barriers to
use, modification, and extension. Most of the
systems do not include programming interfaces9
as they are intended to be used as a set of com-
mand line utilities. The utilities interact with
each other via fixed output formats recorded in
files or transmitted through pipes. They may
be combined in novel ways via shell scripts.
However, this is a much less flexible means of
adaptation compared to an accessible Applica-
tion Programming Interface (API). The SMT
systems are particularly specialized for specific
tasks: training translation models or decoding.
Though they include sub-systems which may
have use beyond their specialization, they are
geared towards accomplishing an explicit task
rather than generality. At the source code level,
many of the systems are implemented in well
thought out modules. However, as these source
level modules are not the intended user inter-
face, they tend to be less documented than the
command line utilities. Extracting a source
code module for a custom purpose or replac-

7http://www.isi.edu/licensed-sw/pharaoh/
8An exception is GIZA++, which is licensed under

the standard GNU General Public License.
9An exception is SRILM, which explicitly aims to pro-

vide good APIs as its primary interface and is largely
successful. Also, HTK provides a programming inter-
face.

kong
2



ing a module with a user defined substitute are
fragile enterprises. These technical hurdles may
frustrate user efforts to adapt the systems for
original research and development.

3 Architecture and Interface

In the interest of the greatest possible adapt-
ability and extendability, the Open A.I. Kit
is architecturally a development library with a
programming interface rather than a set of ex-
ecutables or some other more elaborate inter-
active system. Limiting the set of deliverable
functionality to an SDK allows time and en-
ergy to be focused on the quality of the algo-
rithm implementations without consideration of
specific application details. This comes at the
cost of shrinking the pool of immediate users
as some people are unable to commit the initial
investment of time and energy in programming.
Many prefer a ready-made, runnable applica-
tion. However, as an SDK, OAK equips de-
velopers with tools to create such applications.
OAK’s ultimate aim is to supply an infrastruc-
ture that allows the development of a variety of
client programs that address the demands of a
variety of user groups.

Application independence allows OAK to
limit its interaction with the operating system
since few machine learning modules require op-
erating system services beyond basic schedul-
ing, heap allocation and file I/O. Issues such
as signal handling and error reporting to log
files, STDERR, or pop-up windows are reserved
as application implementation details with few
constraints placed on the client program’s op-
tions. Independence from the operating system
not only increase portability but also eases in-
tegration into preexisting programs.

Adaptability and portability need not be sac-
rificed for efficiency. OAK addresses all three
using the C++ programming language for im-
plementation and API. C++ is already com-
monly used for implementing SMT, NLP, and
other AI related systems. Several compilers on
many operating systems support the ISO 14882
standard definition of the C++ language and
standard library. C++ provides strong inter-
operability with the C programing language,
which in turn can be embedded in numerous
other languages as well as common middleware.
Optimizing compilers generate efficient native
machine code in terms of both CPU and mem-
ory consumption. By adopting C++, OAK is
able to harness a wide array of available Open

Source development tools including third-party
utility and scientific libraries, an automatic test-
ing framework, a test coverage tool, profiling
and allocation consistency tools, and an inline
documentation system. Perhaps, the most com-
pelling reason to adopt C++ is the language’s
numerous features supporting abstraction and
modularity such as facilities for metaprogram-
ming, generic, functional, object-oriented, and
procedural programming.

Of these methodologies, the most preva-
lent employed in OAK is generic programming.
Generic programming allows algorithms to op-
erate on arbitrary objects regardless of their
type so long as they meet certain abstract
syntactic, semantic and complexity constraints
commonly referred to as “concepts”. This is ac-
complished via compile-time, parametric poly-
morphism using the C++ template construct.
See (Alexandrescu, 2001) for a complete in-
troduction. Parametric polymorphism is sim-
ilar to the traditional object-oriented, sub-type
polymorphism but does not require compatible
types to be related via inheritance, which con-
sequentially avoids the associated runtime over-
head and type-safety issues. Generic program-
ming greatly eases the task of adapting OAK
to new problem domains, since the abstract
generic concepts needed for customizing many
machine learning algorithms (such as Iterators,
Functors, and Graphs) are already defined in
the generic programming literature. Thus, the
need to invent and acquaint users with novel ab-
stract interfaces is eliminated to a large degree.

