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Abstract 
We introduce an approach to incorporate the constituent structure constraint into a discriminative word alignment model by presenting 
the constituent constraint in an explicit way and using three operations to ensure the constraint when search the best word alignment. 
In this way, we will be able to make use of the weak order constraint induced by the inversion transduction grammars (ITG), as well as 
the flexibility of the discriminative word alignment framework to incorporating any other useful features.  
 

1 Introduction 
Most of recent statistical machine translation systems are 
based on word alignment, in which word re-ordering and 
multi-word alignment are two major problems. Most of 
initial work is derived from IBM models, or HMM model 
and Model 6 (Brown et al., 1993; Vogel et al. 1996; Och 
and Ney, 2003), which product good results on large 
sentence aligned bilingual corpora, especially when the 
two languages are closely related. But these generative 
models are complex, so that it is difficult to train the 
parameters in them, and incorporate new useful 
knowledge into them.  

In order to restrict the word order further, especially 
considering the word order problem in two languages 
which are not closely related, many researchers introduce 
syntactic knowledge in word alignment, which mainly 
adopts a tree structure (Yamada and Knight, 2001; Cherry 
and Lin, 2003; Gildea 2004 etc.). In these models, a 
syntactic tree of one sentence is parsed which is used to 
constrain the words order in another sentence; or two trees 
are both parsed, and then the word alignment problem is 
to find a mapping between the nodes in the trees. 

But in some languages, the syntactic trees are difficult 
to achieve, or the syntax between two languages are very 
different, so that the nodes in both trees are not easy to 
map. Accounting for these problems, Wu(1997) proposes 
a stochastic inversion transduction grammars(SITG), in 
which two simple operations are used to reorder the words,  
and in the end it will produce a binary tree. This model 
does not use traditional syntax, and the word alignment 
only needs to satisfy the constituent structure, so that it 
achieves a great flexibility while preserving a weak but 
effective word order constraint. But this model uses a 
dynamic programming algorithm to search the best word 
alignment, which complexity is )TVO(N 333 , where V, T 
are the sentence lengths , when V and T are larger than 
100 or even 50, it will be hard to bear in general PC 
machine.  Besides, this model is also difficult to use other 
knowledge. 

In order to incorporate various knowledge into the word 
alignment effectively, some researchers (Liu et al., 2005; 
Moore, 2005; Taskar et al., 2005) almost at the same time 
propose a discriminative word alignment framework, 
where the knowledge, such as POS and lexicon, are cast 
as some features. So that, when solving the word 

alignment, we only needs to select the features and train 
the corresponding weights of them. Their work shows that, 
when the features are selected appropriately, even some 
easy features will produce good results. Recently, the base 
feature in most of these models is the word correlation 
model, and then incorporating some other easy features, 
such as jump distance, POS etc.  

In this paper, we propose a novel method, which will 
represent explicitly the constraints located in constituent 
structure produced by ITG. And then we can design more 
flexible search algorithm to find the best word alignment 
which is consistent with the constraints. To combine with 
other knowledge, we transfer the constituent structure 
constraint to a feature, which will be incorporated easily 
into a discriminative word alignment framework. 

In the rest of this paper, we first introduce the 
constituent structure constraint in the ITG model in 
Section 2, and then describe how to transfer the constraint 
to four easy judgements in Section 3, and design a beam 
search algorithm to find the best word alignment which 
satisfies the constituent structure constraint in Section 4. 
We then present how to incorporate the constituent 
structure feature into a discriminative word alignment 
model in Section 5. Section 6 shows the results of the 
experiments, and we conclude in Section 7 and 8. 

2 The Constituent Structure Constraint 
Wu(1997) proposes a simple ITG which only consists of 
five types of  rules: 

]A A[    A a⎯→⎯  
><⎯→⎯ A A  A a  
ji/vu         A bij⎯→⎯  

εε /u         A i
bi⎯→⎯  

j/v         A jb εε⎯→⎯  
 
Where A is the only non-terminal symbol, and []  and <>  
represent the two operations which generate outputs in 
straight and inverted orientation respectively. iu  and jv  
are terminal symbols, which represent the words in both 
languages, and ε  represents the null word. The a , ijb , εib  
and jbε  are the probabilities of productions. The last three 
rules are called lexical rules. 

