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Abstract

Confidence Estimation has been extensively used in Speech Recognition and now it is also being applied in Statistical
Machine Translation. Its basic goal is to estimate a confidence measure for each word in a given hypothesis, in order to
locate those words, if any, that are likely to be incorrectly recognised or translated. It can be seen as a two-class pattern
recognition problem in which each hypothesized word is transformed into a feature vector and then classified as either
correct or incorrect. This view provides a solid, well-known framework, within which accurate dichotomizers (two-class
classifiers) can be derived. In this paper, we study the performance of certain pattern features along with a smoothed Naive
Bayes dichotomizer. Good empirical results are reported on a translation task of technical manuals.

1 Introduction
Confidence Estimation (CE) has been extensively used in
Speech Recognition (Wessel et al. 2001; Sanchis et al.
2004), and now it is also being applied in Statistical Ma-
chine Translation (Blatz et al. 2004; Ueffing and Ney 2007).
Its basic goal is to estimate a confidence measure for each
word in a given hypothesis, in order to locate those words,
if any, that are likely to be incorrectly recognised or trans-
lated.

CE has been used for different purposes in Machine
Translation. They have mainly been used for detecting trans-
lation errors and for improving the translation accuracy in
different translation scenarios (Gandrabur and Foster, 2003;
Ueffing and Ney, 2005; Blatz et al. 2003; Jayaraman and
Lavie, 2005; Ueffing and Ney 2007). In this work, CE is
used for detecting translation errors.

From our point of view, CE can be seen as a conven-
tional pattern classification problem in which a feature vec-
tor is obtained for each hypothesized word in order to clas-
sify it as either correct or incorrect. Thus, our basic prob-
lems are to find appropriate pattern features and to design
an accurate pattern classifier.

N-best lists have been used for different purposes in CE
for speech recognition (Wessel et al. 2001) and machine
translation (Blatz et al. 2004; Ueffing and Ney 2007). They
have been used both to directly estimate the confidence
measure and to compute predictor features. In this work,
we use N-best lists to extract predictor features. Addition-
ally, we use another feature which is based on the Model 1
proposed in (Brown et al. 1993). This feature has proved
very useful in previous works (Blatz et al. 2004).

For estimating the confidence measure, we use asmoo-
thed naive Bayesclassification model which has been suc-
cessfully used for CE in speech recognition (Sanchis et al.
2004; Sanchis et al. 2003). The model itself is a combi-
nation ofword-dependent(specific) andword-independent
(generalized) naive Bayes models. This classification model
provides a sound framework to profitably combine the pre-
dictor features.

The paper is organized as follows. A brief review of
the statistical machine translation approach is given in sec-
tion 2; section 3 describes the predictor features used in
this work; section 4 describes the naive Bayes classification
model; section 5 presents the experimental setup, evalua-
tion metrics and the experimental results; and, finally, sec-
tion 6 contains the final conclusions.

2 Statistical Machine Translation
In thestatistical machine translation(SMT) problem a source
language word stringfJ

1 = f1 . . . fJ is to be translated
into an optimal target language word stringêI

1 = e1 . . . eI .
Such an optimal translation, is searched for among all pos-
sible target sentences of the target language,eI

1, by applying
Bayes’ decision rule:

êI
1 = arg max

eI
1

P (eI
1|fJ

1 )

= arg max
eI
1

{P (eI
1) · P (fJ

1 |eI
1)} (1)

The models adopted for each factor of Eq. 1 play an
important role in SMT. On the one hand, P(eI

1) is modeled
by a language model which gives high probability to well
formed target sentences. N-grams are often used for these
language models. On the other hand, models for P(fJ

1 |eI
1)



should give high probability for those sentences from the
source language which are good translations for a given
target sentence. These models generally consist of stochas-
tic dictionaries, along with adequate models to account for
word alignments (Brown et al. 1990; Brown et al. 1993).
An alternative is to transform Eq. 1 as:

êI
1 = arg max

eI
1

P (fJ
1 , eI

1) (2)

In this case, the joint probability distribution can be ad-
equately modeled by means of stochastic finite-state trans-
ducers (SFST) (Casacuberta and Vidal 2004) among other
possible models.

3 Predictor Features
A set of features based on N-best lists has been selected to
perform the experiments presented in section 5.4. These
features are based on word posterior probabilities and they
were proposed in (Ueffing et al. 2003).