4 Module and Data Interaction

Following generic programming methodologies,
the Open A.I. Kit avoids prescribing specific
types for data required by algorithms. Instead,
algorithms are implemented in terms of generic
concepts wherever possible. This allows client
programs to reuse specific algorithms on cus-
tomized types for purposes such as applying the
algorithm to a new problem domain or increas-
ing efficiency. This also allows different algo-
rithms to be applied to the same data if the
type of the data meets the minimum conceptual
requirements of each algorithm.

An obvious example of a set of algorithms
suitable for this approach are the translation
counts, c(f |e;fff,eee), of the IBM translation mod-
els 1 through 5 (Brown et al., 1993) for estimat-
ing the counts of connections between words in
a translated sentence pair. The definition of c

kong
3



changes from one model to the next. It is de-
fined only in terms of translation probabilities
in model 1. In model 2, it is defined in terms
of translation and alignment probabilities. Fer-
tility and distortion probabilities are added in
model 3, etc. However, the parameters of c re-
main the same; i.e. the translation counts ac-
cumulated during training are indexed by word
and sentence pairs regardless of the translation
model employed. In OAK, these counts are col-
lected in a trellis and the functions which pop-
ulate the trellis for each model access it via the
Graph concepts defined in the Boost Graph Li-
brary (BGL) (Siek et al., 2002). The BGL is an
Open Source, high-performance generic library
geared toward scientific computing with graphs
and sparse matrices. The user need not select
the BGL as the trellis implementation and in-
stead may provide an alternate implementation
with conforming API. Likewise, new translation
count algorithms implemented in terms of the
BGL can be interchanged to extend and modify
the translation models as desired.

A more interesting example is the HMM,
which has applicability beyond SMT. Algo-
rithms related to HMMs such as the Baum-
Welch training algorithm, the Forward algo-
rithm for assigning emission probabilities, and
the Viterbi search algorithm for identifying the
most likely state sequence for a given emission
sequence all require the same data elements: an
emission alphabet, sets of states and edges de-
noting the topology of the HMM, and the as-
sociated transition and emission probabilities.
Again, the BGL Graph concepts provide a vo-
cabulary for algorithms to query, manipulate,
and modify the various properties of HMMs.
By specifying the emissions and topology of
the HMM the user can apply the algorithms to
different problem domains. The generality of
this framework does not preclude practical effi-
ciency concerns. For example, as illustrated in
(Jelinek, 1997, 62-69), assigning emission and
transition probabilities need not hinge on the
Baum-Welch algorithm when a large enough
sample set is available to estimate the proba-
bilities directly from empirical counts. In such
a scenario, one may employ a linear interpo-
lation of probability estimates, which are pa-
rameterized on successively smaller histories of
the sequence of events being modeled. This
method, called deleted interpolation, implies a
specific HMM topology, which OAK provides
via the same Graph concepts used by the other

HMM algorithms. In this way the Forward and
Viterbi algorithms may be applied to HMMs
based on either Baum-Welch or deleted inter-
polation. The framework also allows for further
optimizations such as parameter tieing and the
structural elimination of zero probability tran-
sitions.

The sequence of events modeled by the HMM,
be they words or otherwise, are represented as
ranges delimited by objects implementing the
Iterator concept. Other concepts used by the
ISO C++ standard library, such as Containers,
are leveraged wherever appropriate. Data ab-
straction is extended to persistent data in the
form of file formats. OAK does not specify per-
sistent formats for any of the data it uses or
generates but instead draws on the serialization
methodologies of C++ to allow the user to se-
rialize individual data elements and choose the
format by which their organization is recorded
on disk. This allows OAK to interoperate with
emerging standard file formats, proprietary for-
mats, or any custom file type of the user’s choos-
ing.

