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Abstract

Within the METIS-II project1, we have im-
plemented a machine translation system which
uses transfer and expander rules to build an
AND/OR graph of partial translation hypothe-
ses and a statistical ranker to find the best path
through the graph. The paper gives an overview
of the architecture and an evaluation of the sys-
tem for several languages.

1 Introduction

Recent machine translation techniques integrate
rule-based knowledge and statistics: (Groves and
Way, 2006) integrate rule-induced chunk transla-
tions with a statistical decoder; for (Richardson et
al., 2001; Gamon et al., 2002), or (Ringger et al.,
2004), linguistic rules describe what possible trans-
formations a parse tree can undergo, but statistics
decides under which conditions a particular rule is
applied and (Quirk and Menezes, 2006) decide the
combination of derivation trees by statistical means.

This paper outlines an MT architecture which
uses rule-based devices to generate sets of partial
translation hypotheses and a statistical Ranker to
evaluate and retrieve the best hypotheses in their
context.

The rule-based device generates an acyclic
AND/OR graph which allows for compact repre-
sentation of many different translations while the
Ranker is a beam search algorithm which tries to
find most likely paths in the AND/OR graph.

Unlike a usual statistical decoder (Germann et al.,
2001; Koehn, 2004), our Ranker traverses the search
graph to grade alternative paths and outputs a list
of the n-best translations. The Ranker itself does
not modify the graph. It does not permute chunks
or items and it does not generate additional paths
which are not already contained in the graph. The
construction of the search graph and its evaluation
are thus separated as two distinct tasks.

Starting from a SL sentence, the graph is incre-
mentally constructed in three rule-based steps. The
graph is then traversed and translations are ranked.

1http://www.ilsp.gr/metis2/

Finally word tokens are generated for the n-best
translations. This paper gives an overview on the
steps 1 to 4.

1. The Analyser lemmatises and morphologically
analyses the SL sentence. It produces a (flat)
grammatical analysis of the sentence, detecting
phrases and clauses and potential subject can-
didates. An outline of the Analyser is given in
section 2.

2. During Dictionary Lookup analyzed SL sentence
are matched on the transfer dictionary and TL
equivalences are retrieved. We will give a review
of the essential features in section 3.

3. The Expander inserts, deletes, moves and per-
mutes items or chunks according to TL syn-
tax. It is called Expander because it expands
the search space through the word- and phrase
translations retrieved from the lexicon. The Ex-
pander relies on a rule-based device. We give
some examples in section 4

4. The Ranker relies on a beam search algorithm
that iteratively traverses the graph and com-
putes the most likely translations in a log-linear
fashion (Och and Ney, 2002). The Ranker is ex-
plained in section 5.

5. A Token Generator generates surface word-
forms from the lemmas and PoS tags. The To-
ken Generator has been described in (Carl et
al., 2005) and will be omitted here.

2 The Analyser

The Analyser reads the SL sentence and produces
a flat sequence of feature bundles which contain
chunking and topological information of the sentence
(Müller, 2004). For instance, from the German SL
sentence (1a) the representation (1b) would be gen-
erated.

Among other things, the analysis in (1b) com-
prises of a unique word number wnrr, the lemma lu
and part-of-speech c, sc of the word, as well as mor-
phological and syntactic information. It also contain
chunking and topological information.



1 a Das Haus wurde von Hans gekauft (The house was purchased by Hans)
The house was from Hans purchased

1b

{lu=das, wnrr=1, c=w,sc=art, phr=np;subjF, cls=hs;vf}
,{lu=haus, wnrr=2, c=noun, phr=np;subj, cls=hs;vf}
,{lu=werden, wnra=3, c=verb,vt=fiv, phr=vg fiv, cls=hs;lk}
,{lu=von, wnrr=4, c=w,sc=p, phr=np;nosubjF, cls=hs;mf}
,{lu=Hans, wnrr=5, c=noun, phr=np;nosubj, cls=hs;mf}
,{lu=kaufen, wnra=6, c=verb,vt=ptc2, phr=vg ptc, cls=hs;rk}
.

