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Abstract

We explore the problem of integrating a
phrase-based MT system within a computer-
assisted translation (CAT) environment. We
argue that one way of achieving successful in-
tegration is to design an MT system that be-
haves more like the translation memory (TM)
component of CAT systems. This implies pro-
ducing MT output that is consistent with that
of a TM when high-similarity material exists
in the training data; it also implies providing
the MT system with a component that is ca-
pable of filtering out machine translations that
are less likely to be useful. We propose solu-
tions to both problems, and evaluate their im-
pact on three different data sets. Our results
indicate that the proposed approach leads to
systems that produce better output than a TM,
for a larger portion of the source text.

1 Introduction

While much research effort has been devoted to
finding ways of combining the strengths of human
and machine translation (see Foster (2002) for an
overview), in the end, many human translators still
find MT technology to be unhelpful when it comes
to producing high-quality translations. As a result,
MT is not yet well-established within computer-
assisted translation (CAT) environments, at least
when compared to the much simpler technology of
translation memory (TM).

While it is tempting to view TM as a simplistic
form of example-based MT, or a variation on phrase-
based MT (or, conversely, to see phrase-based MT
as a natural evolution of TM), TM has some notable

advantages over most data-driven MT systems. The
most obvious is its ability to translate predictably
and (near-) perfectly any input that it has seen pre-
viously. Another quality of TM is its ability to find
approximate matches and to let the user adapt sys-
tem behavior to his/her own tolerance to errors by
fixing the similarity threshold on such matches; in
other words, TM’s benefit from a highly effective
confidence estimation mechanism.

If machine translation is to succesfully integrate
the CAT environment, it should begin by catching
up with TM on these aspects. We argue that this re-
quires two things: (1) the MT system should behave
more like a TM in the presence of high-similarity
matches. In practice, this can be achieved by com-
bining the two technologies, i.e. by building a com-
bination MT system that incorporates a TM com-
ponent. And (2) just like existing TM systems, the
combined MT system should provide the user with
means to filter out translations that are less likely to
be useful.

It has sometimes been proposed (see e.g. Heyn
(1996)) that MT should be used within a CAT en-
vironment only when the TM fails to retrieve some-
thing useful. Unfortunately, this has the effect of
relegating the MT system to the task of translating
only the sentences that are most unlike previously
seen ones. For data-driven systems, this turns out
to mean translating only the “harder” sentences and
missing the chance to do a better job than the TM.
The reason why MT is often treated as a last resort
lies in the fact that translators tend to see its perfor-
mance as unpredictable and, as a result, overly likely
to waste their time. In other words, to be accepted



as a useful tool by human translators, an MT system
needs its own way of determining whether its own
output is likely to be useful to the translator.

Because MT systems of the statistical phrase-
based variety have a lot in common with TM sys-
tems, we take them as a starting point. In what fol-
lows, we propose relatively simple ways of attaining
the two above goals: Section 2 deals with combining
TM with phrase-based MT, and Section 3 discusses
estimating translation usefulness. Our experiments
and results are presented in Section 4.

2 Combining Machine Translation and
Translation Memory

In this section, we examine the question of how to
combine a TM with a phrase-based MT system. Our
goal is to obtain an MT system that is capable of
taking advantage of exact or close matches in the
TM.

The methods described here assume a standard
phrase-based SMT system (Koehn et al., 2003) em-
ploying a log-linear combination of feature func-
tions. Unfortunately, there are no such “standard”
TM systems; therefore we had to construct our own,
which we now describe before discussing combina-
tion strategies.

2.1 Translation Memory

At the core of a TM is a database of existing transla-
tions: pairs of source-language and target-language
segments of text which are mutual translations. Typ-
ically, these text segments are complete sentences.
Given a new segment of source-language text to be
translated, the system searches its database for an
exact or approximate (“fuzzy”) match. If such a
match is found, its target-language version is pro-
posed to the user, who is then free to reuse it, mod-
ify it or discard it. Optionally, the resulting (human-
)translation is fed back to the system and stored into
the database.

