
Machine Transliteration Using Multiple Transliteration Engines and
Hypothesis Re-Ranking

Jong-Hoon Oh and Hitoshi Isahara

Computational Linguistics Group
National Institute of Information and Communications Technology

3-5 Hikaridai Seika-cho, Soraku-gun, Kyoto 619-0289 Japan
{rovellia, isahara}@nict.go.jp

Abstract
This paper describes a novel method of improving machine transliteration by using multiple transliteration hypotheses and re-ranking
them. We constructed seven machine-transliteration engines to produce a set of transliteration hypotheses. We then re-ranked the hy-
potheses to select the correct transliteration hypothesis. We propose a re-ranking method that makes use of confidence-score, language-
model, and Web-frequency features and combines them with machine-learning algorithms including support vector machines and the
maximum entropy model. Our testing of English-to-Japanese and English-to-Korean transliterations revealed that the individual translit-
eration engines used in our approach performed comparably to previous approaches and that re-ranking improved word accuracy com-
pared to the best individual engine from about 65 to 88%.

1. Introduction
Transliteration is particularly used to translate proper
names and technical terms from languages using the Roman
alphabet into ones using non-Roman alphabets such as Chi-
nese, Japanese, or Korean. Because transliteration is one of
the main causes of the out-of-vocabulary (OOV) problem,
machine transliteration has received a significant degree of
attention as a tool to support machine translation (Knight
and Graehl, 1998; Al-Onaizan and Knight, 2002) and
cross-language information retrieval (Fujii and Tetsuya,
2001). A variety of paradigms for machine translitera-
tion have been developed over the years: grapheme1-based
model (GM) (Kang and Kim, 2000; Goto et al., 2003),
phoneme2-based model (PM) (Knight and Graehl, 1998;
Kang, 2001), hybrid model (HM) (Al-Onaizan and Knight,
2002; Bilac and Tanaka, 2004), and correspondence-based
model (CM) (Oh and Choi, 2002; Oh and Choi, 2005).
These models are classified in terms of the information
sources used for transliteration or the units that are translit-
erated. GM, PM, HM, and CM make use of source
graphemes, source phonemes, both source graphemes and
source phonemes, and the correspondence between source
graphemes and phonemes, respectively.
Transliteration is generally a phonetic rather than an or-
thographic process (Knight and Graehl, 1998). However,
both the source grapheme and source phoneme or either
of them can affect the target-language transliteration (e.g.
a Japanese or Korean transliteration). For this reason,
there are transliterations that are grapheme-based, ones that
are phoneme-based, and ones that are a combination of
grapheme-based and phoneme-based transliterations. For
example, the respective Korean transliterations of data,
amylase, and neomycin are the phoneme-based translit-
eration ‘de-i-teo (X<s�'�)’3, the grapheme-based translit-

1Graphemes refer to the basic units (or the smallest contrastive
units) of a written language: e.g., English has 26 graphemes or
letters

2Phonemes are the simplest significant unit of sound.
3In this paper, target-language transliterations are represented

eration ‘a-mil-la-a-je (��x9�����]j)’, and ‘ne-o-ma-i-sin
(W1�̧��s����)’, which is a combination of the grapheme-
based transliteration ‘ne-o (W1�̧)’ and the phoneme-based
transliteration ‘ma-i-sin (��s����)’. However, because each
of the transliteration models depends on a particular in-
formation source, each can produce transliterations with
errors. Moreover, different transliteration models usually
produce different errors and different transliterations. This
means we should be able to improve transliteration by com-
bining various transliteration models into one machine-
transliteration system that combines the advantages of the
individual models and suffers from few of their disadvan-
tages.
A similar idea has been successfully applied to automatic
speech recognition (ASR) and machine translation (Fiscus,
1997; Nomoto, 2004). In our previous work (Oh et al.,
2006b), we have shown that this idea is also helpful for
improving machine transliteration. It used transliteration
hypotheses derived from four transliteration engines and
re-ranked them with the product of two ranking functions,
each of which was based on the rank of hypotheses in each
transliteration engine and Web frequency. Even though the
re-ranking in Oh et al. (2006b) performed well, it had lim-
itations in taking various features into account and effec-
tively combining them. To address this problem, we de-
veloped SVM-based and MEM-based re-ranking methods,
which are able to effectively combine various features.
We describe our framework in Sections 2. and 3. We then
describe our evaluation in Section 4. and review related
work in Section 5. The paper is concluded in Section 6.

2. Producing Transliteration Hypotheses
We used multiple transliteration engines based on GM, PM,
HM, and CM to produce transliteration hypotheses. GM,
PM, and CM can generally function alone as translitera-
tion engines, while HM depends on other transliteration
models to estimate its parameters. Therefore, we called a

in their Romanized form with single quotation marks and hyphens
between syllables.

transliteration engine based on GM, PM, or CM a “single-
model engine” and one based on HM a “hybrid-model en-
gine.” We used seven transliteration engines. Three were
single-model engines corresponding to GM, PM, and CM.
The other four were hybrid-model engines. Three of these
corresponded to HM using two of GM, PM, and CM —
HM(G+P), HM(G+C), and HM(P+C) — and the last was
based on HM using all three (HM(G+P+C)). Note that
HM(G+P) has previously been described (Al-Onaizan and
Knight, 2002; Bilac and Tanaka, 2004), and the other HMs
are newly proposed here.

