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Abstract

We provide a simple base algorithm for the given
task of attribute selection as well as two improve-
ments to this algorithm. We report on the re-
sults of their implementation and provide an er-
ror analysis. We then report some observations
and conclusions about the human attribute selec-
tion process by comparing the output of our al-
gorithms and the attributes selected by humans.
Finally, we add some observations on the diffi-
culty of the attribute selection task.
Note: We utilised both training and development
data for the development and evaluation of our
algorithm.

1 Base algorithm
We begin from the observation that humans tend to select
the type attribute in virtually all cases in both domains,
with the exception of circumstances where the type of
any object that could be referred to is obvious and agreed
upon by subjects. Hence, we always include the type at-
tribute in attribute selection.

In selecting attributes other than type, at least two fac-
tors should be taken into account. The first factor is a
human’s general preference on object attributes, which
would be related to cognitive load in recognising the at-
tributes (Dale and Reiter, 1995). For instance, humans
generally tend to refer to an object’s colour rather than its
orientation in 3-dimensional space.

However, it is obvious that the salience of a certain at-
tribute depends on the case representing a particular situ-
ation in a domain. For instance, in a case where the target
as well as almost all distractors have the same colour but
largely different size, the attribute size becomes a critical
attribute to be selected while colour might be much more
salient in other cases. A critical question for research is
how to combine these two factors: the case independent
generic factor and the case dependent factor.

We first singled out the case dependence of the salience
of a specific attribute and propose a simple method to
calculate this salience. Our basic idea considers the dis-
crimination power of an attribute-value pair as the case
dependent salience. Given a certain case, attribute-value
pairs of the target object are ranked according to their
discrimination power, and they are selected one by one

according to the ranking until the set of attribute-value
pairs uniquely identifies the target object.

The discrimination power of an attribute-value pair is
defined as the number of objects excluded by specify-
ing that attribute-value pair; i.e, the fewer objects that
share a certain attribute-value pair, the more discrimina-
tion power this attribute-value pair possesses.

In the ranking process, we have two options depend-
ing on if we regard discriminative power as static or
dynamic. In the dynamic interpretation, each time an
attribute-value pair is selected, we recalculate the num-
ber of objects so that the objects without the already se-
lected attribute-value pairs are excluded from counting.
In contrast, in the static interpretation, we calculate dis-
crimination power once at the beginning.

2 Evaluation
We first evaluated the output of our algorithm by using
the provided implementation of the Dice coefficient cal-
culator. The result is shown in Table 1.

Table 1: Result of base algorithm (TITCH-BS)

Domain Dice
static dynamic

Furniture 0.588 0.601
People 0.559 0.559

As Table 1 indicates, the difference between static and
dynamic variations of the discrimination power is very
subtle; slightly increasing the Dice coefficient in the fur-
niture domain, but without effect in the people domain.
This tendency is observed throughout the rest of the ex-
periments. Thus, in what follows, we concentrate on the
results with the static discrimination power, although the
figures of the dynamic version are also shown in the ta-
bles for reference.

As described in the previous section, our algorithm
stops selecting attributes immediately after the selected
attributes identify the target object uniquely. In this re-
spect, our algorithm realises full brevity of referring ex-
pressions introduced by (Dale and Reiter, 1995).

Comparing the output of our algorithm and human se-
lection, humans tend to select more attributes than our
algorithm, i.e. humans produce redundant attribute sets.
This corresponds to the observation by Dale and Reiter
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of the need to approximate full brevity. We observed that
the redundant attributes by humans depend on the case.
In the “Furniture” domain, our algorithm’s output tends
to lack the colour attribute in comparison with the hu-
man selection. Thus, we can presume that the attribute
colour is particularly salient to human subjects in this
domain. On the other hand, in the “People” domain, at-
tributes specifying features of the human face are particu-
larly salient (e.g. hasGlasses or hasHair). Table 2 shows
frequently missing attributes in the output of our algo-
rithm (static version) in comparison to human attribute
selection. Their frequency is shown in percentage of the
total number of missing attributes.

Table 2: Frequently missing attributes

Furniture People
Attribute (%) Attribute (%)
colour 44.6 y-dimension 18.6
size 16.4 hasBeard 18.4
y-dimension 15.8 hasGlasses 16.8
orientation 15.4 hairColour 14.5

x-dimension 11.0
hasHair 9.9

The conclusion from the results is that besides an ob-
vious case dependence of attribute selection, there is also
an inherent preference in selecting attributes for referring
expression generation. Namely, humans tend to use more
attributes to produce referring expressions than the ne-
cessity minimum attribute set. We presume this differ-
ence comes from case independent nature of object at-
tributes which is related to cognitive load to recognise
the attributes. In the next section, we extend the base al-
gorithm to include the cognitive aspect of attributes for
humans, which would have a case independent nature.

3 Improvement of the base algorithm

Based on the above observations, we sought to test and
compare different ways of implementing the case inde-
pendent property of human preference in attribute selec-
tion. As an indirect indication of this property, we chose
to use the frequency of the respective attributes in the
data of human attribute selection. Of course, it is diffi-
cult to learn a human’s perceptual tendency directly from
the data. We presume that we can estimate it from the fre-
quency of attributes mentioned by humans. An assump-
tion behind this is that salient attributes tend to be men-
tioned frequently. That leads us to the idea to put weights
on attributes based on the frequency of occurrence in the
data. We then implemented two different ways of weight-
ing attributes.

3.1 Absolute attribute weighting
The first improvement assigns weights to attributes in
proportion to their frequency as selected by human sub-
jects and integrates this weighting into the base algo-
rithm. For instance, if the attribute ai is used fai times
in the human data of a domain, the discrimination power
of ai with its value is multiplied by fai in the ranking of
attributes by the base algorithm. An implementation of
this algorithm yielded the results as shown in Table 3.