We simulate the translation memory functional-
ity of CAT environments with a collection of pro-
grams we call TMem. Given a corpus of existing
translations, in the form of source-target pairs of
sentences, and a new source-language sentence to
be translated, which we call thequery, TMem com-
putes the word-based Levenshtein distance between

the query and each source-language sentence in the
corpus, and retains the source-target pair from the
corpus with the smallest distance. This is admittedly
very inefficient (although manageable if one resorts
to simple optimizations and some parallelization),
and while Levenshtein distance may not be thenec
plus ultra in TM technology, this is possibly com-
pensated by the fact that TMem performs an exhaus-
tive search. Additionally, when there are ties in the
translation memory, with alternative translations, we
use an IBM Model 2 component to pick the transla-
tion that is most likely given the source.

In practice, CAT systems allow the user to set a
threshold on source similarity, which prohibits the
TM component from outputing irrelevant transla-
tions when the corresponding source segment is too
different from the query. The higher the threshold
is set, the better the quality of the proposed transla-
tions. Of course, there is no magic: when raising this
threshold, users are simply trading recall for preci-
sion: the increased quality comes at the expense of
decreasing the system’s coverage, i.e. the proportion
of queries for which the system does propose trans-
lations.

To perform this sort of filtering, TMem relies on a
length-normalized variant of Levenshtein distance:

sim(q, s) = max(0, 1 − levenshtein(q, s)
length(q)

)

where q is the query ands is the best-matching
source-language segment in the corpus. We refer to
TMem’s user-set threshold on the value ofsim asα
(alpha): if sim(q, s) ≥ α, then TMem outputs the
translation ofs, otherwise it outputs nothing.

2.2 Related Work

There is a rapidly growing body of work on MT
system combination (see e.g. Callison-Burch et al.
(2009)), and many of the methods proposed in the
literature could be applied to the specific task of
combining a TM with a phrase-based MT system.

Somewhat parallel to this, a number of authors
have examined specifically the MT-TM tandem.
Much work in this line actually aims at producing
better MT systems, as opposed to integrating MT
into a CAT environment. For instance, Vogel et al.
(2004) present a SMT system which incorporates a
translation memory component. The system outputs



exact matches from the TM without further process-
ing. Automatic “repairs” are performed for matches
that display a single “error” (insertion, deletion or
substitution): this operates essentially like a one-
step greedy modification on the TM target.

Leplus et al. (2004) show how a translation mem-
ory equipped with a minimal hand-built alteration
mechanism for numbers, etc., can be quite success-
fully used as a MT system for repetitive texts such
as weather reports.

The Dynamic Translation Memory (DTM)
method (Biçici and Dymetman, 2008) also aims
at improving the output of a phrase-based SMT
system using a TM: Given a new sentenceq to be
translated, they:

1. Find the best matching pair forq in the TM:
〈s, t〉;

2. Identify the longest common subsequence be-
tweenq ands: Ps;

3. Using word-alignment, identify the corre-
sponding subsequence int: Pt;

4. Dynamically add the phrase pair〈Ps, Pt〉 to the
translation system’s phrasetable

They then translate as usual. This strategy crucially
depends on an essential characteristic of the MT
system in which it is implemented: the MATRAX
phrase-based SMT system (Simard et al., 2005) can
handle non-contiguous phrase pairs, i.e. phrases
with “gaps” both in the source and the target. This
makes it possible in step 2 above to build a phrase
pair fromsubsequences(not substrings) which cov-
ers as much commonalities as possible betweenq
ands.

Then there is also some work that aims at improv-
ing TM systems, using MT technology.

Scḧaler (2001) proposes the idea of a (syntac-
tic) phrase-based translation memory that would be
able to mix-and-match phrases from different TM
matches, in order to piece together a proposal for a
previously unseen sentence, EBMT fashion. But in
practice, this is more a step for TM in the direction
of MT.