A German sentence (1a) and the output of the Analyser (1b). Among others, the following features are used:
features for words: features for phrases: features for clauses/fields:

lemma: lu=<lemma>
noun: c=noun
verbs: c=verb,vt=ptc2|fiv

preposition: c=w,sc=p
article: c=w,sc=art

noun phrase: phr=np
finite verb: phr=vg_fiv
participle: phr=vg_ptc

subject: phr=subjF
not subject: phr=nosubjF

main clause: cls=hs
Vorfeld: cls=vf

Mittelfeld: cls=mf
linke Klammer: cls=lk

rechte Klammer: cls=rk

1c: Output of dictionary lookup: 1d: Output of the Expander:

{lu=das,wnrr=1,c=w,sc=art, ... }

@{c=art,n=146471}@{lu=the,c=AT0}.

.

,{lu=Haus,wnrr=2,c=noun, ...}

@{c=noun,n=268244}@{lu=company,c=NN1}.

,{c=noun,n=268246}@{lu=home,c=NN1}.

,{c=noun,n=268247}@{lu=house,c=NN1}.

,{c=noun,n=268249}@{lu=site,c=NN1}.

.

,{lu=werden,wnrr=3,c=verb,vt=fiv, ...}

@{c=verb,n=604071}@{lu=be,c=VBD} .

,{c=verb,n=604076}@{lu=will,c=VM0} .

.

,{lu=von,wnrr=4,c=w,sc=p, ...}

@{c=w,sc=p,n=587268}@{lu=by,c=PRP}.

,{c=w,sc=p,n=587269}@{lu=from,c=PRP}.

,{c=w,sc=p,n=587270}@{lu=of,c=PRF}.

.

,{lu=Hans,wnrr=5,c=noun, ...}

@{c=noun,n=265524}@{lu=hans,c=NP0}.

.

,{lu=kaufen,wnrr=6,c=verb,vt=ptc2, ...}

@{c=verb,n=307263}@{lu=buy,c=VVN}.

,{c=verb,n=307265}@{lu=purchase,c=VVN}.

. .

{lu=das,wnrr=1,c=w,sc=art, ... }

@{c=art,n=146471}@{lu=the,c=AT0}.

.

,{lu=Haus,wnrr=2,c=noun, ...}

@{c=noun,n=268244}@{lu=company,c=NN1}.

,{c=noun,n=268246}@{lu=home,c=NN1}.

,{c=noun,n=268247}@{lu=house,c=NN1}.

,{c=noun,n=268249}@{lu=site,c=NN1}.

.

,{lu=werden,wnrr=3,c=verb,vt=fiv, ...}

@{c=verb,n=604071}@{lu=be,c=VBD} .

,{c=verb,n=604076}@{lu=will,c=VM0} .

.

,{lu=kaufen,wnrr=6,c=verb,vt=ptc2, ...}

@{c=verb,n=307263}@{lu=buy,c=VVN}.

,{c=verb,n=307265}@{lu=purchase,c=VVN}.

.

,{lu=von,wnrr=4,c=w,sc=p, ...}

@{c=w,sc=p,n=587268}@{lu=by,c=PRP}.

,{c=w,sc=p,n=587269}@{lu=from,c=PRP}.

,{c=w,sc=p,n=587270}@{lu=of,c=PRF}.

.

,{lu=Hans,wnrr=5,c=noun, ...}

@{c=noun,n=265524}@{lu=hans,c=NP0}.

. .

The SL analysis of example 1b is transformed into
an AND/OR graph enriched with retrieved TOs.

The Expander moves the participle (kaufen) behind
the finite verb (werden).

<s id=1-0 lp="-9.227912">

the AT0 146471

company NN1 268244

was VBD 604071 PermFinVerb_hs

bought VVN 307263 PermFinVerb_hs

by PRP 587268 PermFinVerb_hs

hans NP0 265524 PermFinVerb_hs

. PUN 367491

</s>

<s id=1-1 lp="-9.682535">

the AT0 146471

house NN1 268247

was VBD 604071 PermFinVerb_hs

purchased VVN 307265 PermFinVerb_hs

by PRP 587268 PermFinVerb_hs

hans NP0 265524 PermFinVerb_hs

. PUN 367491

</s>

1e: The two best scored translations (lp feature) after ranking at the output of the Token Generator.



The parser produces a linguistically motivated, flat
macro structure of German sentences, as coded by
the cls feature.

3 Dictionary Lookup

The input for Dictionary Lookup are annotated SL
words as generated from the Analyser in example 1b.
Dictionary Lookup retrieves target language equiva-
lences with two functions:

• regroup words of a sentence into coherent mean-
ing entities according to the entries the dictio-
nary. The words may be distributed over several
parts in the sentence according to principles as
below.