2.1. Single-Model Engines
Let SW be a source word, PSW be the pronunciation of
SW , TSW be a target word corresponding to SW , and
CSW be the correspondence between SW and PSW . PSW

and TSW can be segmented into a series of sub-strings, each
of which corresponds to a source grapheme. We can thus
write SW = s1, · · · , sn = sn

1 , PSW = p1, · · · , pn = pn
1 ,

TSW = t1, · · · , tn = tn1 , and CSW = c1, · · · , cn = cn
1 ,

where si, pi, ti, and ci = < si, pi > respectively represent
the ith source grapheme, source phonemes corresponding
to si, target graphemes corresponding to si and pi, and
the correspondence between si and pi. Table 1 shows an
example of correspondence between si, pi, and ti, where
SW = acetylcholine, PSW =“AH S EH T AH L K OW L
IY N”4, and TSW = ‘a-se-ti-ru-ko-rin (¢»Áë³êó)’
in Japanese, and TSW =‘a-se-til-kol-lin (��[j�9�c+t�2;)’ in
Korean. With this definition, GM (SW → TSW), PM
(SW → PSW and PSW → TSW), and CM (SW → PSW

and CSW → TSW) can respectively be represented as
Eqs. (1), (2), and (3). Given the assumption that each
transliteration model depends on the size of the context,
k, Eqs. (1), (2), and (3) can be simplified into a series of
products.

PrG = PrG(TSW |SW) = Pr(tn1 |sn
1) (1)

≈
∏

i

Pr(ti|ti−1
i−k, si+k

i−k)

PrP = PrP(TSW |SW) (2)
= Pr(pn

1 |sn
1)× Pr(tn1 |pn

1)

≈
∏

i

Pr(pi|pi−1
i−k, si+k

i−k)× Pr(ti|ti−1
i−k, pi+k

i−k)

PrC = PrC(TSW |SW) (3)
= Pr(pn

1 |sn
1)× Pr(tn1 |cn

1)

≈
∏

i

Pr(pi|pi−1
i−k, si+k

i−k)× Pr(ti|ti−1
i−k, ci+k

i−k)

To estimate the probabilities, Pr(ti|ti−1
i−k, si+k

i−k),
Pr(pi|pi−1

i−k, si+k
i−k), Pr(ti|ti−1

i−k, pi+k
i−k), and

Pr(ti|ti−1
i−k, ci+k

i−k), in Eqs. (1), (2), and (3), we use
the maximum entropy model (Berger et al., 1996). Event
ev in this model is composed of a target event (te) and a

4ARPAbet symbols are used to represent English phonemes.
ARPAbet is one of the methods used for coding English
phonemes into ASCII characters (http://www.cs.cmu.
edu/˜laura/pages/arpabet.ps)

history event (he) and is represented by a bundle of feature
functions (fi(he, te)) that represent certain characteristics
in event ev. The feature functions enable a model based
on the maximum entropy model to estimate probabil-
ity (Berger et al., 1996). Therefore, designing the feature
functions, which effectively support certain decisions made
by the model, is important. Our basic strategy in designing
the feature functions was that the context information
collocated with the unit of interest was important. On the
basis of this strategy, we designed feature functions with
the following features. Table 2 shows examples of feature
functions based on the following features.

• Single features in si+k
i−k, pi+k

i−k, ci+k
i−k, and ti−1

i−k (e.g., si,
pi, ci, and ti−1)

• Combinations between features of the same type in-
cluding bigram and trigram (e.g., {si

i−2}, {pi−2, pi,
pi+2}, {ci+2

i }, and {ti−1
i−2})

• Combinations between features of different type (e.g.,
{si

i−1, pi}, {si−1, ti−1
i−2}, {ci, ti−1}, and {pi−2

i−3, ti−2})

– between si+k
i−k and pi+k

i−k

– between si+k
i−k and ti−1

i−k

– between pi+k
i−k and ti−1

i−k

– between ci+k
i−k and ti−1

i−k

A conditional maximum entropy model is generally an ex-
ponential log-linear model that gives the conditional prob-
ability of event ev =< te, he >, as described in Eq. (4),
where λi is the parameter to be estimated (Berger et al.,
1996).

Pr(te|he) =
exp(

∑
i λifi(he, te))∑

te exp(
∑

i λifi(he, te))
(4)

Using Eq. (4) and feature functions, we can estimate
the conditional probabilities in Eqs. (1), (2), and (3), as
Pr(ti|ti−1

i−k, ci+k
i−k) = Pr(te|he), because we can respec-

tively represent te and he as ti and tuples < ti−1
i−k, ci+k

i−k >.
In the same way, Pr(ti|ti−1

i−k, si+k
i−k), Pr(ti|ti−1

i−k, pi+k
i−k), and

Pr(pi|pi−1
i−k, si+k

i−k) can be represented as Pr(te|he) with
their corresponding target events and history events. We
used the “Maximum Entropy Modeling Toolkit”5 to esti-
mate the probabilities and the LBFGS algorithm to find λi

in Eq. (4).

