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Mathias Creutz∗, Teemu Hirsimäki∗, Mikko Kurimo ∗, Antti Puurula ∗, Janne Pylkkönen∗,
Vesa Siivola∗, Matti Varjokallio ∗, Ebru Arısoy†, Murat Saraçlar †, andAndreas Stolcke‡
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Abstract

We analyze subword-based language
models (LMs) in large-vocabulary
continuous speech recognition across
four “morphologically rich” languages:
Finnish, Estonian, Turkish, and Egyptian
Colloquial Arabic. By estimatingn-gram
LMs over sequences ofmorphs instead
of words, better vocabulary coverage
and reduced data sparsity is obtained.
Standard word LMs suffer from high
out-of-vocabulary (OOV) rates, whereas
the morph LMs can recognize previously
unseen word forms by concatenating
morphs. We show that the morph LMs
generally outperform the word LMs and
that they perform fairly well on OOVs
without compromising the accuracy
obtained for in-vocabulary words.

1 Introduction

As automatic speech recognition systems are being
developed for an increasing number of languages,
there is growing interest in language modeling ap-
proaches that are suitable for so-called “morpholog-
ically rich” languages. In these languages, the num-
ber of possible word forms is very large because
of many productive morphological processes; words
are formed through extensive use of, e.g., inflection,
derivation and compounding (such as the English
words ‘rooms’, ‘roomy’, ‘bedroom’, which all stem
from the noun ‘room’).

For some languages, language modeling based on
surface forms of words has proven successful, or at
least satisfactory. The most studied language, En-
glish, is not characterized by a multitude of word

forms. Thus, the recognition vocabulary can sim-
ply consist of a list of words observed in the training
text, andn-gram language models (LMs) are esti-
mated over word sequences. The applicability of the
word-based approach to morphologically richer lan-
guages has been questioned. In highly compounding
languages, such as the Germanic languages German,
Dutch and Swedish, decomposition of compound
words can be carried out to reduce the vocabulary
size. Highly inflecting languages are found, e.g.,
among the Slavic, Romance, Turkic, and Semitic
language families. LMs incorporating morphologi-
cal knowledge about these languages can be applied.
A further challenging category comprises languages
that are both highly inflecting and compounding,
such as the Finno-Ugric languages Finnish and Es-
tonian.

Morphology modeling aims to reduce the out-
of-vocabulary (OOV) rate as well as data sparsity,
thereby producing more effective language mod-
els. However, obtaining considerable improvements
in speech recognition accuracy seems hard, as is
demonstrated by the fairly meager improvements
(1–4 % relative) over standard word-based models
accomplished by, e.g., Berton et al. (1996), Ordel-
man et al. (2003), Kirchhoff et al. (2006), Whit-
taker and Woodland (2000), Kwon and Park (2003),
and Shafran and Hall (2006) for Dutch, Arabic, En-
glish, Korean, and Czech, or even the worse perfor-
mance reported by Larson et al. (2000) for German
and Byrne et al. (2001) for Czech. Nevertheless,
clear improvements over a word baseline have been
achieved for Serbo-Croatian (Geutner et al., 1998),
Finnish, Estonian (Kurimo et al., 2006b) and Turk-
ish (Kurimo et al., 2006a).

In this paper, subword language models in the
recognition of speech of four languages are ana-
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lyzed: Finnish, Estonian, Turkish, and the dialect
of Arabic spoken in Egypt, Egyptian Colloquial
Arabic (ECA). All these languages are considered
“morphologically rich”, but the benefits of using
subword-based LMs differ across languages. We at-
tempt to discover explanations for these differences.
In particular, the focus is on the analysis of OOVs:
A perceived strength of subword models, when con-
trasted with word models, is that subword models
can generalize to previously unseen word forms by
recognizing them as sequences of shorter familiar
word fragments.

2 Morfessor

Morfessor is an unsupervised, data-driven, method
for the segmentation of words into morpheme-like
units. The general idea is to discover as com-
pact a description of the input text corpus as possi-
ble. Substrings occurring frequently enough in sev-
eral different word forms are proposed asmorphs,
and the words in the corpus are then represented
as a concatenation of morphs, e.g., ‘hand, hand+s,
left+hand+ed, hand+ful’. Through maximum a pos-
teriori optimization (MAP), an optimal balance is
sought between the compactness of the inventory of
morphs, i.e., themorph lexicon, versus the compact-
ness of the representation of the corpus.

Among others, de Marcken (1996), Brent (1999),
Goldsmith (2001), Creutz and Lagus (2002), and
Creutz (2006) have shown that models based on
the above approach produce segmentations that re-
semble linguistic morpheme segmentations, when
formulated mathematically in a probabilistic frame-
work or equivalently using the Minimum Descrip-
tion Length (MDL) principle (Rissanen, 1989).
Similarly, Goldwater et al. (2006) use a hierarchical
Dirichlet model in combination with morph bigram
probabilities.