During the process of word alignment, this model will 
generate a binary branching tree, but the constituents are 
not the traditional ones, they only satisfy the following 
basic constraints: 



1) The words aligned are consecutive respectively. 
2) There is a sub-tree for each constituent, it is a 

hierarchical structure, and the alignment is also 
hierarchical; 

3) Each node in the sub-tree for the constituent A can 
not participate in another sub-tree for constituent B, 
unless B is an ancestor of A. 

 
Although these constraints are easy, by using []  and <>  
operations, the model can almost interpret arbitrary word 
alignment, in which the word order in both sentence may 
vary greatly, as long as the word alignment satisfies the 
constituent structure constraints. So the model will be 
flexible to handle the words order during word alignment, 
especially when the two languages are very different in 
word order, such as Chinese and English.  Figure 1 (a) and 
(b) illustrate a word-alignment and the corresponding 
constituent structure tree. 
   Besides, if the iu  and jv  are multi-words, the model 
will be able to produce many-to-many word alignment, 
but the multi-word must be consecutive.  
   Wu(1997) gives a dynamic programming algorithm for 
the ITG, which complexity is )TVO(N 333 , which will 
slow down quickly when the sentence length becomes 
large.  And how to incorporate effectively other useful 
knowledge into the model is another problem. 

So we wish find a method, which can make use of the 
flexibility and effective word order constraint in the ITG 
while decreasing the complexity when searching word 
alignment at the same time, and can integrate easily the 
constituent structure constraint with other useful 
information. 
 
 我 再次 检查 我 的 包 

I checked my bag once again 

我 再次 检查 我 的 包 

I checked my bag once again 

(b) An ITG tree for the word alignment (a) 

我/ I 再次/once again 我 的 / my   包/ bag检查/ checked 

(a)  A valid word alignment example 

(c)  An invalid word alignment example  
 

Figure 1 A valid word alignment (a) and the 
corresponding ITG tree (b) where the line between the 

branches means an inverted orientation, otherwise a 
straight one, and an invalid alignment example, where the 
dot line is an invalid link (3-c) when given the other links.  

        3 Transforming the Constraint 

In this paper, we use >< EC,  to represent a sentence pair, 
C  and E are the sentences in both languages respectively,  

m
m ccccC ....211 ==  and n

n eeeeE ....211 == . We define a 

link ),;,( tsjia  if the multi-words j
ic  and t

se  are 

correspondences for each other, j
ic and t

se  may consist of 
zero, one or more words. If 0≠= ji  or 0≠= ts , they 
are single words respectively, and if one of the 0== ji  
or 0== ts  exists, a  is a null link.  So, a word alignment 
A  for the >< EC,  is a set of links: },...,,{ 21 naaaA = . 

For the convenience, ),;,( 11111 −−−−− kkkkk tsjia  and 
),;,( kkkkk tsjia refers that the ka  is behind the 1−ka  in 

the sentence C , i.e. 1−> kk ji . But it is not sure in the 
sentence E , i.e. ks may be larger or smaller than 1−kt . 

We also define a group ),;,( gggg
l
k tsjigag == , 

which is the combination of  ka , 1+ka ,… la , where 

gg ji ...  and gg ts ... is consecutive and for any other 
Atsjia xxxxx ∈),;,(  and },{ lkx ∉ , it must be φ=∩ gax , 

i.e. ggxx jiji ..., ∉  and ggxx tsts ..., ∉ . So a group is 
consecutive and integrated.   

We can combine a group ),;,( gggg tsjig  with a link 
),;,( xxxxx tsjia , φ=∩ gax , to form a larger group 

),;,(' '''' gggg tsjig , in which ),min(' xgg iii = , 
),max(' xgg jjj = , ),min(' xgg sss = , and ),max(' xgg ttt = . 

There may exist a link ya , φ≠∩ 'gay , but 'gay ⊄ . To 
keep the integrality of the group 'g , we need to combine 

'g  with the ya , this process will continue until the formed 
group is integrated. The COMBINE procedure in Figure 3 
shows the detail.  