2.2. Hybrid-Model Engines
Using the definition of HM in Al-Onaizan and Knight
(2002) and Bilac and Tanaka (2004), we can represent
four hybrid-model engines in a straightforward manner —
Eqs. (5), (6), (7), and (8), where 0 < α, β, γ, δ1, δ2, δ3 < 1
and δ1 + δ2 + δ3 = 1. Note that PrG , PrP , and PrC in
Eqs. (5), (6), (7), and (8) correspond to Eqs. (1), (2), and
(3), respectively.

5Available at http://homepages.inf.ed.ac.uk/
s0450736/maxent_toolkit.html

English ci
si a c e t y l c h o l i n e
pi AH S EH T AH L K ε OW L IY N ε

Japanese ti ‘a’ ‘s’ ‘e’ ‘t’ ‘i’ ‘ru’ ‘k’ ε ‘o’ ‘r’ ‘i’ ‘n’ ε
tsj ¢ » Á ë ³ ê ó

Korean ti ‘a’ ‘s’ ‘e’ ‘t’ ‘i’ ‘l’ ‘k’ ε ‘o’ ‘l’ ‘l’ ‘i’ ‘n’ ε
tsj �� [j �9� c+t �2;

Table 1: Examples of correspondence between si, pi, and ti. ε means a NULL character and tsj represents target-language
syllables.

fj si+k
i−k pi+k

i−k ti−1
i−k ti

f1 si+1
i−1 = cet – ti−1=‘s’ ti=‘e’

f2 ci
i−1 =< ce,“S EH”> – ti=‘e’

f3 – pi=“EH” – ti=‘e’
f4 si+1

i = et pi+2
i =“EH T AH” – ti=‘e’

f5 si−1
i−2 = ac and si+1 = t – ti−1

i−2=‘a-s’ ti=‘e’
f6 ci =< e,“EH”> ti−1

i−2=‘a-s’ ti=‘e’
f7 si = e pi−3=$ and pi+1

i =“EH T” – ti=‘e’

Table 2: Examples of feature functions derived from Table 1. $ represents the start of words

PrHM(G+P)(TSW |SW) (5)
= α× PrP + (1− α)× PrG

PrHM(G+C)(TSW |SW) (6)
= β × PrC + (1− β)× PrG

PrHM(P+C)(TSW |SW) (7)
= γ × PrC + (1− γ)× PrP

PrHM(G+P+C)(TSW |SW) (8)
= δ1 × PrG + δ2 × PrP + δ3 × PrC

We first produce n-best transliteration hypotheses using a
stack decoder (Schwartz and Chow, 1990) for each translit-
eration engine. We then make a set of transliteration hy-
potheses comprising the n-best transliteration hypotheses
produced by the seven transliteration engines.

3. Re-Ranking Transliteration Hypotheses
The transliteration hypotheses in the set are re-ranked to
enable a correct hypothesis to be identified. Re-ranking has
been successfully applied to several NLP problems includ-
ing statistical parsing (Collins and Koo, 2005; Daume III
and Marcu, 2004; Shen and Joshi, 2003), machine trans-
lation (Shen et al., 2004), and name entity taggers (Ji et
al., 2006). We selected support vector machines (SVMs)
and the maximum entropy model (MEM) (Daume III and
Marcu, 2004; Ji et al., 2006) from the machine-learning al-
gorithms used for re-ranking.
Let hi ∈ H be the ith transliteration hypothesis of source
word s, hcorrect be a correct transliteration hypothesis cor-
responding to s, xi ∈ X be a feature vector of hi, and yi

be the training label for xi. What we need to do is devise
a rank function, g(xi), in Eq. (9) that ranks hcorrect higher
and the others lower.

g(xi) : X → {r : r is ordering of hi ∈ H} (9)

We first train SVMs and MEM with training data set D =
{xi, yi}, where xcorrect is a positive sample (ycorrect =
positive) and xi 6=correct is a negative sample (yi 6=correct =
negative). The SVMs assign a value to each transliteration
hypothesis (hi) using

gSV M (xi) = w · xi + b (10)

where w denotes a weight vector. We did not use the pre-
dicted class of xi in SVM-based re-ranking but the pre-
dicted value of gSV M (xi) because our re-ranking function,
as represented by Eq. (9), determines the relative ordering
between hi and hj in H . A re-ranking function based on
MEM assigns probability to hi using

gMEM (xi) = Pr(hcorrect|xi) (11)

We can finally obtain a ranked list for given H and X
— the higher the g(xi) value, the better the hi. We used
SV M light (Joachims, 2002) and the “Maximum Entropy
Modeling Toolkit” for our re-ranking.