• retrieve all possible groups in a sentence (per-
haps overlapping and/or embedded) and re-
trieve all translation options for each group.

This process returns a structure as shown in ex-
amples (1c) and (2c). SL nodes as in (1b) are trans-
formed into nodes of an acyclic AND/OR graph
which consists of translation units (TUs). A TU
is a set of words of the SL sentence for which one or
more translation options (TOs) are retrieved from
the lexicon. Each TO is — in turn — a flat tree
with lexical information on the leaves.

2a: Dictionary entry with two TOs:
vor die Hunde gehen ↔ (go to the dogs | be buggered)

2b: SL sentence containing idiomatic expression:
Das geht, solange es Frauen gibt, nie vor die Hunde.

2c: Representation of discontinuous match:

,{lu=gehen|...|vor|der|hund,wnrr=2;10;11;12, ...}

@{c=verb,n=13}@{lu=go,c=VVN}

,{lu=to,c=TO0}

,{lu=the,c=AT0},{lu=dog,c=NN2}.

,{c=verb,n=14}@{lu=be,c=VBZ},{lu=bugger,c=VVN}.

.

Example (2c) shows a discontinuous TU with two
TOs. This TU is generated when matching the dic-
tionary entry (2a) on the sentence (2b). Notice that
emphasized words in (2b) are matched even though
their order has changed with respect to the lexicon
entry (2a). The feature wnrr enumerates the con-
sumed word positions of the match. The feature n
gives the number of the dictionary entry.

3.1 Discontinuous matching

The complexity for matching discontinuous phrases
is much higher than for matching continuous
phrases. Matching a discontinuous phrase of length
m on a sentence of length n may lead to a huge num-

ber of retrieved entries in the order of O

(

n
m

)

,

while for continuous phrases there is a maximum of
(n − m + 1) matches. Thus, there are more than
3000 possible ways to match a discontinuous phrase
of 5 words on a 15-word sentence while a continuous
phrase may lead to only 11 possible matches.

In our current implementation, we only allow dis-
continuous matches for verbal and nominal entries.
All other types of dictionary entries, such as adjec-
tives, adverbs, prepositions, idioms etc. are not eligi-
ble for discontinuous matching. In (Carl and Rascu,
2006) we have described various strategies to reject
matched entries if they don’t obey a predefined set
of criteria.

For nominal entries, the head of the term e.g.
Ozonschicht in (3) can be modified in the matched
sentence, for instance by adjectives as in example
(4). While we would like to validate the entry
despite the intervening adjective arktischen, we
want to reject the entry if the words co-occur ‘by
accident’ in the same sentence and are actually
unrelated. This would be the case if the words
occurred in different noun phrases.

(3) Abbau der Ozonschicht ↔ ozone depletion
(4) Abbau der arktischen Ozonschicht

For verbal entries, various permutations of the
words are possible, according to whether the entry
occurs in a subordinate clause or in a main clause.
These criteria are further developed in (Anastasiou
and Čulo, 2007) making use of the German topolog-
ical fields.

Verbal dictionary entries which consist of two
or more parts usually have a nominal part and a
verbal part. The nominal part (NP) may occur in
the ’Mittelfeld’ (mf) or in the ’Vorfeld’ (vf) while
the verbal part (V) is the left or right Klammer. It
is, thus, not possible for such entries that the nom-
inal part is distributed in the Vorfeld and Mittelfeld.

NP V example
mf lk Hans schiebt uns den schwarzen Pe-

ter zu.

mf rk Hans will uns den schwarzen Peter

zuschieben.

vf lk Den schwarzen Peter schiebt uns

Hans zu.

vf rk Den schwarzen Peter will uns Hans

zuschieben.

In the above examples, the nominal part is marked
in bold while the Verbal part is underlined

The same behavior is observed for separable
prefixes and reflexive verbs as in examples (5) and
(6).



5 Hans lehnt das Angebot ab.
≈ Hans rejects the offer prefix.

6 dass Hans sich immer beeilt.
≈ that Hans himself always hurries up.

3.2 Lexical Overgeneration

Similar to many statistical MT systems, to account
for a maximum number of different contexts, the dic-
tionary over-generates translation hypotheses which
are then filtered and graded by the Ranker in the
context of the generated sentence.