Simard and Langlais (2001) evaluate the poten-
tial of complementing a translation memory with a
phrasetable. Phrases are proposed to the user based

on a maximum cover of the input, taking into ac-
count a rudimentary translation model. A step for-
ward in the same direction is proposed by Gotti et al.
(2005), who suggest restricting phrases to syntactic
chunks or treelets.

2.3 Combination Strategies

In what follows, we propose two different strategies
which we believe are better suited to the particular
characteristics of TM and phrase-based MT.

2.3.1 System selection:β-combination

The simplest form of MT-TM combination is
probably one in which either the MT or the TM out-
put is produced, depending on the context. This
strategy has been proposed for combining multiple
MT systems, for example in Nomoto (2004). Many
factors can be taken into account when deciding
which system is best for a given input; this decision
process can be viewed as a standard classification
task, and many standard machine learning methods
can be applied.

An extremely simple, yet effective approach is to
base the decision solely on the similarity between
the query and the closest match from the transla-
tion memory, as proposed by Vogel et al. (2004):
above a given similarity thresholdβ, the combined
system outputs the translation from the TM, other-
wise it produces the MT output. We call the systems
based on this combination strategyβ-combinations.
The value ofβ can be optimized to maximize some
measure of translation quality (e.g. BLEU or WER)
on a held-out sample.

2.3.2 TM-based Translation Feature Functions

As mentioned earlier, the method of Biçici and
Dymetman (2008) is not directly applicable to stan-
dard phrase-based systems, because it relies cru-
cially on discontiguous phrases. However, we can
propose a very similar approach, in which multiple
phrases are extracted from the best TM match and
fed to the MT system. More precisely, for each in-
put sentenceq, we find the single best matching pair
p = 〈s, t〉 from the TM, using the TMem program.
We then compute the setTp of all admissible phrase
pairs fromp as in Och & Ney (2004), but without
limiting phrase size. In particular, this means that if
we find an exact matching sentence in the TM, then



this is presented as a “pretranslated phrase” to the
MT system, regardless of its size.

The content of thisTM-based phrasetableis used
at decoding time as an additional source of phrases,
and its weight in the loglinear model is determined
by MERT on a heldout set, as usual. (Chen et al.
(2009) propose a similar method for combining the
output of multiple MT systems.)

We can use a similar trick to provide the MT
system with aTM-based language model: use the
target-language portion of the single best match
from the TM to train a sentence-specific language
model, which we use as an additional feature func-
tion in the model.

Finally, while the MT system may have all the
right phrases to put together a perfect match from
the TM, it may opt for alternate phrase transla-
tions, or simply order the phrases differently. One
way to coerce the system into generating some-
thing that resembles a TM match as closely as pos-
sible is to introduce aTM-match similarityfeature
function, which gives better scores to translations
whose word-order is more similar to a given target-
language sentence. This can be achieved by means
of distance measures such as Levenshtein distance
(as in word-error rate) orn-gram precision (as in the
BLEU metric).

In practice, such similarity feature functions are
extremely costly to use at decoding time: in our ex-
perience, in spite of numerous optimizations, using
either one of these will typically multiply decoding
times by a factor of 10. Fortunately, we have found
that it is possible to achieve almost similar results
by applying them only at a rescoring stage, where
application is restricted to a list ofn-best transla-
tions provided by the decoder, and therefore much
less costly. In our experiments, we actually use three
TM-based similarity features concurrently: Leven-
shtein distance, 1-gram precision and bigram preci-
sion.

3 Target Usefulness Estimation

As mentioned earlier, CAT software usually allows
the user to set a threshold on similarity between the
query and TM matches. The implicit assumption is
that source-language similarity is a reliable predictor
of the usefulness of the target-language segment for

the user.
We want to provide an MT system with a similar

mechanism. We propose to approximate usefulness
by the similarity of the target translation with a ref-
erence translation. While there are different ways
to measure this, the Levenshtein-basedsim func-
tion of Section 2.1 is appealing because it is sim-
ple to compute and has an intuitive interpretation.
Furthermore, when applied to target-language trans-
lations, it is related in obvious ways to the well-
knownword-error rate(WER) metric:sim(t, r) =
1 − WER(t, r), wherer is a reference (correct)
translation andt is the translation whose usefulness
we wish to estimate.