3.1. Features for Re-ranking

We needed to design a suitable feature to measure the rel-
evance between a source word, s, and a transliteration hy-
pothesis, hi, of s to train the SVMs and MEM for our re-
ranking. We introduced three types of features.
Confidence Score (8 features toal): Each transliteration
engine produces transliteration hypotheses and their corre-
sponding confidence scores using Eqs. (1)–(8). We use the
scores as a feature for re-ranking. Let CSM(s, hi) be a
confidence score function inM∈ {G,P, C,HM(G + P),
HM(G + C),HM(P + C), and HM(G + P + C)}, each
of which corresponds to Eqs. (1), (2), (3), (5), (6), (7), and
(8), and ACSM(s, hi) be the average of CSM(s, hi) over
M. The confidence score features for hi can then be ac-

quired using Eq. (12).

CSM(s, hi) = PrM(hi|s) (12)

ACS(s, hi) =
1
|M| ×

∑

M
CSM(s, hi)

Language Model (1 feature total): We used a list of
transliterations as mono-lingual corpora to construct the
language model for transliteration. Note that the mono-
lingual corpora differed from the training data set used to
train the transliteration engines. We used a list of Ko-
rean transliterations published by “The National Institute
of the Korean Language”6 for the Korean language model
and a list of katakana terms extracted from Web texts used
in Kawahara and Kurohashi (2006) for the Japanese lan-
guage model. Note that katakana is usually used to repre-
sent Japanese transliterations. We then construct a translit-
eration language model using the SRI Language Modeling
Toolkit (SRILM) (Stolcke, 2002). Let hi = ts1, · · · , tsl

be a transliteration hypothesis having l target language syl-
lables. We calculate Pr(hi) = logPr(ts1, · · · , tsl) using
SRILM. Note that the language-model features are based
on target-language syllables rather than target-language
graphemes.
Web Frequency (6 features total): Several researchers
have used Web frequency, i.e., the number of Web docu-
ments retrieved by a search engine, for transliteration or
ranking translations (Al-Onaizan and Knight, 2002; Qu and
Grefenstette, 2004; Zhang et al., 2005; Oh et al., 2006b).
There have been several methods of acquiring Web fre-
quency. For source word s and target transliteration (or
translation) t, some of them have used t as a query for
Web frequency (Al-Onaizan and Knight, 2002; Oh et al.,
2006b), which is called a monolingual keyword search
(MKS), and others have used both s and t for acquiring
Web frequency (Qu and Grefenstette, 2004; Zhang et al.,
2005; Oh et al., 2006b), which is called a bilingual keyword
search (BKS). However, Web pages retrieved by MKS tend
to show whether t is used in target-language texts rather
than whether t is a translation or transliteration of s. BKS
frequently retrieves Web pages where s and t have little re-
lation to each other because it does not consider the distance
between them. To address this problem, Oh et al. (2006b)
used a phrase composed of s and t as a query, called a bilin-
gual phrasal search (BPS). s and t tend to be close together
in the texts of Japanese and Korean Web pages if they are
counterparts, such as “si-na-pu-su (·Ê×¹) (synapse)”
and “si-naep-seu (r�èsÛ¼) (synapse).” Therefore, the con-
straint in BPS — s and t must form a phrase in the re-
trieved Web pages — is very helpful for transliteration re-
ranking (Oh et al., 2006b).
Let WFWS(s, t) be the Web frequency in WS =
{MKS, BKS, BPS}, and hi ∈ H be the ith transliter-
ation hypothesis of source word s. Relative Web frequency
is defined as

RWFWS(s, hi) =
WFWS(s, hi)∑

hk∈H WFWS(s, hk)
(13)

6“The usage of Korean transliterations” at http://www.
korean.go.kr

We used six Web frequency features, WFWS(s, hi), and
RWFWS(s, hi).

4. Evaluation
We evaluated the effectiveness of our system for English-
to-Japanese and English-to-Korean transliterations. The
test data for the English-to-Japanese transliteration (EJSet),
which consisted of English-katakana pairs from EDICT7,
consisted of 10,417 pairs. The test data for the English-
to-Korean transliteration (EKSet) (Nam, 1997) consisted
of 7,172 English-Korean pairs. EJSet and EKSet covered
proper names, technical terms, and general terms.

4.1. Experimental Procedure

EKSet EJSet
Training Set 5,124 8,335

Development Set 1,024 1,041
Blind Test Set 1,024 1,041

Table 3: Test data sets

We divided the EJSet and EKSet into k subsets of equal
size and constructed a training set with k − 2 subsets, a
development set with one subset, and a blind test set with
the remaining subset (see Table 3), where k = 10 for
EJSet and k = 7 for EKSet. The training set was used to
train the seven transliteration engines. The development set
was used to determine the number of hypotheses of each
transliteration engine and the linear interpolation parame-
ters of the hybrid-model engines at (α, β, γ, δ1, δ2, and
δ3)8, and to train the SVMs and MEM used for re-ranking.
We used the blind test set for evaluation.