If φ=∩ gax  and when combining xa with g , it needs 
not add other link, i.e. the ),;,(' '''' gggg tsjig  mentioned 
above is an integrated group, we say that the xa  is 
independent of g .  

We define our word alignment problem as finding the 
best A  that maximize ),|Pr( ECA . And the process of 
forming a word alignment is: A  is equal to φ  at the 
beginning, and then add one a  each time }{aAA ∪=  , 
until no new a  can be added anymore. 

For each new added ka , we will verify whether ka  is 
valid. If it is not valid, it can not be added to A .  

If φ=A , ka  is valid.  
If φ≠A  , there may exist at most two neighbors 1−ka  

and 1+ka  which are near ka  and may form two groups 
1−kg  or 1+kg respectively. We say the new ka  is valid, 

when there exists at least one of groups 1−kg  or 1+kg , 
which the new ka  is independent of , so that it  may 
combine with the group to form an larger integrated group 
without involving other links.  
   There are four types of valid combinations as Figure 2 
shows, in which ka  is independent of group 1−kg  or 

1+kg . 
 



 gk-1 ak 

2-(a) 

gk+1 ak 

2-(b)

gk-1 ak 

2-(c) 

gk+1ak 

2-(d)
 

Figure 2 Four valid combination types 
 

Where 2-(a) and 2-(b) represent that ka  is able to 
combine the 1−kg  and 1+kg  in a straight orientation; and 
2-(c) and 2-(d) in an inverted orientation. Note, the groups 
may be any groups formed by 1−ka  or 1+ka , i.e. their size 
is arbitrary, as long as the ka  is independent of them. If 
the new ka  accords with at least one of these types, we 
say it is valid.      

Correspondingly, there are four types of invalid 
combinations as Figure 3 shows. 

 gk-1 ak 

3-(a) 

a' 

3-(b)

gk+1 ak a' gk-1 ak 

3-(c) 

a' gk+1ak 

3-(d)

a' 

 
 

Figure 3 Four invalid combination types 
 
Where the 'a  results in that the ka  can not be combined 
into groups. 

In this way, our word alignment task is transferred to 
find a A  in which each Aa ∈  accords with at least one 
type of the combinations in Figure 2.  

Now, we will describe further how to verify the validity 
of the new ka in a straight way. Observing that for each 
combination type in Figure 2,  after combining the ka  and 
the group, the new group formed will take the ka  as the 
boundary. So, a simple way is to combine ka  with 1−ka  
or 1+ka  directly, and verify whether the last formed 
integrated group exceeds the scope of ka .  If it exceeds, 

ka  does not accord with the combination, otherwise ka  is 
valid. For each type in Figure 1, the boundary of the new 
group that needs to be verified is different. For example, 
assuming the ),;,( tsjiak  and the last formed group 

)',';','(' tsjig , in 2-(a), we should verify whether  
)'( jj ≤  and )'( tt ≤ ; in 2-(c), we should verify whether 
)'( jj ≤  and )'( ss ≤ .  

So, we achieve a simple method to verify if the new ka  
is valid. Figure 4 gives the verifying procedure, which 
complexity is O(N) , N is size of A , which is proportional 
to the lengths of the sentences. 

Now, we define the process of word alignment more 
clearly as follows: 
1. Initial φ=A , and a candidate set M  contains all 

the possible a . 
2. We select one a  from the M  each time, and 

remove it from the M . 
3. Verify whether the new a  belongs to one of the 

four types in Figure 1. If TRUE, then }{aAA ∪= . 
4. Iterate Step 2 and 3, until no other a  can be added 

to A  or φ=M .   

 Procedure VERIFY_LINK_VALID 

Input: A  and ),;,( kkkkk tsjia  

Output: TRUE or FALSE 

Begin 
If φ=A , return TRUE ; 

Find the ),;,( 11111 −−−−− kkkkk tsjia  and ),;,( 11111 +++++ kkkkk tsjia ; 

If 1−ka  exists Then 

Initialize 11 −− = kk ag ; 
Combining the 1−kg  with ka  to form a new group )',';','(' tsjig ;
if )( 1−> kk ts  then  

if )'( kjj ≤  and )'( ktt ≤  then return TRUE; 

if )( 1−< kk st  then  
  if )'( kjj ≤  and )'( ssk ≤  then return TRUE; 