The Morfessor model has been developed over
the years, and different model versions exist. The
model used in the speech recognition experiments of
the current paper is the original, so-calledMorfes-
sor Baselinealgorithm, which is publicly available
for download.1. The mathematics of the Morfessor
Baseline model is briefly outlined in the following;
consult Creutz (2006) for details.

1
http://www.cis.hut.fi/projects/morpho/

2.1 MAP Optimization Criterion

In slightly simplified form, the optimization crite-
rion utilized in the model corresponds to the maxi-
mization of the following posterior probability:

P (lexicon| corpus) ∝

P (lexicon) · P (corpus| lexicon) =
∏

lettersα

P (α) ·
∏

morphsµ

P (µ). (1)

The lexicon consists of all distinct morphs spelled
out; this forms a long string of lettersα, in which
each morph is separated from the next morph using
a morph boundary character. The probability of the
lexicon is the product of the probability of each let-
ter in this string. Analogously, the corpus is repre-
sented as a sequence of morphs, which corresponds
to a particular segmentation of the words in the cor-
pus. The probability of this segmentation equals the
product of the probability of each morph tokenµ.
Letter and morph probabilities are maximum likeli-
hood estimates (empirical Bayes).

2.2 From Morphs to n-Grams

As a result of the probabilistic (or MDL) approach,
the morph inventory discovered by the Morfessor
Baseline algorithm is larger the more training data
there is. In some speech recognition experiments,
however, it has been desirable to restrict the size of
the morph inventory. This has been achieved by set-
ting a frequency threshold on the words on which
Morfessor is trained, such that the rarest words will
not affect the learning process. Nonetheless, the
rarest words can be split into morphs in accordance
with the model learned, by using the Viterbi algo-
rithm to select the most likely segmentation. The
process is depicted in Figure 1.

2.3 Grapheme-to-Phoneme Mapping

The mapping between graphemes (letters) and
phonemes is straightforward in the languages stud-
ied in the current paper. More or less, there is
a one-to-one correspondence between letters and
phonemes. That is, the spelling of a word indicates
the pronunciation of the word, and when splitting the
word into parts, the pronunciation of the parts in iso-
lation does not differ much from the pronunciation
of the parts in context. However, a few exceptions
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Figure 1: How to train a segmentation model using
the Morfessor Baseline algorithm, and how to fur-
ther train ann-gram model based on morphs.

have been treated more rigorously in the Arabic ex-
periments: e.g., in some contexts the same (spelled)
morph can have multiple possible pronunciations.

3 Experiments and Analysis

The goal of the conducted experiments is to com-
paren-gram language models based on morphs to
standard wordn-gram models in automatic speech
recognition across languages.

3.1 Data Sets and Recognition Systems

The results from eight different tests have been an-
alyzed. Some central properties of the test config-
urations are shown in Table 1. The Finnish, Esto-
nian, and Turkish test configurations are slight vari-
ations of experiments reported earlier in Hirsimäki
et al. (2006) (Fin1: ‘News task’, Fin2: ‘Book task’),
Kurimo et al. (2006a) (Fin3, Tur1), and Kurimo et
al. (2006b) (Fin4, Est, Tur2).

Three different recognition platforms have been
used, all of which are state-of-the-art large vocab-
ulary continuous speech recognition (LVCSR) sys-
tems. The Finnish and Estonian experiments have
been run on the HUT speech recognition system de-
veloped at Helsinki University of Technology.

The Turkish tests were performed using the
AT&T decoder (Mohri and Riley, 2002); the acous-
tic features were produced using the HTK front end
(Young et al., 2002). The experiments on Egyptian
Colloquial Arabic (ECA) were carried out using the
SRI DecipherTM speech recognition system.

3.1.1 Speech Data and Acoustic Models

The type and amount of speech data vary from
one language to another. The Finnish data con-

sists of news broadcasts read by one single female
speaker (Fin1), as well as an audio book read by an-
other female speaker (Fin2, Fin3, Fin4). The Finnish
acoustic models are speaker dependent (SD). Mono-
phones (mon) were used in the earlier experiments
(Fin1, Fin2), but these were later replaced by cross-
context triphones (tri).

The Estonian speech data has been collected from
a large number of speakers and consists of sen-
tences from newspapers as well as names and dig-
its read aloud. The acoustic models are speaker-
independent triphones (SI tri) adapted online using
Cepstral Mean Subtraction and Constrained Maxi-
mum Likelihood Linear Regression. Also the Turk-
ish acoustic training data contains speech from hun-
dreds of speakers. The test set is composed of news-
paper text read by one female speaker. Speaker-
independent triphones are used as acoustic models.