 95

 90

 85

 80

 75

 70

 65

 60
 40 35 30 25 20 15 10 7 5 3 1

C
o
v
e
r
a
g
e

(
%
)

n-best

EKSet
EJSet

Figure 1: Coverage on basis of n-best

We tested coverage, which is the proportion of correct
transliterations in the transliteration hypotheses of the seven

7http://www.csse.monash.edu.au/˜jwb/
edict.html

8We determine the parameters having maximum word accu-
racy or minimum error rate. α = 0.3, β = 0.3, γ = 0.8,
δ1 = 0.5, δ2 = 0.2, and δ3 = 0.3 for EKSet and α = 0.4,
β = 0.7, γ = 0.7, δ1 = 0.3, δ2 = 0.1, and δ3 = 0.6 for EJSet.

transliteration engines to the transliterations in the develop-
ment set to determine n-best (the number of hypotheses for
each transliteration engine). Although the results in Fig. 1
indicate that the bigger the n-best, the higher the coverage,
the coverage converges at n-best=10. Therefore, we used
n-best=10 in our experiments.
The evaluation was done in terms of word accuracy (WA).
WA is the proportion of correct transliterations in the best
hypothesis to correct transliterations in the blind test set.

4.2. Results

System EJSet EKSet
KANG00 52.2 54.1

Previous GOTO03 54.3 55.3
Work KANG01 50.7 47.5

BILAC04 57.1 59.3
GM(G) 61.6 59.0
PM(P) 54.4 56.7

Individual CM(C) 65.0 65.1
Transliteration HM(G+P) 62.9 61.3

Engines HM(G+C) 64.5 62.6
HM(P+C) 64.6 64.7

HM(G+P+C) 62.0 62.4

Table 4: Comparison of individual transliteration engines
(%)

We compared the performance of our individual translit-
eration engines against that of four reported ones, shown
in the top section of Table 4. KANG00 and GOTO03
are the transliteration-network based systems of Kang and
Kim (2000) and Goto et al. (2003), which they modeled
using GM. KANG01 is the decision-tree based system
of Kang (2001), which he modeled using PM. Bilac and
Tanaka (2004) used HM(G+P) for BILAC04. We trained
and tested these systems using the same test data as for our
individual transliteration engines. The bottom of the table
shows the WA for all transliteration engines used in our
system, which are the results for our system without re-
ranking.
These results show that if the previous systems and the indi-
vidual transliteration engines are based on the same translit-
eration model, they had comparable performance or our
individual transliteration engines are better than the previ-
ous systems — KANG00 and GOTO03 vs. GM, KANG01
vs. PM, and BILAC04 vs. HM(G+P). Looking at the
performances of the individual transliteration engines, CM
showed the best performance and GM and PM showed lit-
tle bit lower performance than CM and HM. As described
by Oh et al. (2006a), machine transliteration engines using
both source graphemes and phonemes are more accurate
than those based on either source graphemes or phonemes.
The results with re-ranking are listed in Table 5. We com-
pared how well our method performed against those of the
four previous systems — the first was ROVER (Fiscus,
1997) and the other three were based on RWF (Oh et al.,
2006b; Oh et al., 2006a). ROVER is the most popular
method used in automatic speech recognition (ASR) sys-
tem combinations. It is based on simple voting schemes

System EJSet EKSet
Single-best 65.0 65.1

Previous work ROVER 66.8 66.4
RWFMKS 45.7 37.5
RWFBKS 77.9 76.5
RWFBPS 85.4 85.0

Our approach MEM 87.4 87.5
SVM 87.8 88.2

Upper Bound 93.6 93.6

Table 5: Comparison of hypothesis re-reanking (%)

over only the top hypothesis from each system — major-
ity voting (if most systems agree on a certain word in a
particular position, the word is selected) and confidence
voting (voting by the confidence scores produced by ASR
systems). We used a ROVER system implemented in the
“NIST Scoring ToolKit (SCTK)”9 to obtain the results in
Table 5. The three RWF systems in Table 5 are based on
Eq. (13), which Oh et al. (2006b) used to re-rank translit-
erations. The single-best system represents an individual
transliteration engine having the best performance (CM in
Table 4). MEM and SVM in our approach represent the
performance of re-ranking based on MEM and SVM. The
upper bound is a system that always outputs a correct hy-
pothesis as the best if there is a correct transliteration in
the set of hypotheses produced by individual transliteration
engines. Therefore, the upper-bound results are the upper
bounds for how well our system performed with re-ranking.

Both RWF and ROVER outperformed the single-best sys-
tem except for RWFMKS . As Oh et al. (2006b) reported,
RWFMKS could not effectively re-rank transliteration hy-
potheses because it could not take the source-language
terms of the hypotheses in retrieving Web pages into ac-
count. We investigated what effect Web-search methods
would have on the re-ranking hypotheses in Section 4.2.2.
Our re-ranking systems outperformed RWF and ROVER.
These improvements might have occurred because our re-
ranking systems used more features than ROVER and RWF,
and effectively combined these features. ROVER used a
confidence value similar to our confidence-score feature
and RWF used one of our Web-frequency features. Our re-
ranking systems took three features including confidence-
score, language-model, and Web-frequency features into
consideration. Our system also effectively combined the
three features using SVM and MEM and thus performed
the best. The details on performance depending on features
is discussed in Section 4.2.1.

MEM and SVM performed significantly better than the in-
dividual transliteration engines. Our approach effectively
re-ranked the transliteration hypotheses so that it performed
much closer to the upper bound than any of the individual
transliteration engines.