Estimating target similarity is quite obviously re-
lated to work on confidence estimation for machine
translation. As proposed for the latter task (Quirk,
2004; Gandrabur et al., 2006), we take a supervised
machine learning approach to the problem: the idea
is to base a target quality estimation (QE) function
on a variety of features of the input and output texts,
and learn output values from training data annotated
with target similarity values.

We consider the following input features:

• length of the source inputq, best-matching TM
sources, corresponding targett and MT output
p;

• probabilities PSLM (q), PSLM (s), PTLM (t)
andPTLM (p), according toN -gram language
models, trained on the source (“SLM”) or tar-
get (“TLM”) portions of the translation mem-
ory;

• language model probability ratios
PSLM (q)/PTLM (t) andPSLM (q)/PTLM (p);

• various measures of similarity betweenq and
s, and betweent andp: Levenshtein distance,
longest common substring,n-gram precision
(for n =1 to 4)

• IBM Model 2 estimates ofP (q|t), P (t|q),
P (s|t), P (t|s), P (q|p) andP (p|q). Here again,
IBM models were trained on the source and tar-
get portions of the translation memory.

Different types of learners can be applied to this
task, the most obvious being least-squares linear



regression. However, in our experience, the most
stable results were obtained with regression sup-
port vector machines. We used thelibsvm imple-
mentation ofε-regression SVM’s, with all the de-
fault settings provided through thee1071R interface
(Meyer, 2001).

4 Experiments

4.1 Corpora

Our experimental data consists in French-English
bilingual corpora. In all our experiments, we as-
sumed English to be the source language and French
to be the target. All experiments were performed on
three distinct data sets, namely theHansard, Acquis,
andEuroparlcorpora.

Acquis The Acquiscorpus is the European Com-
munity’s “Acquis communautaire”, prepared and
distributed by the Community’sJoint Research Cen-
tre in Ispra, Italy (Steinberger et al., 2006), version
2.2. We chose this corpus because it is rather tech-
nical, with lots of internal repetition. This makes
it a good candidate for TM. While the corpus is
available in over 20 languages, only the English and
French versions were used here.

The data had to be: converted from XML to plain
line-for-line sentence alignment format; tokenized
and re-segmented into sentences; re-aligned at the
sentence level, using a variant of the Gale & Church
method (the provided alignment was at the para-
graph level); and lowercased.

Even after re-alignment, some lines were exces-
sively long and caused problems in the MT sys-
tem, so we kept only those pairs of sentences shorter
than 800 characters (that’s still a healthy 150-200
words...); in the process, we also removed pairs in
which one sentence was empty.

Finally, the data was split into three parts:train,
dev and test. The last two contain 3000 pairs of
sentences each, which leaves close to 330k sentence
pairs intrain.

Europarl The Europarl corpus is a collection of
text from the proceedings of the European Parlia-
ment. We used the French and English versions of
this corpus as prepared by Philipp Koehn (2005) for
training SMT systems. This is a well-known dataset
that is commonly used in MT experiments. The Eu-

roparl corpus contains close to 1.3 million pairs of
sentences; again, we split this data into distinct sets
train, devandtest. The two latter each contain 2000
sentence pairs, whiletrain contains the remaining
sentence pairs (approx. 36 million words of En-
glish).

Hansard This is also a well-known dataset in MT.
In this case, however, the data was collected inde-
pendantly, and contains not only Canadian parlia-
mentary debates, but also proceedings of the Cana-
dian Senate and of various parliamentary commit-
tees, spanning a 12-year period. Like the Ac-
quis corpus, this corpus went through clean-up, to-
kenization, segmentation into sentences, sentence-
level alignment and lowercasing. Here thedevand
testsets each contain approximately 1500 sentences,
while the train set contains approximately 5.2 mil-
lion sentence pairs (just over 100 million English
words).