Overgeneration accounts for various phenomena
such as lexical semantic ambiguities (example
7), negation and the insertion of the English
‘do-support’ example (8), semantically bound
prepositions (9), and others.

7 Bank ↔ bank | bench

8 nicht ↔ do | not not

9 auf ↔ on | in | up | onto | upon | . . .

10 stark ↔ strong | heavy | good | bad | high | . . .

A specific problem of lexical ambiguities are
’intensifiers’ or ’magnifiers’. For instance, the word
“stark” (basically ’strong’) can translate into many
different adjectives depending on the context and
the noun it modifies. Examples (11a-f) provide
contexts in which stark is translated differently.

11a This is a strong man
11b It has been his best play
11c Paul has high temperature
11d The car was badly damaged
11e John is a heavy smoker
11f There was a big demand

The choice of the ‘correct’ TO is left for the
Ranker to decide. Thus, whether ‘not’ or ‘do not’
are appropriate translation options for ‘nicht’ will
be decided in the context of the generated target
language sentence and maybe depends on whether
an infinite verb follows ‘not’.

4 The Expander

The Expander adds further translation hypotheses
to the AND/OR graph. It is a rule-based device,
which takes as its input the output of the Dictionary
Lookup. The Expander essentially inserts, deletes
and moves translation units in the graph. It also
produces alternative partial translations.

For instance, parts of the German verbal group
appear in the “linke Klammer” and other parts in
the “rechte Klammer”. In main clauses, the “Mit-
telfeld” intervenes between these two parts. For En-
glish these parts have to be re-joined. The Expander
rule ReorderFinVerb_hs moves the translation of

the participle “gekauft” in example 1c in a main
clause (cls=hs) behind the finite verb “wurde”.

The rule maps on a pattern of TUs in a main
clause starting with the finite verb (phr=vg_fiv)
and followed by an optional infinitive verb
(phr=vg_inf) and a participle (phr=vg_ptc). Be-
tween the finite verb and an optional infinitive verb
can be a number of ‘non-verbs’. All nodes need to
occur in the same main clause (cls=hs). The exis-
tential quantifier ‘e’ requires that at least one read-
ing of the TU must be compatible with the test,
while the universal quantifier ‘a’ requires all readings
of the TU to be subsumed by the test. The finite
verb, the infinite verb and the participle are marked
by the marker V, I and P respectively. The action
part of the rule — following the colon — moves the
marked nodes into the desired word order, so that
the verbs are grouped together in their right order.

ReorderFinVerb_hs =
Ve{cls=hs}e{phr=vg_fiv},
*e{cls=hs}a{phr~=vg_ptc;vg_inf},
^Ie{cls=hs}e{phr=vg_inf},
Pe{cls=hs}e{phr=vg_ptc}

: p(move=V->VIP).

While this operation deterministically moves the
nodes in the graph, the formalism also allows op-
erations to produce alternative permutations of se-
quences of TUs. The rule transforms the represen-
tation in (1c) into the graph in example (1d) which
contains the (correct) word order “The house was
purchased by Hans”.

The same type of rule also applies for the adjust-
ment of composed tenses and modal sentences in
examples (12) and (13) respectively.

12a Hans hat das Haus gekauft.
≈ Hans has the house purchased.

12b Hans has purchased the house.

13a Hans will ein Haus kaufen.
≈ Hans wants to a house purchase.

13b Hans wants to purchase a house.

After reordering the verbal group, the Expander
adjusts the subject. In contrast to English, German
allows one phrasal element to precede the finite
verb, which may or may not be the subject of
the sentence. In some cases we know the subject
from the German analysis. In these cases we can
deterministically move the subject to its correct
position as in example (14).

14a Gestern kam Hans in das Büro.
Yesterday came Hans into the office.

14b Yesterday Hans came into the office.



In other cases the German analysis provides sev-
eral subject candidates. We generate a translation
hypothesis for each possible permutation and let
the Ranker decide which is the more likely subject.

15a Die Katze trinkt die Milch.
The cat drinks the milk.

15b ( the milk drink the cat.
| the cat drink the milk.)

5 The ranker

The Ranker works similar to a decoder as used in sta-
tistical machine translation. Och and Ney (2002) ex-
tend the noisy channel model of Brown et al. (1993)
by adding weighing coefficients with feature func-
tions and combining them in a log linear fashion.
As a statistical decoder, the Ranker is a search pro-
cedure which seeks to find the target sentence ê with
the highest probability:

ê = argmax

M
∑

m

wmhm(·)

where hm is a feature function and wm is a weigh-
ing coefficient. The feature functions hm can be in-
dependent and trained on separate data while the
weighing coefficients wm are used to tune the sys-
tem.