EJSet EKSet
MEM SVM MEM SVM

CS 68.2 67.9 66.5 67.0
LM 27.5 22.4 34.1 37.2
WF 78.0 85.0 82.1 85.7
CS+LM 70.3 72.0 70.4 71.5
CS+WF 86.9 87.0 87.0 87.0
LM+WF 83.8 85.1 86.8 87.3
CS+LM+WF 87.4 87.8 87.5 88.2
Upper Bound 93.6 93.6

Table 6: Contribution of features in re-ranking (%)

4.2.1. Contributions of Features in Re-ranking
We experimented with different feature settings for re-
ranking to investigate what contribution they made to re-
ranking. Table 6 lists the results. CS, LM, and WF are sys-
tems that use confidence-score, language-model, and Web-
frequency features. CS+LM, CS+WF, and LM+WF use
two of the confidence-score, language-model, and Web-
frequency features. CS+LM+WF is equivalent to “Our ap-
proach” in Table 5.
WF outperformed CS, LM, and WF but LM performed
the worst. However, combining the features consistently
improved performance — CS+LM+WF was the best and
CS+LM, CS+WF, and LM+WF performed better than CS,
LM, and WF. This means that the greater the number
of features, the higher the performance. We could esti-
mate the contribution made by each feature by calculating
the gap in performance between CS+LM+WF and a sys-
tem with a combination of two features. We found that
CS+LM+WF and CS+LM had the largest gap in perfor-
mance, thus WF might have contributed the most to re-
ranking. However, CS and LM also made a positive contri-
bution to CS+LM+WF, even though their contribution was
lower than that of WF. WF can be viewed as a language or
translation model on the word level, while LM is a language
model on the syllable level. The roles of WF and LM in re-
ranking hypotheses overlapped to a certain degree. More-
over, WF outperformed LM in re-ranking hypotheses. For
these reasons, LM made less contribution than WF.

4.2.2. Effect of MKS, BKS, and BPS
We experimented with different settings for the Web-
frequency features in our re-ranking function to clarify
what effect MKS, BKS, and BPS had. Table 7 lists the
results for a baseline system, our system with seven differ-
ent Web-frequency features, and the upper-bound system.
The baseline system corresponds to CS+LM in Table 6.
The upper bound is the same system as that in Tables 5
and 6. The seven versions of our system in the tables use
different Web-frequency features but share the same fea-
tures used in the baseline system. MKS, BKS, and BPS
are systems that use Web-frequency features acquired us-
ing one of MKS, BKS, or BPS. MKS+BKS, MKS+BPS,
and BKS+BPS use Web-frequency features acquired using

9available at http://www.nist.gov/speech/
tools/index.htm

EJSet EKSet
MEM SVM MEM SVM

Baseline 70.3 72.0 70.4 71.5
MKS 77.4 76.8 72.6 73.2
BKS 84.3 83.2 81.3 82.9
BPS 86.2 86.6 86.4 87.2
MKS+BKS 83.6 83.5 81.5 83.0
MKS+BPS 86.4 86.8 86.6 87.1
BKS+BPS 87.6 87.2 87.3 87.7
MKS+BKS+BPS 87.4 87.8 87.5 88.2
Upper Bound 93.6 93.6

Table 7: Effect of Web-search methods (%)

two of MKS, BKS, and BPS. MKS+BKS+BPS is equiva-
lent to the CS+LM+WF in Table 6.
The systems based on different Web-frequency features
yielded different results (Table 7). MKS was the worst,
and BPS was the best of MKS, BKS, and BPS. More-
over, it is evident that the systems that used Web-frequency
features acquired by BPS — MKS+BPS, BKS+BPS, and
MKS+BKS+BPS — tended to perform well. This means
that BPS is better able to retrieve reliable Web pages for
re-ranking transliteration hypotheses than BKS and MKS.
However,

∑
hk∈H WFWS(s, hk) = 0 occurs in BPS more

often than in BKS and MKS. It can reduce the effectiveness
of re-ranking the transliteration hypotheses when BPS is
used alone because WFBPS and RWFBPS become zero
for all hypotheses in H . However, we can overcome this
problem by using Web-frequency features acquired by BPS
along with those acquired by BKS and MKS. Thus, we can
obtain the best results with MKS+BKS+BPS.

4.2.3. Effect of Number of Transliteration Engines

|R| EJSet EKSet
MEM SVM UB MEM SVM UB

1 80.6 80.8 85.9 81.7 81.8 86.2
2 85.8 86.3 92.0 86.3 86.5 92.3
3 87.7 87.7 93.5 87.4 87.5 93.5
4 87.9 87.7 93.6 87.4 87.3 93.5
5 87.9 87.7 93.6 87.8 87.6 93.6
6 87.8 87.5 93.6 87.7 87.6 93.6
7 87.7 87.5 93.6 87.5 88.2 93.6

Table 8: Effect of number of transliteration engines (%)