If 1+ka  exists Then 

Initialize 11 ++ = kk ag ; 
Combining the 1+kg  with ka  to form a new group )',';','(' tsjig ;
if )( 1 kk ts >+  then  

if )'( kii ≥  and )'( kss ≥  then return TRUE; 
if )( 1+> kk ts  then  

  if )'( kii ≥  and )'( ttk ≥  then return TRUE; 

   return FALSE; 

End 

Procedure COMBINE 

Input: a group ),;,( tsjig , a link ),;,( xxxxx tsjia  and A  

Output: a new group )',';','(' tsjig  

Begin 
);,min(' xiii ←    

);,max(' xjjj ←   
);,min(' xsss ←   
);,max(' xttt ←  

);',';','('' tsjigg ←  

if Atsjia yyyyy ∈),;,( , φ≠∩ 'ga y  and 'ga y ⊄  then  

return ),,'(COMBINE' Aagg y←  

     return )',';','(' tsjig  

End 

Figure 4 Procedure to verify the validity of ka  
 
And we will prove that the word alignment produced 

through the above process will satisfy the constituent 
structure constraint in ITG. 
 
Theorem 1 
If each new added a  accords with any of the four 
combination types in Figure 2, during the process word 
alignment, the word alignment produced in the end will 
satisfy the constituent structure constraint in ITG, i.e. it 
will form a constituent structure tree. And, any word 
alignment generated by the ITG will be able to be 
produced by the above process, i.e. adding a new a  which 
belongs to one of the four combination types in the Figure 
1 at each time. 
 
Proof  
1．⇒  



At the beginning, φ=A , so any new ),;,( tsjia  will be 
valid, i.e. we can add a  to A . Here we can add a new 
production to generate it:  

t
s

j
i e c /        A bijst⎯⎯→⎯ . 

where j
ic  and t

se  are the multi-words in both languages, 
and they are generated according to probability ijstb . 

Assume that the A , formed previously by adding a , 
satisfies the constituent structure constraint, i.e., it forms a 
constituent tree. Now we will add a new a , if it is one of 
the four types in Figure 2, then there exists a group g  in 
A , which is able to combine the a  without involving the 

other links, i.e. agg +=' . For g  satisfies the constituent 
structure constraint, so there exists a production to 
generate g: 

 g        A bg⎯→⎯ , 
We can add three new productions to replace this 
production to generate 'g : 

]A A[        A a  ⎯→⎯     or  ><⎯→⎯ A A        A a  , 

 g        A bg⎯→⎯  

 a        A ba⎯→⎯  
If g  and a is combined in a straight orientation then we 
use [] production and in an inverted orientation use <> . 

In this way, the new }{aAA +=  generates a 
constituent tree and satisfies the constituent structure 
constraint.                                                                         □ 

 
2.  ⇐  
For a word alignment with constituent structure in ITG, 
we can get all its leaves firstly, and then generate one a  
for each leaf in the left to right order and add  a  to A . 
Initially, the φ=A , so the first added a  is valid. 
Assume that all the previously added a  belong to one of 
the four types of combinations in Figures 2. When adding 
a new a , the relationship between it and the previous 'a  
may be: 
1) They belong to a same parent node, i.e. they belong 

to a same constituent, and are the two branches of the 
constituent respectively. 'a  can form a group which 
only include 'a  and is independent of a . So they 
accord with the 2-a or 2-c combination type, and a  is 
valid. 

2) Their parent nodes are not same, but we can always 
find a node which are the same ancestor node of them, 
and it corresponds to the minimal constituent which 
includes both of the a  and 'a . At this time, a  and 

'a  belong to the two branches of the constituent 
respectively. So the branch where 'a  locates can 
form a group, which is independent of a . So a  and 
the group accord with the 2-a or 2-c combination type, 
and a  is valid. 

So all word alignment generated by ITG can be produced 
by a process by adding a , which accords with one of the 
combination types in Figure 2.                                        □ 
 

4 Alignment Search  
In order to make use of the constituent structure constraint 
in the process of searching word alignment, we define the 
following three operations: 

1. Verify Operation: verify operation is the most 
important operation, which will determine whether 
the new a  is valid. Verify operation will pass the a  
through the procedure in Figure 4, to determinate 
whether the a  belongs to one of the combination 
types in Figure 2. 