The Ranker is a beam-search algorithm which tra-
verses the AND/OR graph in a breadth first man-
ner. At each step the nodes are weighted by the
feature functions and all expanded sentence prefixes
are stored in the beam until its maximum width
(currently 1000) is reached. From there on only the
highest weighted sentence are further expanded. We
have experimented with various feature functions to
weigh the nodes. We describe their settings in this
section. An evaluation is given in section 6.

Output of the Ranker are the n-best graded trans-
lation paths through the graph. For the example in
example (1d) the two best translations (word forms)
are shown in (1e). The output also indicates the
resources used to generate the translations, among
other things, the number of the translation entries
and the Expander rules.

5.1 Language model

We have tested various language models, all of them
making use of the BNC2 and all are generated using
the CMU language modelling toolkit3. The BNC is a
tagged collection of texts making use of the CLAWS5
tag set which comprises roughly 70 different tags.

2The British National Corpus (BNC) consists of more than
100 million words in more than 6 million sentences http:

//www.natcorp.ox.ac.uk/
3which can be downloaded from http://www.speech.cs.

cmu.edu/SLM_info.html

The CMU language modelling toolkit generates n-
gram language models (LMs) from tokenised texts.
These LMs are then used as a feature function of the
Ranker.

The CMU toolkit generates a vocabulary of up
to 65535 words which occur most frequently in the
training material. It supports open LMs which ac-
count for unknown words and closed LMs which as-
sume all tokens to be known in the training material.
A LM made up of CLAWS5 tags would be a closed
language model since there are less than 70 different
tags in this tag set and all tags are likely to occur in
the training material.

The closed LMs assume that only items in the
training data will occur in the test data, while open
LMs save some of the probability mass for (un-
known) words in the test data which did not occur
in the training set. These words will be mapped on
the item UNK.

To find suited LMs for our application, we have
experimented with the following parameters:

• number of sentences: 100K, 1M and 6M

• different ways of preprocessing the BNC:

– open token-based LM

– closed mixed lemma-tag LM

– closed mixed token-tag LM

– orthogonal lemma-tag LM

• 3 and 4-gram token LMs and 4 to 7-gram PoS-
tag LMs

5.2 Open token-based LM

The open token-based LM assumes (lower-cased)
surface word-forms as the input to the Ranker. This
requires token generation to take place on the output
of the Expander previous to the Ranker.

5.3 Closed mixed token-tag model

The vocabulary of the closed mixed token-tag model
consists of word tokens (thus the un-lemmatised
BNC) but unknown words will be mapped on their
CLAWS5 tag. Assume the reference set contains
the sentence ”John likes strawberries” but ”straw-
berries” does not occur in the vocabulary of the
60000 most frequent tokens. Instead of letting the
CMU toolkit map ”strawberries” on the tag UNK,
we would replace it by the CLAWS5 tag <NN2>.
In this way we generate a closed model with a finite
number of different tokens (the 69 CLAWS5 tags
plus the 60000 most frequent tokens in the refer-
ence set). Analogically at runtime, previous to the
Ranker, we would generate tokens from the lemmas.
The Ranker would consult the LM’s vocabulary and
map any unknown word on the CLAWS5 tag. (Man-
ning and Schütze, 1999) suggest to map unknown
words on two tags: one for numbers and all other



unknown words on one other tag. With our strat-
egy unknown tokens are mapped on many more tags.
In this way we can make sure that any sentence con-
tains only known tokens.

5.4 Closed mixed lemma-tag model

The closed mixed lemma-tag model works essentially
similar to the Closed mixed token-tag model but
makes use of the 60000 most frequent lemmas. Thus
the above reference sentence would be lemmatised
into ”John like strawberry”, and - given ”straw-
berry” is not among the 60000 most frequent lemmas
in the training corpus - it would be preprocessed into
”John like <NN2>”. At runtime, lemmas would be
transformed into word tokens on the output of the
Ranker.