4.2 System Configuration

All instances of the MT system discussed here were
essentially trained in the same way. Distinct systems
were trained on each of the three corpora. Phrase ta-
bles and language models were extracted from each
corpus’strain sets. HMM translation models were
used to perform word alignments on the training cor-
pus, which were symmetrized by the usual “diag-
and” algorithm prior to phrase extraction. Phrases
were limited to a maximum of 8 words. In addi-
tion to raw joint translation probabilities, various
smoothed conditional probabilities were used as dis-
tinct phrase feature functions (Foster et al., 2006).
The target-language models were 4-gram models
with Kneyser-Ney smoothing.

The dev sets were then used to optimize the
model’s decoding and rescoring parameters. In ad-
dition to the decoding feature functions, rescoring
also relied on IBM-Model based features, plus some
nbest-post features, some features that check for
mismatched parentheses, quotes etc. Parameter op-
timization was performed using minimum error-rate
training (MERT) on BLEU scores (Och, 2003).

4.3 Translation Results

Table 1 presents the performance of the main sys-
tems we tested on each corpus’testset. Results are



presented both in terms of BLEU scores and word
error-rate (WER).

The first line shows the results of using only a
TM, namely our TMem program. These results re-
veal some fundamental differences between our dif-
ferent corpora with regard to internal repetition. Eu-
roparl is a typical example of a corpus for which
TM’s are mostly useless; as it contains very lit-
tle sentence repetition, TMem’s performance is ex-
tremely low. In comparison, TMem performance
on the Hansard corpus is surprisingly high, reveal-
ing an unexpected amount of repetition in that cor-
pus. Upon analysis, this is explained by the pres-
ence of much procedural or formulaic material (ses-
sion opening, closure, etc.) and also by the vol-
ume of material (over 100M words). Finally, and as
pointed out earlier, the Acquis corpus is inherently
very repetitive, and TMem displays its strongest per-
formance there.

Internal repetition also seems to affect MT results
positively, as can be seen on line 2 of Table 1: the
performance of our baseline MT system is much bet-
ter on the Hansard than on Europarl, and reaches an
unusually high 56.8 BLEU on the Acquis.

The following lines display the results of com-
bining our MT system with TMem using aβ-
combination (line 3) and TM-based feature func-
tions as discussed in section 2.3.2 (line 4). On
Europarl data, neither approach yields any visible
gains. This confirms our intuition that a combina-
tion with a TM can only be productive if the TM it-
self can extract useful material. On the Hansard and
Acquis, however, both strategies brings significant
performance improvements.

As line 5 indicates, the overall best performance
is obtained when theβ-combination and TM-based
feature functions are used together. On the Hansard,
we then gain 1.8 BLEU (1.9 WER) over the baseline
while on the Acquis, the gain reaches 2.6 BLEU (2.9
WER).

In these experiments, parameterβ was set to 1;
in other words, the TM output is only used as such
in the case of a 100% match. Early experiments
revealed that automatically optimized values were
close toβ = 1 and did not lead to significantly bet-
ter translations. However, the decision was actually
based on a more rhetorical argument: when source-
similarity is below 1, the target-language material

coming from the TM cannot generally be expected
to be a proper translation of the query, since it is
known to be the translation of something else. In an
MT perspective, producing output which isknown
to be wrong is somewhat disturbing. Therefore, we
chose to restrict the use of the TM to exact matches
only.