2. Insert Operation: add the new a  into A , i.e. 
}{aAA += . 

3. Combine Operation: combine the new added a  
with the adjacent group to form a larger group. 
During the process of word alignment, if ),;,( tsjia  
is adjacent with a group ),;,( yxvug , we will merge 
them. The adjacency means the distance between a  
and g is zero in both sentences. There may be four 
cases corresponding with the four combination types. 
For example, in the first type, if 1+= vi  and 

1+= ys , then we say that a  is adjacent with g , 
and combine them to form a larger group 

),;,(' txjug . And if two groups are adjacent, they 
can be merged into a larger group, too. After the 
word alignment, there may exist null links, so we 
need to combine groups which are not adjacent. At 
this time, each null link can be combined with any 
adjacent group. With the combine operation, we can 
output the constituent structure of the word 
alignment in the end. 

 
By transferring the constituent structure constraint to 

the above three operations, we will be able to use any 
search algorithm to find the best word alignment. Here we 
design a fast beam search algorithm, which derived 
partially from the competitive linking algorithm 
(Melamed 2000), see Figure 5 for detail. 

We collect firstly all possible a  between the words in 
>< EC,  to form a candidate set M , and sort them by the 
)(ascore , which may be the correlation probability of the 

words in a , and depends on the models we will used. 
We then use the process defined in the Section 3 to 

produce a word alignment by using the Verify, Insert and 
Combine operations. For some different candidates may 
have an equal or near score, there may be many branches. 
But we will select the b  branches to continue, and prune 
the branches by calculate the: 

∑=
a

ascoreAscore ))(log()( . 

Our beam search algorithm has some characteristics: 
Firstly, it use the verify operation to determine whether 
the new a  is valid, so the result word alignment is 
satisfied with the constituent structure constraint. 
Secondly, we use the combine operation when inserting 
new a , so the corresponding constituent tree of the word 
alignment will produced. Besides, our word alignment can 
be many-to-many, as long as the words are consecutive. 

The complexity of this beam search algorithm is 
)O(bN 2 , where b is the beam size, and N is the smaller 

sentence length in both sentences. 



 Algorithm 1  
Input: sentence pair >< EC,  

Output: a best word alignment of >< EC,  

Begin 
φ=A , M , }{ABWA = , φ=NB , φ=ALIGNED  

Do  

For each A  in BWA  Begin 

If ( A  has been all aligend) or (no other a  can be used in M ) 

Then AALIGNEDALIGNED += ; 

Get the next N-best a  from M ; 

For each a  Begin 

  If( Execute the verify operation) Then  
      }{aAA ∪= ; Calculate )( Ascore ; ANBNB += ; 

End 

Remove A  from BWA ; 

  End 

  Sort all A  in NB  

  Select the best b  branches and insert them into BWA ; 

  While ( BWA is not NULL); 

  Sort all A  in ALIGNED ; 

Return the best A  

End  

Figure 5 The alignment search algorithm 

5 Discriminative Word Alignment 
Given a >< EC, , a discriminative word alignment is to 
find the best maxA , so that: 

∑
=

=
n

i
ii

A
EACfA

1
max ),,(maxarg λ  

Where the if  represents the feature and iλ  is the 
corresponding weight of the feature. This framework 
makes it easy to combine various different knowledge in 
the word alignment problem, by representing the 
knowledge in the form of feature.  

5.1 Features 
In order to incorporate the constituent structure constraint 
into the discriminative word alignment model, there are 
two ways, the one is taking it as a search constraint, and 
using the verify operation to determine whether the new 
a is valid. Another way is to use a feature to represent this 
constraint. We use the latter one and our model will 
include the following features: 
Constituent Structure Feature: count the number of the 
a  which violates the constituent structure constraint. To 
ensure the result word alignment satisfies the cconstituent 
structure, we set a very small negative weight for this 
feature, so that the word alignment will not be used 
whenever this feature occurs. 
Conditional Probability Model: we use a conditional 
probability as our base feature which accounts for the 
word correlation, 

∑== ),|(log),|(log),,( ecapECAPEACf p . 
Where ),|( ecap  is the alignment probability when c  and 
e  co-occur. There are various models, such as the 
Moore(2005),  

),(
),(),|(

eccoocur
decalignecap −=

. 