5.5 Orthogonal lemma-tag model

In the orthogonal lemma-tag model we compute two
LMs: a CLAWS5 tag n-gram model (LM tag) and a
lemma m-gram model (LM lem). Following (Man-
ning and Schütze, 1999)[p.202-203] we compute in
addition a cooccurrence weight of the lemmas and
their tag according to Laplace’s law with the follow-
ing equation:

w(lem, tag) =
NL

NL + C(lem)
∗ (C(lem, tag) + 1)

Where NL is half the number of different tags (i.e.
69/2), C(lem) is the number of occurrences of the
token in the BNC and C(lem, tag) is the number of
cooccurrences of a lemma and a tag. For instance the
lemma ”tape-recorder” has 103 occurrences in the
BNC. The weights for ”tape-recorder” given their
tag are shown in the table (16), where <*> accounts
for the possibility that a lemma/tag occurs in the
test translations but did not occur in the training
set.

lemma tag # w(lem, tag)
tape-recorder AJ0 3 1.00
tape-recorder NN1 87 22.08
tape-recorder NN2 13 3.51
tape-recorder <*> 0 0.25

Table 16: Example for cooccurrence weights

The orthogonal lemma-tag model consists thus of
three feature functions which are computed for each
node in the beam.

6 Evaluation

The quality of the translations depends on modules
of the system and their parameters:

1. Precision and coverage of the German SL anal-
ysis

2. Contents of dictionary and the matching per-
formance

3. Quality of the expander rules

4. Feature functions and weights used in the
ranker

5. Precision token generation

In a concise evaluation setting, to have a clear pic-
ture of the overall performance of the system, each
module should be tested on its own and in relation
to the other modules. However, within the frame-
work of this project, only parts of the modules and
their interaction could be evaluated.

Thus, precision and coverage of the German SL
analysis results mainly from commercial applica-
tions4 and has been omitted here. Token generation
is essentially deterministic and has been evaluated in
previous work (Carl et al., 2005). In a large testing
scenario token generation achieves more than 99%
precision.

An evaluation of the dictionary lookup strategies
is given in (Carl and Rascu, 2006) and a further en-
hancement of the method is described in (Anastasiou
and Čulo, 2007). On a set of roughly 60 sentences,
it is found that matching of continuous and discon-
tinuous verbal entries reaches precision and recall of
almost 100% and 90% respectively.

Until now we did not develop a method for an
independent evaluation of the Expander and the
Ranker. Such methods would be highly desirable
and reveal to what extent these modules generate
an optimum output with a given input. Lacking
such methods, we have evaluated the system as a
whole from source language to target language, us-
ing BLEU and NIST measures.

6.1 First experiment

In a first experiment we have compared the four
LMs of section 5. All else being equal, the orthog-
onal lemma-tag model as in section 5.5 consistently
showed the best results when varying weights for the
feature functions so that we gave up further experi-
ments with the open token and the closed token-tag
and lemma-tag models of sections 5.2, 5.3 and 5.4.
All other evaluation experiments are thus based on
the the orthogonal model as in section 5.5.

We have tested the system on four languages
(Dutch, German, Greek and Spanish) into English
based on 50 sentences for each of the languages.
A representation similar to the dictionary-lookup
output (i.e. as in example (1c)) was provided by our
Dutch, Greek and Spanish partners for this exper-
iment, together with three reference translations.
A separate set of Expander rules was developed for
each source language, consisting of five rules for

4http://www.iai-sb.de



Greek up to approx. 20 rules for German.

Language BLEU NIST
Dutch 0.4034 6.4489
Spanish 0.3701 5.7304
Greek 0.2138 5.1220
German 0.1671 3.9197

Table 17: Results of first Experiment

The ranker used the orthogonal lemma-tag model
with the 6M-n35 lemma- and the 1M-n4 tag models.
The results are given in the table (17).

The differences in BLEU and NIST scores for the
four languages is — besides their similarity to En-
glish and the length of the test sentences — also due
to the quality, coverage and ambiguity of the lexicon,
and thus its ambiguity. The table (18) shows that
conditions are worst for German: the German test
set has on average the longest sentences (13.2 words)
and the highest lexical ambiguity. There are on av-
erage 3.6 TOs per word. Note that this is, compared
to a statistical MT system, very little where a word
can have up to 100 or more translations. However,
dictionaries for Greek, Dutch and Spanish produce
on average less than 2 TOs per word. With more
than 1.3 tokens per TO, the German lexicon has
also the longest translations.

language Tok/TO TO/TU length
Greek 1.0208 1.9959 9.5
Dutch 1.1258 1.9796 10.8
Spanish 1.1930 1.9506 7.8
German 1.3282 3.6352 13.2