Table 3: Results of absolute weighting (TITCH-AW)

Domain Dice
static dynamic

Furniture 0.685 0.685
People 0.651 0.651
People+ 0.683 0.683

We note that in both domains, this weighting yielded
an increase in the Dice coefficient by about 0.1, which
confirms the conclusions drawn from the result of the
base algorithm. Namely, both the case dependency and
independency of attribute selection have to be accounted
for.

In the “People” domain, there is a dependency be-
tween the attribute hairColour and both hasHair and has-
Beard. That is, having hairColour logically entails hav-
ing hasHair or hasBeard. In Table 3, the row “People+”
indicates the results by a modified algorithm which takes
this dependency into account. The modified algorithm
adds one of hasHair and hasBeard when hairColour is
selected according to their ranking. This modification im-
proved the Dice coefficient slightly by 0.03. In a domain
with a higher number of dependencies between attributes,
we can expect more improvement.

3.2 Relative attribute weighting
As we mentioned in section 2, several attributes tended to
be missing in the algorithm output. We calculated the dif-
ference set between the human selection and the output of
our algorithm. The second improvement assigns weights
to attributes in proportion to their frequency within this
difference set. The idea behind this is that the difference
of these two attribute sets should reflect the general cog-
nitive factor in attribute preference. The result of imple-
mented relative weighting on the base algorithm is shown
in Table 4.

Table 4: Results of relative weighting (TITCH-RW)

Domain Dice
static dynamic

Furniture 0.707 0.699
People 0.648 0.648
People+ 0.678 0.678

99



In comparison to absolute weighting, while the Dice
coefficient in the “Furniture” domain slightly increased,
that in the “People” domain slightly decreased.

3.3 Error analysis

We carried out a preliminary analysis of errors for the
base algorithm as well as for both improvements by at-
tribute weighting. We note that there are three qualita-
tively different cases (represented by “Correct”, “Sub-
set” and “Disjoint” in Table 5). The row “Correct” notes
the absolute number of cases where our algorithm’s out-
put is the same as the human attribute selection respec-
tively for the base algorithm, its improvement by absolute
weighting (column “Abs.”) and relative weighting (col-
umn “Rel.”). “Subset” represents the case where our al-
gorithm’s output is a subset of the human attribute selec-
tion. “Disjoint” represents the case where our algorithm’s
output and the human attribute selection are disjoint.

Table 5: Distribution of error types (Furniture domain)

Base Abs. Rel.
Correct 33 59 71
Subset 91 82 29
Disjoint 195 178 219

The number of “Correct” cases and “Subset” cases
show an opposite tendency; while the number of “Cor-
rect” cases increases steadily from the base algorithm
with both weighting improvements (more than double in
total), the number of “Subset” cases steadily decreases
(by almost 70 % of the initial number). In contrast, the
number of “Disjoint” cases fluctuates at a high level and
increases slightly overall.

This preliminary analysis allows the conclusion that in-
troducing the different types of weightings into the base
algorithm improved the cases where our base algorithm
had already provided an approximation (a subset) of the
human selection. In these cases, our proposed improve-
ments yielded real gains. However, they do not seem at
all to reduce the number of “Disjoint” cases. Overall the
cases where our initial algorithm fails to produce at least
a subset of the human selection, attribute weighting does
not provide any gain. This means that in order to gain real
improvements, we need to introduce some fundamentally
different concept to the base algorithm. A first impor-
tant step towards this would be a detailed analysis of the
“Disjoint” cases, which we have not yet carried out.

Another point we need to mention is that such opposi-
tion of tendencies between “Correct” and “Subset” cases
was not observed in the “People” domain. In order to elu-
cidate this inconsistency, we need to further analyse the
differences of the domains.

4 On the difficulty of the case
We propose to measure the difficulty of attribute-
selection in a particular case by the number of possible
different sets of attributes that uniquely identify the tar-
get object. Table 6 shows the correlation coefficient of
the Dice coefficient and the difficulty of the case as de-
fined above.

Table 6: Correlation of task difficulty and Dice coefficient

Static Furniture People
Base algorithm -0.077 0.251
w/ abs. weighting 0.169 0.096
w/ rel. weighting 0.116 0.109

Dynamic Furniture People
Base algorithm 0.078 0.251
w/ abs. weighting 0.147 0.096
w/ rel. weighting 0.097 0.110

The correlation factor measures linear dependence,
and the closer it is to 0, the less a linear dependence ex-
ists. The absolute values of all coefficients except one are
less than 0.2. We can thus conclude that there is no lin-
ear correlation between the number of potential attribute-
selections which uniquely identify the target object in a
case, and the success of our algorithm to appropriately
generate a set of attributes. In general, we can note this
reflects the fact that humans select the attributes in their
referring expressions from a very limited set of combi-
nations, independent of the search space of attribute se-
lection to identify the target object. For instance, in a
case where a person could be uniquely identified by shoe
colour, humans would rather use attributes referring to his
facial features, even though it requires more attributes.

As we noted in the explanation of our initial base al-
gorithm, it is not sufficient to simply produce a minimum
set of attributes. In many cases, humans manifestly add
other attributes to such a set, depending on the case and
the target. Hence, as a measure of the difficulty of the
task to specify a target object in a given case, the number
of full-brevity descriptions is not sufficient; it is simply
one factor. Further research into the process of human
attribute-selection should provide more insight into the
other factors and how they combine. This in turn will
provide a better understanding of the difficulty of the task
in a specific case.
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