Where ),( ecalign  is the number of times that c  and e  
are aligned, ),( eccoocur  is the number of times they co-

occur, and d is a discount. Here we use the 2Φ  suggested 
by Gale and Church (1991), It is more robust because it 
considers all four cells in Table 1, i.e. it also considers the 
other alignments that c  and e  have participated in:  

))()()((
)(),|(

2

dcdbcaba
bcadecap

++++
−= . 

 
Table 1 An alignment contingency table (2*2) 

 
Distortion Model: we count the jump distance for this 
model: 

∑=
i

id dEACf ),,( . 

Where the di  represents the jump distance for each a , 
using one of the sentences as a reference. Our a  is many-
to-many, such as ),;,( tsjiak  and )',';','(1 tsjiak − , if it is 
a straight orientation, the 1'−−= tsdi ; or 1' −−= tsdi  in 
an inverted orientation. 
Null word feature: we consider the effect for null 
alignment, by counting the number of null words in the 
word alignment. 

 5.2 Search 
We use a similar beam search to find the best word 
alignment. But the )(Ascore  is calculated as follows: 

∑
=

=
4

1

),,()(
i

ii EACfAscore λ . 

i.e., when adding a new a ,  we count the value for each 
feature, and multiply the weight respectively, and add 
them all to get the )(Ascore .  

5.3 Training 
The discriminative model needs to train the weights for 
the features, and we adopts the same perception training 
described in (Moore 2005) to train them, in which setting 
a initial set of the weights, and iterating through a small 
word-aligned development corpus for several times. At 
each time, it inputs each sentence pair in order, searches 
the best word alignment, and compares the features in the 
auto-generated word alignment with the reference word 
alignment. Then it updates the weights in the following 
way:    

)),,(),,(( EACfiEACfi autorefii −+← ηλλ . 

 c  c¬  
e   ),( ecaligna =  ),( ecalignb ¬=  

e¬  ),( ecalignc ¬=  ),( ecalignd ¬¬=  



Where η  is the learning rate. In this way, we will get the 
average weights over all the training data. 

During our training process, we do not change the 
weights of the constituent structure feature and the 
conditional probability model, i.e., we only updates the 
weights of distortion model and null word feature. 

Besides, the conditional probability model may be 
trained in various ways, but we use an iterate method as 
follows:  

1. Initialize the conditional probability model using 
the 2Φ , where the ),(),( eccoocurecalign = . 

2. Train the weights of the current features. 
3. Search the best word alignment for the training 

corpus. 
4. Update the conditional probability model using the 

results in Step 3.  
5. Iterate 2-4, until the model is converged or it meets 

the specified number for iterating. 

6 Evaluation 
We trained our method and model on a sentence-aligned 
bilingual Chinese and English corpus, which comprised 
200,000 sentence pairs, and we also manually aligned 
1,000 sentence pairs, in which 500 pairs of them were 
selected as development set, which were used to train the 
weights of our features, and the remained 500 pairs were 
used as test data. The manually aligned sentence pairs 
were aligned with constituent structure, i.e. they were 
aligned hierarchically. Table 2 shows the statistics of them. 
 

 
Table 2 Statistics of training corpus, development corpus 

and test corpus 
 

All the Chinese sentences are segmented using the 
ICTCLAS (zhang et al., 2003). And the English sentences 
are tokenized and stemmed, considering the Chinese word 
has no morphologic change and our bilingual corpus is 
relatively small. In this way the vocabulary size of 
English corpus decreases and the frequency of the word 
type increases.  
      We adopted the same evaluation methodology to the 
one in (Och and Ney 2003), i.e. recall, precision and 
alignment error rate (AER) to evaluate our model:  

||
||

S
SArecall ∩= , 

||
||

P
PAprecision ∩= , 

||||
||||1

SA
PASAAER

+
∩+∩−= . 