Given an input stringfJ
1 in the source language, letei

be the word which the MT system hypothesizes in the posi-
tion i ∈ {1, . . . , I} of the target sentencêeI

1, and letLN
1 be

the N-best list generated by the MT system. For the compu-
tation of the features, a subsetSM

0 of sentences is extracted
fromLN

1 based on three different criteria:

• Levenshtein position: SM
0 is composed of thoseM

sentences containing the target wordei in a position
that is aligned to target positioni in the Levenshtein
alignment.

• Target position: SM
0 is composed of thoseM sen-

tences containing the target wordei in exactly the
target positioni.

• Any target position: SM
0 is composed of thoseM

sentences containing the target wordei in any posi-
tion.

Different features can be calculated forei as:

F(ei) =
1
R

∑

ẽĨ
1∈SM

0

W (ẽĨ
1) (3)

Depending on howW (ẽĨ
1) and R are computed, three

features can be defined:

• based on sentence probabilities: W (ẽĨ
1) is the pos-

terior probability ofẽĨ
1, andR is computed by sum-

ming up the probabilities over all sentences in the N-
best list.

• based on rank weighting: W (ẽĨ
1) is the inverse rank

of ẽĨ
1 in the N-best list, andR is the sum of all ranks

in the list.

• based on relative frequencies: W (ẽĨ
1) is 1 andR is

N .

Table 1: Nine features used in this work.

Position
Lev. Target Any

Prob. ProbLev ProbTarget ProbAny
Rank RankLev RankTarget RankAny
Freq. FreqLev FreqTarget FreqAny

Therefore, given a target wordei, we compute9 dif-
ferent features using a N-best list. We will denote these
features as shown in table 1.

Additionally, we use another feature which is based on
the translation Model 1 proposed by IBM in (Brown et al.
1993). Given a target wordei, two different variants for this
feature are computed: Maximal lexicon probability over all
source words (Ibm1Max) and the average lexicon probabil-
ity over all source words (Ibm1Av), defined as:

Ibm1Av(ei) =
1

J + 1

J∑

j=0

p(ei|fj) (4)

Ibm1Max(ei) = max
0≤j≤J

p(ei|fj) (5)

wherep(e|f) is the lexicon probability based on IBM
model1, andf0 is the empty source word.

4 Naive Bayes Model
We have adopted asmoothed naive Bayesclassification model
for CE. This model has been successfully used for speech
recognition verification (Sanchis et al. 2004; Sanchis et al.
2003).

The class variable is denoted byc; c = 0 for correct
andc = 1 for incorrect. Given a target worde and aD-
dimensional vector of featuresx, the class posteriors can
be calculated via the Bayes’ rule as

P (c|x, e) =
P (c|e)P (x|c, e)∑
c′ P (c′|e) P (x|c′, e) (6)

For simplicity, the model includes the naive Bayes as-
sumption that the features are mutually independent given
a class-word pair,

P (x|c, e) =
D∏

d=1

P (xd|c, e) (7)

Therefore, the basic problem is to estimateP (c|e) for
each target word andP (x|c, e) for each class-word pair.
GivenN training samples{(xn, cn, en)}N

n=1, the unknown
probabilities can be estimated using the conventional fre-
quencies:

P (c|e) =
N(c, e)
N(e)

(8)

P (xd|c, e) =
N(xd, c, e)

N(c, e)
(9)

where theN(·) are suitably defined event counts; i.e., the
events are(c, e) pairs in (8) and(xd, c, e) triplets in (9).



In practice, some features may have continuous rather
than discrete domains. In that case, the use of Eq. 9 re-
quires the discretization of continuous features. This is per-
formed by dividing the feature domain into a fixed number
of evenly-spaced bins of fixed size (usually around 20). The
minimum, maximum and bin size are set by visual inspec-
tion of the histograms of the features of the examples from
the correct and incorrect classes. Given this information,
the naive Bayes implementation includes a function that
maps the continuous feature valuexd to the corresponding
discrete bin number.

Unfortunately, these frequencies often underestimate the
true probabilities involving rare words and the incorrect
class. To circumvent this problem, the model is smoothed
using theabsolute discountingsmoothing technique im-
ported from statistical language modelling (Ney et al. 1997).
The idea is to discount a small constantb ∈ (0, 1) to ev-
ery positive count and then distribute the gained probability
mass among the null counts (unseen events). A detailed ex-
planation of the smoothed model can be found in (Sanchis
et al. 2003; Sanchis et al. 2004).