The Finnish, Estonian, and Turkish data sets con-
tain planned speech, i.e., written text read aloud.
By contrast, the Arabic data consists of transcribed
spontaneous telephone conversations,2 which are
characterized by disfluencies and by the presence
of “non-speech”, such as laugh and cough sounds.
There are multiple speakers in the Arabic data, and
online speaker adaptation has been performed.

3.1.2 Text Data and Language Models

The n-gram language models are trained using
the SRILM toolkit (Stolcke, 2002) (Fin1, Fin2,
Tur1, Tur2, ECA) or similar software developed
at HUT (Siivola and Pellom, 2005) (Fin3, Fin4,
Est). All models utilize the Modified Interpolated
Kneser-Ney smoothing technique (Chen and Good-
man, 1999). The Arabic LM is trained on the
same corpus that is used for acoustic training. This
data set is regrettably small (160 000 words), but it
matches the test set well in style, as it consists of
transcribed spontaneous speech. The LM training
corpora used for the other languages contain fairly
large amounts of mainly news and book texts and
conceivably match the style of the test data well.

In the morph-based models, words are split into
morphs using Morfessor, and statistics are collected
for morph n-grams. As the desired output of the

2LDC CallHome corpus of Egyptian ColloquialAra-
bic: http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC97S45
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Table 1: Test configurations
Fin1 Fin2 Fin3 Fin4 Est Tur1 Tur2 ECA

Recognizer HUT HUT HUT HUT HUT AT&T AT&T SRI
Speech data
Type of speech read read read read read read read spont.
Training set [kwords] 20 49 49 49 790 230 110 160
Speakers in training set 1 1 1 1 1300 550 250 310
Test set [kwords] 4.3 1.9 1.9 1.9 3.7 7.0 7.0 16
Speakers in test set 1 1 1 1 50 1 1 57
Text data
LM training set [Mwords] 36 36 32 150 53 17 27 0.16
Models
Acoustic models SD mon SD mon SD tri SD tri SI tri SI tri SI tri SItri
Morph lexicon [kmorphs] 66 66 120 25 37 52 34 6.1
Word lexicon [kwords] 410 410 410 – 60 120 50 18
Out-of-vocabulary words
OOV LM training set [%] 5.0 5.0 5.9 – 14 5.3 9.6 0.61
OOV test set [%] 5.0 7.2 7.3 – 19 5.5 12 9.9
New words in test set [%] 2.7 3.0 3.1 1.5 3.4 1.6 1.5 9.8

speech recognizer is a sequence of words rather than
morphs, the LM explicitly models word breaks as
special symbols occurring in the morph sequence.

For comparison, wordn-gram models have been
tested. The vocabulary cannot typically include ev-
ery word form occurring in the training set (because
of the large number of different words), so the most
frequent words are given priority; the actual lexicon
sizes used in each experiment are shown in Table 1.
Any word not contained in the lexicon is replaced by
a special out-of-vocabulary symbol.

As words and morphs are units of different length,
their optimal performance may occur at different or-
ders of then-gram. The best order of then-gram
has been optimized on development test sets in the
following cases: Fin1, Fin2, Tur1, ECA (4-grams
for both morphs and words) and Tur2 (5-grams for
morphs, 3-grams for words). The models have ad-
ditionally been pruned using entropy-based pruning
(Tur1, Tur2, ECA) (Stolcke, 1998). In the other
experiments (Fin3, Fin4, Est), no fixed maximum
value ofn was selected.n-Gram growing was per-
formed (Siivola and Pellom, 2005), such that those
n-grams that maximize the training set likelihood
are gradually added to the model. The unrestricted
growth of the model is counterbalanced by an MDL-
type complexity term. The highest order ofn-grams
accepted was 7 for Finnish and 8 for Estonian.

Note that the optimization procedure is neutral
with respect to morphs vs. words. Roughly the
same number of parameters are allowed in the result-

ing LMs, but typically the morphn-gram LMs are
smaller than the corresponding wordn-gram LMs.

3.1.3 Out-of-Vocabulary Words

Table 1 further shows statistics on out-of-
vocabulary rates in the data sets. This is relevant
for the assessment of the word models, as the OOV
rates define the limits of these models.

The OOV rate for the LM training set corresponds
to the proportion of words replaced by the OOV
symbol in the LM training data, i.e., words that were
not included in the recognition vocabulary. The high
OOV rates for Estonian (14 %) and Tur2 (9.6 %) in-
dicate that the word lexicons have poor coverage of
these sets. By contrast, the ECA word lexicon cov-
ers virtually the entire training set vocabulary.