We investigated what effect the number of transliteration
engines (|R|) would have on transliteration by increasing
|R| from 1 to 7, starting from GM and adding PM , CM ,
HM(G+P), HM(G+C), HM(P+C), and HM(G+P+C) in
that order. The UB in Table 8 represents the results for
upper-bound systems like those in Tables 5, 6, and 7. Fig-
ures 2 and 3 plot how well upper-bound systems perform
according to n-best and the number of transliteration en-
gines.
Multiple transliteration engines usually produce more
transliteration hypotheses than individual ones; we would

GM(G) PM(P) CM(C) HM(G+P) HM(G+C) HM(P+C) HM(G+P+C)
EJ EK EJ EK EJ EK EJ EK EJ EK EJ EK EJ EK

GM(G) 85.9 86.2 92.0 91.9 92.3 92.3 91.3 89.2 92.1 89.2 93.0 92.3 92.7 90.2
PM(P) 85.8 83.0 90.5 90.1 90.6 91.5 91.2 92.1 90.2 89.2 91.0 91.8
CM(C) 88.6 89.0 92.9 92.4 90.4 92.2 90.2 89.4 91.2 92.4

HM(G+P) 89.7 88.7 92.5 89.6 92.6 92.0 92.4 89.8
HM(G+C) 89.9 88.9 91.0 92.1 91.0 90.0
HM(P+C) 89.6 88.5 90.9 92.0

HM(G+P+C) 90.5 89.7

Table 9: Upper bounds derived from combinations of two transliteration engines, where n-best=10

 95

 90

 85

 80

 75

 70

 65

 60

 7 5 3 1

U
p
p
e
r

b
o
u
n
d

(
%
)

Number of transliteration engines

n-best=10
n-best=5
n-best=3
n-best=1

Figure 2: Effect of number of transliteration engines on up-
per bound in EJSet

 95

 90

 85

 80

 75

 70

 65

 60

 7 5 3 1

U
p
p
e
r

b
o
u
n
d

(
%
)

Number of transliteration engines

n-best=10
n-best=5
n-best=3
n-best=1

Figure 3: Effect of number of transliteration engines on up-
per bound in EKSet

thus have more chances of finding a correct transliteration
hypothesis in the transliteration hypotheses they produced.
Therefore, we could obtain better performance for both up-
per bound and our system with re-ranking if we used more
transliteration engines. However, the performance con-
verged at |R| = 3 regardless of n-best size. There has been
a consensus that improvements expected from combina-
tions of different systems are usually high when the systems
are sufficiently different (Hoffmeister et al., 2007). For
this reason, increasing |R| by adding hybrid-model engines
(|R| ≥ 4) contributed little to increasing performance be-

cause the hybrid-model engines were based on three single-
model engines; they thus often generated the same correct
transliteration hypotheses as the single-model engines.
To investigate how different correct transliterations were
produced by each engine, we compared the upper bound
of |R|=1 and that of |R|=2 with every possible combination
of two transliteration engines (see Table 9). Here, the upper
bound of |R|=1 is represented as the combination between
the same transliteration engine. According to our settings
for α, β, γ, δ1, δ2, and δ3, GM and HM or CM and HM
produced similar correct transliterations — HM(G+P)’s and
GM’s in EJSet were similar to each other; while the other
HMs’ were similar to CM’s in EJSet—and CM usually cov-
ered correct transliterations produced by PM. Therefore,
the combination of HM(G+P) and GM in EJSet showed the
lowest improvement of upper bound among combinations
of GM and the others; while the combination of GM and
PM or GM and CM always showed significant improve-
ment of the upper bound in both EJSet and EKSet.

5. Related Work
Researchers have developed transliteration systems based
on different machine transliteration models — GM, PM,
CM, and HM(G+P) — over the last decade (Al-Onaizan
and Knight, 2002; Bilac and Tanaka, 2004; Goto et al.,
2003; Kang, 2001; Kang and Kim, 2000; Knight and
Graehl, 1998; Oh and Choi, 2005). Even though individ-
ual transliteration engines have performed relatively well
as can be seen from Table 4, multiple transliteration en-
gines based on different transliteration models perform bet-
ter than individual transliteration engines (Tables 4 and 5).
Al-Onaizan and Knight (2002), Qu et al. (2004), Zhang et
al. (2005), and Oh et al. (2006b) used Web frequency ac-
quired from either MKS, BKS, or BPS. However, as seen in
Table 7, combinations of Web frequency acquired from the
three Web search methods are better than using either MKS,
BKS, or BPS alone in re-ranking hypotheses. Our system,
using Web-frequency features produced by the three Web-
search methods, performs better than the previous systems
because MKS, BKS, and BPS enable Web frequency to be
retrieved from different aspects.
Oh et al. (2006b) proposed a method of re-ranking translit-
erations, which combined two features simply. However,
due to its simple framework, it had limitations in taking
various features into account and combining them. Our
SVM-based and MEM-based re-ranking methods make it

possible to effectively combine various features and thus
improve transliteration (Table 5).