Once the parameters of the model are estimated, in the
test phase, a target word is classified as incorrect if the con-
fidence estimationP (c = 1|x, e) is greater that a certain
thresholdτ .

5 Experimental Study
5.1 Experimental Setup
We have used the bilingual English-Spanish Xerox corpus
developed in the context of the European project TransType2
(TT2 project 2002-2005). It consists of the translations of
technical Xerox manuals. Basic statistics of the training,
development and test sets are summarized in table 2.

Table 2: Statistics of the English-Spanish Xerox corpus.

English Spanish
Train Sentences 55.761

Running words 665.400 750.691
without PM∗ 568.746 652.124
Vocabulary size 7.956 10.622

Dev. Sentences 1.012
Running words 14.278 15.574
without PM 11.903 13.260
Vocabulary size 1.224 1.409

Test Sentences 1.125
Running words 8.370 9.551
without PM 7.559 8.762
Vocabulary size 1.132 1.164

(*) PM: Punctuation Marks

Using the GIATI statistical finite-state transducer ap-
proach (Casacuberta and Vidal 2004; Civera et al. 2004)
approximately10.000-best lists were generated for each
source sentence in order to extract the predictor features
presented in section 3.

5.2 Confidence Tagging
In order to evaluate the performance of the predictor fea-
tures and the classification model described in sections 3
and 4, respectively, a corpora is needed where each auto-
matically translated word is tagged as correct or incorrect.

Automatically tagging the translated words as correct
or incorrect can be done by comparing the translation to
several references, though in this work we have only used
one reference. We have considered three different tagging
methods.

1. Word Error Rate (WER): Each hypothesized word is
tagged as correct if it is Levenshtein-aligned to itself
in the reference.

2. Position-independent Error Rate (PER): Each hypoth-
esized word is searched in the whole reference and,
if found, it is drawnwithout replacement and tagged
as correct.

3. Position-independent Error Rate with Replacement
(PERR): Each hypothesized word is searched in the
whole reference and, if found, it is drawnwith re-
placement and tagged as correct.

From these definitions, it is clear thatWER ≥ PER ≥
PERR.

5.3 Evaluation Metrics
Given a certain translation task, let us assume that using a
tagging method we obtainNc words tagged as correct and
Ni words tagged as incorrect. Then, after confidence clas-
sification is performed for a certain classification threshold
τ , let us assume that we obtain0 ≤ Nf (τ) ≤ Nc words
tagged as correct which are classified as incorrect (false re-
jection), and0 ≤ Nt(τ) ≤ Ni tagged as incorrect which
are classified as incorrect (true rejection).

Based on the false rejectionNf (τ) and the true rejec-
tion Nt(τ), two measures are of interest for the evaluation
of CE:

1. TheFalse Rejection Rate, defined as:

Rf (τ) =
Nf (τ)

Nc
(10)

2. TheTrue Rejection Rate, defined as:

Rt(τ) =
Nt(τ)

Ni
(11)

The trade-off betweenRf andRt values depends on the
decision thresholdτ . A Receiver Operating Characteristic
(ROC) curve representsRf againstRt for different values
of τ ∈ [0, 1].

The area under a ROC curve divided by the area of a
worst-case diagonal ROC curve, provides an adequate over-
all estimation of the classification accuracy. We denote this
area ratio as AROC. The AROC value is in the range of1.0
to 2.0. Note that an AROC value of2.0 would indicate that
all words can be correctly classified.



Another different criterion is theConfidence Error Rate
(CER). This metric is defined as the number of classifica-
tion errors divided by the total number of classified words.
Thus, the CER value also depends on the decision threshold
τ . CER can be computed as:

CER(τ) =
Nf (τ) + (Ni −Nt(τ))

Nc + Ni
(12)

A baseline CER is obtained assuming that all target
words are classified as correct. Then, the baseline CER is:

CERbaseline =
Ni

Nc + Ni
(13)

5.4 Experimental Results
The unknown probabilities of thesmoothed naive Bayes
model, presented in section 4, were estimated using the
training set. Different smooth parameters of the model were
optimized using the development set. Also, the develop-
ment set was used to find the best classification thresholdτ
i.e., that with minimum CER(τ ).