5 Documentation and Support

The utility of the Open A.I. Kit largely de-
pends on the quality of the API documentation.
As the API constitutes the primary intended
user interface, all information pertinent to de-
veloping with OAK is presented for the user’s
convenience including function parameters, re-
turn values, type requirements, pre- and post-
conditions, exception specifications, and run-
time complexity. An effort is also made to ex-
plain algorithms, their origins and potential ap-
plications, trade-offs between similar algorithms
along with bibliographical references to original
works and page references in prominent text-
books.

Perhaps no explanation is more clarifying
than a concrete example. As such, OAK offers
basic, complete sample programs for each ma-
jor module. In order to minimize the number
of prerequisites needed to understand the mod-
ules, the sample programs are implemented in
simple terms with no overt dependencies beyond
OAK and the standard C++ library whenever
possible. A sample program can also serve as
a template or starting point for the user to be-
gin the development process. Thus, users may
start development from a small, functioning,
runnable illustration and incrementally expand
and customize it for their own purposes.

kong
4



In addition to user documentation, a pub-
lic mailing list will be maintained to answer
questions from OAK users and to coordinate
OAK development. Also, the list may be used
to report problems, post patches for bugs and
portability issues, as well as discuss enhance-
ments and new features. The mailing list can
provide a forum for OAK users and developers
to learn from each other’s experiences, provide
feedback and advice, and generally collaborate
to improve OAK and related projects.

6 Licensing and Distribution

The Open A.I. Kit is intended to provide acces-
sible, modifiable, redistributable, open source
code as a reliable infrastructure for Artificial
Intelligence related endeavors by engineers, re-
searchers, teachers and students alike.

As such, OAK is licensed under very sim-
ple terms that place few restrictions as to its
use, modification and distribution for academic,
non-profit or commercial purposes. In synopses,
the only restrictions are as follows: redistribu-
tion of OAK in any form must include the orig-
inal copyright notice and disclaimer and must
not use the names of contributers or the OAK
trademarks to endorse products without prior
permission. This is to ensure both that future
recipients are aware of the original contributers’
copyrights and that contributers to OAK are
not subjected to unfair treatment.

Specifically, OAK adopts the terms of the
University of California, Berkeley Software Dis-
tribution (BSD) license as certified by the Open
Source Initiative10. The BSD license was cho-
sen primarily because, at just over 200 words,
it is simple enough that no legal expertise is re-
quired to understand its terms and conditions.
Also, the BSD license is compatible with the
GNU General Public License11 but has less re-
strictions pertaining to derivative works. Thus,
few legal hurdles circumscribe OAK’s interoper-
ability with third-party Open Source projects.
For more information regarding the BSD license
or Open Source licensing in general see (St. Lau-
rent, 2004).

All future official OAK releases will be dis-
tributed on the Internet as compressed archive
files via File Transfer Protocol (FTP). The offi-
cial OAK source code tree will be available con-
tinually via the GNU Concurrent Versions Sys-
tem (CVS). Information about obtaining OAK

10http://www.opensource.org
11http://www.gnu.org/licenses

will be available on the World Wide Web at
http://www.openaikit.org.

7 Current Status and Conclusion

The public introduction of the Open A.I. Kit
corresponds with the publication of this paper.
As such, the success or failure of the policies de-
scribed above cannot be corroborated by expe-
rience as of yet. However, explicitly document-
ing and publicly publishing the system-level de-
sign decisions establishes an initial foundation
that can serve the project well. Also, by an-
nouncing the project in a forum such as the Ma-
chine Translation Summit X workshop on Open
Source MT, the project benefits early on from
the commentary and criticism of an expert au-
dience.