Where A is the set of alignments generated automatically 
by our word alignment system; S is the set of alignments 
which are manually marked “sure” , P is the set of 
alignments which are manually marked “possible” or 
“sure”, then PS ⊆  
   We prepared three experiments for comparison: 
1. Training IBM-4 model on the training corpus using 

GIZA++ (Och and Ney 2003) and testing it. 
2. Training a generative model derived directly from 

ITG, called HWA, where we consider only the 
conditional probability model  

∑= ),|(log),|(log ecapECAP . 
We iterate to train the model as follows: Firstly, 
searching the best word alignment by Algorithm 1 in 
Figure 5, using: 

∑== ),|(log),|(log)( ecapECAPAscore . 
In this way, the word alignment will satisfy the 
constituent structure constraint. Secondly, re-
estimating the model using the best word alignments. 
If the model is converged or it meets the specified 
number for iterating, the training stops. And we then 
test this model using the same search algorithm. 

3. Training the discriminative model in Section 5, called 
DWA. And we also train the weights in the 
development set. Finally, we test the model in the test 
set. 

 
The results of the above three experiments are showed in 
Table 3. 
 
Models Precision Recall AER 
HWA 
DWA 

0.823 
0.858 

0.769 
0.766 

0.203 
0.188 

IBM-4 CE →  
IBM-4 EC →  
IBM-4 union 
IBM-4 intersection 
IBM-4 refined 

0.721 
0.772 
0.704 
0.787 
0.815 

0.708 
0.702 
0.719 
0.738 
0.754 

0.285 
0.263 
0.288 
0.237 
0.215 

 
Table 3 Comparison of results for three models 

 
Where CE →  denotes treating the English as the source 
and Chinese as the target, and EC →  is reverse. The 
intersection, union and refined denote three methods 
combining the alignments in both directions (i.e. CE →  
and EC → ) to improve the result (Och and Ney 2003). 

As we can see, both HWA and DWA gives better 
results than IBM-4, and the AER of DWA reduces about 
7% than HWA. But the recall of DWA and HWA is 
almost equal, while the precision of DWA increases about 
4% than HWA. We conclude that the constituent structure 
constraint is very effective to restrict the word order, and 
by combining other knowledge with the constituent 
structure constraint, we will improve the result further. 

7 Related Works 
Many researchers have proposed models to make use of 
constituent structure or syntax to restrict the word order. 
But our constituent structure is derived from ITG (Wu 
1997), which is not the traditional syntactic structure, so 
that it is very flexible to align two sentences with very 
different word order.  

 Chinese English 
Sentences 200,000 

Words 3,326,278 3,292,378
Training 
Corpus 

 Vocabulary 60,660 48,753 
Sentences 500 Develop 

Corpus Words 8,214 7,992 
Sentences 500 Test 

Corpus Words 8,066 7,997 



One of the main differences between our work and ITG 
is that we represent the constituent structure constraint 
explicitly, while it is implied in the rules of ITG. So that 
we can design some general search algorithms to decrease 
the complexity while keeping the constituent structure. In 
addition, we will be able to combine the constraint with 
other knowledge easily. 

Zens et al. (2004) provides a decoder which satisfies the 
ITG constraint, their method is to ensure the fourth phrase 
can be translated when given the first two translated 
phrases, so it need to constrain the reordering of the third 
phrase. However, in our word alignment, the fourth phrase 
may be null aligned, so we just verify whether the current 
link is valid or not when given the preceding links. If it is 
invalid, it can not be added to the alignment, and the 
words may be aligned to null word. 

Our discriminative word alignment model is similar 
with the other discriminative framework, except we 
design a new feature, which will incorporate more 
complex syntactic knowledge into the model.   

8 Conclusions 
We have presented a method to transfer the constituent 
structure constraint located in the ITG to four simple 
position judgement procedures in an explicit way. So, we 
can make use of the constituent structure to restrict the 
word order in word alignment easily. In this paper, we 
propose a beam search to decrease the complexity for find 
the best word alignment while preserve the constituent 
structure constraint. In addition, the word alignment we 
find is a many-to-many alignment, while the multi-words 
must be consecutive. 

We also design a feature to represent the constituent 
structure constraint, so that we can incorporate it into the 
discriminative model. 
    The experiments show that the constituent structure is 
useful for word alignment, and the results will be 
improved by combining other features. 
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