Table 18 : Properties of dictionary output and
sentence length for the first experiment

6.2 Second experiment

Another set of evaluations was conducted one a Ger-
man test set of 200 sentences. As in the first test,
there were three reference translations for each test
sentence. The sentences were selected (and partially
constructed) so that they cover a range of known
translation problems including:

• lexical translation problems:
separable prefixes, fixed verb constructions, de-
gree of adjectives and adverbs, lexical ambigui-
ties, and others

• syntactic translation problems:
nominalisation, determination, word order,
different complementation, relative clauses,
tense/aspect, head switching, prepositions, cat-
egory change, and others

5a 3-gram model trained on all 6 Million sentences of the
BNC

In a first test suit we took the expander rules from
the first experiment and varied feature weights be-
tween 0.01 and 10, using lemma LMs with 3 and
4-grams and the tag LMs with 4, 5, 6, and 7-grams.
With the best combination of language models and
weights we obtained BLEU value of 0.1861.6

test NIST BLEU token model tag model
1 5.4801 0.1861 6M-n3 6M-n3
2 5.3193 0.2231 5M-n3 5M-n7
B 6.3644 0.3133 — —

Table 19: Results of 200 test translations

In a second test suit, we further developed and re-
fined some expander rules for handling adverbs and
negation particles, such as ‘never’, ‘usually’ extra-
position of prenominal adjectives (e.g. “der vom
Baum gefallene Apfel” would become “The apple
fallen from the tree”) and “um . . . zu” constructions.
We used the 50 sentences from the first experiment
as a development set and tested on a set of 200 sen-
tences. The BLEU score increased to 0.2231. As
can be seen in the table (19), NIST values decreased
slightly.

The public version of Systran (Babelfish), how-
ever, largely outperforms our efforts. Their results
on the same test set can be seen in the last line in
table (19).

7 Related work and outlook

We have described a machine translation system
within the METIS-II project which joins a transfer
dictionary with simple reordering rules and a statis-
tical ranker. A general overview of the METIS-II
project is given in (Dirix et al., 2005) and in (Van-
deghinste et al., 2006). More detailed descriptions of
the various realisations of METIS-II are in (Badia et
al., 2005; Markantonatou et al., 2006; Vandeghinste
et al., 2007).

An approach related to METIS-II has been sug-
gested by (Carbonell et al., 2006). Like METIS-II
their so-called “Context-based machine translation”
also makes use of a transfer dictionary and a target
language corpus. The dictionary provides basic word
(and phrase) translations which are used to retrieve
chunks from the target language corpus. From the
best sequence of overlapping chunks the translation
is generated.

As in so-called “generation-heavy” translation
(Habash, 2004), our expander rules tackle some of

6On a 1GB/2.8GHz, single core Linux machine it takes
less than 4 minutes to translate the 200 sentences. Most of
the time is spent for SL Analyser and loading LMs into the
Ranker. Expander, Dictionary Lookup and Token Generation

only needs a small fraction of the total time.



the translation divergences thereby producing nu-
merous partial translation hypotheses. This “sym-
bolic overgeneration” is then constrained by a sta-
tistical ranker making use of several statistical fea-
ture functions. A similar idea for generation was
suggested by (Langkilde and Knight, 1998) who use
2-gram language models to find the best path in a
word lattice. Recently, the LOGON-project (Oepen
et al., 2007) use statistical feature functions to se-
lect best rule-induced structures at various stages
during processing. Basically, the common idea of
these approaches would be to use statistics for clos-
ing “knowledge gaps” during processing.

The core idea of our work is also similar to (Brown
and Frederking, 1995) who use a statistical English
Language Model (ELM) to select between alternate
partial translations produced by three symbolic MT
system from the PANGLOSS Mark III system. In
contrast to their approach we build a search graph
with flat reordering rules.

In the future we plan to further enhance the vari-
ous modules of our METIS implementation. In par-
ticular revise and add more Expander rules so as to
caputre as yet unprocessed translation divergences.
We also plan to add further feature functions, to take
into account lexical weights (which may be trained
on parallel texts). We also plan to evaluate various
traces from the rules (i.e. traces from Dictionary
Lookup and Expander) that fired during the con-
struction of the AND/OR graph. The traces would
constitute separate feature functions which can be
taken into account by the Ranker.
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