However, above all else, the functionality of
the first release of a new open source project
is paramount in determining the project’s fu-
ture use and development. Though the project
need not fulfill all of its goals initially, it must
at least provided a minimum amount of func-
tionality to meet some of the needs of users.
Accordingly, the first release of OAK does not
include a plethora of AI related algorithms, nor
even all of the desirable techniques for MT,
but only the minimal algorithms needed to con-
struct an SMT system: namely, an n-gram lan-
guage model based on HMMs, IBM translation
models 1 and 2, and a simple decoder.

Through specific high-level system design
policies, the Open A.I. Kit encapsulates these
SMT machine learning techniques in a general
framework from which researchers and develop-
ers in the wider field of AI may benefit. By
addressing the specific needs of SMT in generic
modules, leveraging available development tools
and literature, and furnishing the implementa-
tion in well documented, open source code with
minimal technical or legal limitations, OAK
may be employed as an infrastructure to lower
the costs of research, development and educa-
tion in MT, NLP and AI.

References

Andrei Alexandrescu. 2001. Modern C++ De-
sign: Generic Programming and Design Pat-
terns Applied. Addison-Wesley, Boston, Mas-
sachusetts.

Peter F. Brown, Stephen A. Della Pietra, Vin-
cent J. Della Pietra, and Robert L. Mer-
cer. 1993. The mathematics of statistical ma-

kong
5



chine translation. Computational Linguistics,
19(2):263–313.

Eugene Charniak. 1993. Statistical Language
Learning. The MIT Press, Cambridge, Mas-
sachusetts.

Philip Clarkson and Roni Rosenfeld. 1997. Sta-
tistical language modeling using the cmu-
cambridge toolkit. Proceedings of ESCA Eu-
rospeech 97, 1:2707–2710.

Ulrich Germann, Michael Jahr, Kevin Knight,
Daniel Marcu, and Kenji Yamada. 2001. Fast
decoding and optimal decoding for machine
translation. Proceedings of the 39th meeting
of the Association of Computational Linguis-
tics, pages 228–235.

Fredrick Jelinek, Lalit R. Bahl, and Robert L.
Mercer. 1975. Design of a linguistic statisti-
cal decoder for the recognition of continuous
speech. IEEE Transactions on Information
Theory, 21:250–256.

Fredrick Jelinek. 1997. Statistical Methods for
Speech Recognition. The MIT Press, Cam-
bridge, Massachusetts.

Philipp Koehn. 2004. Pharaoh: a beam search
decoder for phrase-based statistical machine
translation models. Proceedings of the 6th
Conference of the Association for Machine
Translation in the Americas, pages 115–124.

Franz Josef Och and Hermann Ney. 2003. A
systematic comparison of various statistical
alignment models. Computational Linguis-
tics, 29(1):19–51.

Julian J. Odell. 1995. Lattice and Lan-
guage Model Toolkit Reference Manual. En-
tropic Cambridge Research Laboratories,
Inc., Cambridge, England.

Eric S. Raymond. 2001. The Cathedral and the
Bazaar. O’Reilly, Sebastopol, California.

Stuart J. Russell and Peter Norvig. 1995.
Artificial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, New Jer-
sey.

Jeremy G. Siek, Lie-Quan Lee, and Andrew
Lumsdaine. 2002. The Boost Graph Library:
User Guide and Reference Manual. Addison-
Wesley, Boston, Massachusetts.

Andrew M. St. Laurent. 2004. Understand-
ing Open Source and Free Software Licensing.
O’Reilly, Sebastopol, California.

Andreas Stolcke. 2002. Srilm - an extensi-
ble language modeling toolkit. Proceedings of
the International Conference on Spoken Lan-
guage Processing, 2:901–904.

Ian H. Witten and Eibe Frank. 2005. Data

Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San
Francisco, California.

kong
6