The test set was classified in different manners. First
of all, in order to evaluate the performance of each single
feature, we classified the test set using the smoothed model
based on one-dimensional feature vectors. To further ex-
ploit the usefulness of the features, the naive Bayes model
was employed to explore the performance of a large num-
ber of different feature combinations.

The results achieved are shown in table 3 for WER,
PER, and PERR tagging methods. Based on the single fea-
ture performance, we can divide the features into four main
groups. The first group is only composed by the best sin-
gle feature Ibm1Max. Although this feature does not obtain
consistently the best AROC values, it achieves the most sig-
nificant relative reductions on baseline CER:16.6%, 17.9%
and20% for WER, PER and PERR, respectively. The sec-
ond group is composed of the n-best list based features
computed using target positions. This criterion achieves the
best performance. The third group is composed of the other
two features based on sentence probabilities: ProbLev and
ProbAny. These two features achieve similar CER values
than the second group of features, but lower AROC values.
It seems that the use of sentence probabilities helps to re-
duce the negative effect of the position criteria in the com-
putation of these two features. The last group is composed
by the features which, in general, get the lower AROC and
CER values. These group show that the use of the ranking
and relative frequencies, along with the Levenshtein and
any position criteria, does not achieve good performance.
The feature Ibm1Av is clearly the worst feature for CER.
This is surprising since the Ibm1Max is the best one. A
possible explanation is that averaging reduce significantly
the lexicon probability. For this reason, all the target words
get low values for this feature. The discretization of the
feature does not produce a good class predictor.

Through the (naive Bayes) combination of the best sin-
gle feature Ibm1Max along with ProbLev, the classification
accuracy is improved for the PER and PERR tagging meth-
ods. This feature combination achieves the higher AROC

and CER values, with a relative reductions of baseline CER
of 20.8% and22.5%, for PER and PERR, respectively.

Figures 1, 2 and 3, show the comparative test set ROC
curves, for the WER, PER and PERR tagging methods, re-
spectively.

6 Final Remarks
Confidence estimation can be considered as a classical pat-
tern classification problem in two possible classes: correct
or incorrect. Thus, our basic problems are to find appropri-
ate pattern features and to design an accurate pattern clas-
sifier.

As pattern features, we used a set of n-best list based
features along with features based on the Model 1 proposed
by IBM. As classifier, we used a naive Bayes model which
provides a sound framework to profitably combine the pre-
dictor features.

Experiments were performed using a bilingual English-
Spanish corpus which contains the translations of technical
manuals.

The results presented confirm those of previous works
(Blatz et al. 2004) showing that features based on IBM
Model 1 are useful to detect incorrectly translated words.
The n-best list based features which are computed using
posterior probabilities achieve best performance than those
based on relative frequencies or rank weights. Also, the
consideration of target positions in the computation of these
features appears as the best criterion.

The naive Bayesfeature combination produces better
classification accuracy than the single feature performance.
However, we have achieved important relative reduction in
baseline CER for both single and combined feature perfor-
mance.
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Figure 1: ROC curve on the test set for the best feature
(WER).
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Table 3: AROC and CER [%] for each single feature and the best combination. The best CER and AROC values for each
tagging method are in boldface.

WER PER PERR
Features AROC CER AROC CER AROC CER

ProbLev+Ibm1Max 1.57 17.4 1.67 13.7 1.73 11.7
Ibm1Max 1.50 17.1 1.59 14.2 1.67 12.1

ProbTarget 1.66 18.4 1.66 16.3 1.68 13.9
RankTarget 1.57 18.8 1.60 15.9 1.62 14.0
FreqTarget 1.55 19.1 1.59 16.2 1.61 14.2

ProbLev 1.43 19.0 1.45 15.9 1.51 13.3
ProbAny 1.41 18.4 1.45 16.9 1.52 14.1
RankAny 1.34 19.7 1.40 16.6 1.46 14.4
RankLev 1.30 19.9 1.36 16.9 1.42 14.7
FreqLev 1.30 20.4 1.36 17.1 1.43 15.0
FreqAny 1.34 20.4 1.38 17.2 1.45 15.0
Ibm1Av 1.47 20.4 1.50 17.3 1.60 15.1
Baseline − 20.5 − 17.3 − 15.1
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Figure 2: ROC curve on the test set for the best single fea-
ture and the best combination (PER).
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