4.4 Quality Estimation Results

The effect of our QE component (Section 3) can
be seen in Figure 1, which shows the tradeoff be-
tween translation quality and source text coverage
as we modify theα threshold on system output. Text
coverage was measured as the proportion of source-
language words for which the system did propose a
translation. Output quality was measured only on
proposed translations (i.e. we ignored sentences for
which the system did not propose a translation). For
the TMem system, thresholding was done on the
sim function (Section 2.1); for MT systems (base-
line and combined), it was performed on estimated
target quality. The combined MT system (labeled
MT+TMem) uses all TM-based feature functions
proposed in Section 2.3.2 and aβ-combination with
TMem output, withβ = 1.

On such graphs, the upper right corner represents
an “ideal system”, i.e. one that would produce “per-
fect” translations (BLEU=1) on all of the system’s
input (coverage=100%). The right end of each curve
(coverage=1) depicts the global quality of the cor-
responding system’s output, as reported in Table 1.
The shape of each curve is solely determined by the
output filtering mechanism, within the limits of the
system’s performance: the more accurately it pre-
dicts output quality, the closer the curve should be
from the “ideal” upper-right corner.

For Europarl data, there is again no visible differ-
ence between the baseline and combined MT sys-
tems, as can be seen in the top graph in Figure 1.
As expected, MT systems perform noticeably better
than TMem in this context. On Hansard and Acquis
data, however (middle and bottom graphs), we see
that the gains over the baseline systems reported in
Table 1 can be observed at almost all levels of input
coverage. The apparent instability of all system’s
performance in the low-coverage area (left end of
the curves) can be explained in part by the fact that
the samples from which we estimate BLEU scores



Europarl Hansard Acquis
System BLEU WER BLEU WER BLEU WER
TMem 5.9 0.840 21.0 0.702 36.3 0.556
MT baseline 31.5 0.592 42.0 0.497 56.8 0.364
MT + TMem(β = 1) 31.5 0.592 43.7 0.482 57.6 0.358
MT + TM features 31.2 0.599 43.4 0.482 59.0 0.348
MT + TM features + TMem 31.2 0.600 43.8 0.478 59.4 0.335

Table 1: Overall System Performance

are inherently small in that area.
The most striking feature of these curves is that

for all three datasets, the combined MT systems al-
ways perform better than the translation memory: at
equal coverage, they provide better translations (as
measured with the BLEU metric, at least); and at
equal quality, they propose translations for a larger
portion of the input.

5 Conclusions

The work presented in the previous pages focused
on the problem of integrating a phrase-based MT
system within a CAT environment. We have pro-
posed an approach in which the MT system em-
ulates the behavior of a TM. Along this line, we
have examined two complementary ways of com-
bining phrase-based MT and TM technology: one
that simply selects the most appropriate component
(TM or MT) given the context, and one that allows
the phrase-based system to actively exploit the most
similar material identified by the TM, via TM-based
feature functions. In our experiments, both of these
approaches lead to significant gains in MT quality
when close or exact matches for the input segment
were present in the training material; optimal results
were obtained when both were deployed.

We have also shown how a fairly simple,
machine-learned “quality estimation” layer can be
used to filter out machine translations that are the
less likely to be useful to the translator. Because
this component is designed to produce a real-valued
quality estimate, the user can set the threshold on
output filtering to fit his/her own tolerance to ma-
chine errors. The resulting device achieves the pur-
pose of singling out the best translations, to a degree
where the MT system always produces better trans-
lations than a TM, whatever the degree of coverage
sought.
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lation quality.



The quality estimation component could obvi-
ously be improved in different ways: many obvious
additional features could be exploited, most notably
system internal features such as the number and size
of phrases used in the translation, presence of out-
of-vocabulary words in the input, etc. In our exper-
iments, this component was also typically trained
on very little data, and presumably better predic-
tions could be expected with more substantial train-
ing sets. Yet, it seems inappropriate to invest mas-
sively in the current direction, because in a real-life
setting, the QE component would possibly benefit
from something which we did not have easy access
to in the course of this study: real user feedback.
Quirk (2004) points out that just a small amount of
coarse user judgements leads to much more reliable
confidence estimations than much larger quantities
of automatically annotated data.
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