6. Conclusion
We described a machine transliteration system using multi-
ple transliteration engines and hypothesis re-ranking. The
use of multiple transliteration engines enables us to produce
more transliteration hypotheses and to increase the chances
of finding a correct transliteration hypothesis from these hy-
potheses. We used confidence-score, language-model, and
Web-frequency features to train MEM-based and SVM-
based re-ranking functions and used these to re-rank the
hypotheses. Our experiments revealed that our re-ranking
more effectively identified a correct transliteration hypothe-
sis in transliteration hypotheses through using these various
features than previous systems.
However, much work still remains to be done. We need
to devise more effective features to re-rank hypotheses to
enable our system to perform closer to upper bounds.

7. References
Y. Al-Onaizan and Kevin Knight. 2002. Translating named

entities using monolingual and bilingual resources. In
Proc. of ACL ’02, pages 400–408.

A. L. Berger, S. D. Pietra, and V. J. D. Pietra. 1996. A max-
imum entropy approach to natural language processing.
Computational Linguistics, 22(1):39–71.

Slaven Bilac and Hozumi Tanaka. 2004. Improving back-
transliteration by combining information sources. In
Proc. of IJCNLP ’04, pages 542–547.

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural language parsing. Computational
Linguistics, 31(1):25–70.

Hal Daume III and Daniel Marcu. 2004. NP bracketing by
maximum entropy tagging and SVM reranking. In Proc.
of EMNLP, pages 254–261.

J. Fiscus. 1997. A post-processing system to yield reduced
word error rates: Recogniser Output Voting Error Reduc-
tion (ROVER). In Proc. of IEEE Workshop on ASRU,
pages 347–352.

Atsushi Fujii and Ishikawa Tetsuya. 2001.
Japanese/English cross-language information retrieval:
Exploration of query translation and transliteration.
Computers and the Humanities, 35(4):389–420.

I. Goto, N. Kato, N. Uratani, and T. Ehara. 2003. Translit-
eration considering context information based on the
maximum entropy method. In Proc. of MT-Summit IX,
pages 125–132.

Bjorn Hoffmeister, Dustin Hillard, Stefan Hahn, Ralf
Schulter, Mari Ostendorf, and Hermann Ney. 2007.
Cross-site and intra-site asr system combination: Com-
parisons on lattice and 1-best methods. In Procs. of
ICASSP ’07.

Heng Ji, Cynthia Rudin, and Ralph Grishman. 2006.
Re-ranking algorithms for name tagging. In Proc.
HLT/NAACL 06 Workshop on Computationally Hard
Problems and Joint Inference in Speech and Language
Processing.

Thorsten Joachims. 2002. Learning to Classify Text Using
Support Vector Machines: Methods, Theory and Algo-
rithms. Kluwer Academic Publishers.

I. H. Kang and G. C. Kim. 2000. English-to-Korean
transliteration using multiple unbounded overlapping
phoneme chunks. In Proc. of COLING ’00, pages 418–
424.

B. J. Kang. 2001. A resolution of word mismatch prob-
lem caused by foreign word transliterations and En-
glish words in Korean information retrieval. Ph.D. the-
sis, Computer Science Dept., KAIST.

Daisuke Kawahara and Sadao Kurohashi. 2006. Case
frame compilation from the web using high-performance
computing. In Proc. of LREC ’06.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4):599 –
612.

Y. S. Nam. 1997. Foreign dictionary. Sung An Dang.
T. Nomoto. 2004. Multi-engine machine translation with

voted language model. In Proc. of ACL 2004, pages 494–
501.

Jong-Hoon Oh and Key-Sun Choi. 2002. An English-
Korean transliteration model using pronunciation and
contextual rules. In Proc. of COLING2002, pages 758–
764.

Jong-Hoon Oh and Key-Sun Choi. 2005. An ensemble of
grapheme and phoneme for machine transliteration. In
Proc. of IJCNLP ’05, pages 450–461.

Jong-Hoon Oh, Key-Sun Choi, and Hitoshi Isahara. 2006a.
A comparison of different machine transliteration mod-
els. Journal of Artificial Intelligence Research (JAIR),
27:119–151.

Jong-Hoon Oh, Key-Sun Choi, and Hitoshi Isahara. 2006b.
Improving machine transliteration performance by using
multiple transliteration models. In Proc. of ICCPOL ’06,
pages 85–96.

Yan Qu and Gregory Grefenstette. 2004. Finding ideo-
graphic representations of Japanese names written in
Latin script via language identification and corpus val-
idation. In Proc. of ACL ’04, pages 183–190.

Richard Schwartz and Yen-Lu Chow. 1990. The N-best al-
gorithm: An efficient and exact procedure for finding the
N most likely sentence hypothesis. In Procs. of ICASSP
’90, pages 81–84.

Libin Shen and Aravind K. Joshi. 2003. An SVM-based
voting algorithm with application to parse reranking. In
Proc. of CoNLL ’03, pages 9–16.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.
Discriminative reranking for machine translation. In
HLT-NAACL ’04, pages 177–184.

A. Stolcke. 2002. SRILM – an extensible language model-
ing toolkit. In Proc. of Interspeech 2002.

Ying Zhang, Fei Huang, and Stephan Vogel. 2005. Mining
translations of OOV terms from the Web through cross-
lingual query expansion. In Proc. of SIGIR ’05, pages
669–670.