Correspondingly, the test set OOV rate is the pro-
portion of words that occur in the data sets used
for running the speech recognition tests, but that are
missing from the recognition lexicons. This value
is thus theminimum errorthat can be obtained by
the word models, or put differently, the recognizer
is guaranteed to get at least this proportion of words
wrong. Again, the values are very high for Estonian
(19 %) and Tur2 (12 %), but also for Arabic (9.9 %)
because of the insufficient amount of training data.

Finally, the figures labeled “new words in test set”
denote the proportion of words in the test set that do
not occur in the LM training set. Thus, these values
indicate the minimum error achievable byanyword
model trained on the training sets available.
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Figure 2: Word accuracies for the different speech
recognition test configurations.

3.2 Results and Analysis

The morph-based and word-based results of the con-
ducted speech recognition experiments are shown in
Figure 2 (for Fin4, no comparable word experiment
has been carried out). The evaluation measure used
is word accuracy(WAC): the number of correctly
recognized words minus the number of incorrectly
inserted words divided by the number of words in
the reference transcript. (Another frequently used
measure is theword error rate, WER, which relates
to word accuracy as WER = 100 % – WAC.)

Figure 2 shows that the morph models perform
better than the word models, with the exception
of the Arabic experiment (ECA), where the word
model outperforms the morph model. The statisti-
cal significance of these differences is confirmed by
one-tailed paired Wilcoxon signed-rank tests at the
significance level of 0.05.

Overall, the best performance is observed for the
Finnish data sets, which is explained by the speaker-
dependent acoustic models and clean noise condi-
tions. The Arabic setup suffers from the insufficient
amount of LM training data.

3.2.1 In-Vocabulary Words

For a further investigation of the outcome of the
experiments, the test sets have been partitioned into
regions based on the types of words they contain.
The recognition output is aligned with the refer-
ence transcript, and the regions aligned within-

vocabulary(IV) reference words (words contained
in the vocabulary of the word model) are put in
one partition and the remaining words (OOVs) are
put in another partition. Word accuracies are then
computed separately for the two partitions. Inserted
words, i.e., words that are not aligned with any word
in the reference, are put in the IV partition, unless
they are adjacent to an OOV region, in which case
they are put in the OOV partition.

Figure 3a shows word accuracies for the in-
vocabulary words. Without exception, the accuracy
for the IVs is higher than that of the entire test set vo-
cabulary. One could imagine that the word models
would do better than the morph models on the IVs,
since the word models are totally focused on these
words, whereas the morph models reserve modeling
capacity for a much larger set of words. The word
accuracies in Fig. 3a also partly seem to support this
view. However, Wilcoxon signed-rank tests (level
0.05) show that the superiority of the word model is
statistically significant only for Arabic and for Fin3.

With few exceptions, it is thus possible to draw
the conclusion thatmorph models are capable of
modeling a much larger set of words than word
models without, however, compromising the perfor-
mance on the limited vocabulary covered by the
word models in a statistically significant way.

3.2.2 Out-of-Vocabulary Words

Since the word model and morph model perform
equally well on the subset of words that are included
in the lexicon of the word model, the overall supe-
riority of the morph model needs to come from its
successful coping with out-of-vocabulary words.

In Figure 3b, word accuracies have been plot-
ted for the out-of-vocabulary words contained in the
test set. It is clear that the recognition accuracy for
the OOVs is much lower than the overall accuracy.
Also, negative accuracy values are observed. This
happens when the number of insertions exceeds the
number of correctly recognized units.

In Figure 3b, if speaker-dependent and speaker-
independent setups are considered separately (and
Arabic is left out), there is a tendency for the morph
models to recognize the OOVs more accurately, the
higher the OOV rate is. One could say that a morph
model has a double advantage over a correspond-
ing word model: the larger the proportion of OOVs
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Figure 3: Word accuracies computed separately for those words in the test sets that are (a) included in and
(b) excluded from the vocabularies of the word vocabulary; cf. figures listed on the row “OOV test set” in
Table 1. Together these two partitions make up the entire test set vocabulary. For comparison, the results for
the entire sets are shown using gray-shaded bars (also displayed in Figure 2).

in the word model is, the larger the proportion of
words that the morph model can recognize but the
word model cannot, a priori. In addition, the larger
the proportion of OOVs, the more frequent and more
“easily modelable” words are left out of the word
model, and the more successfully these words are
indeed learned by the morph model.

3.2.3 New Words in the Test Set

All words present in the training data (some of
which are OOVs in the word models) “leave some
trace” in the morph models, in then-gram statistics
that are collected for morph sequences. How, then,
about new words that occur only in the test set, but
not in the training set? In order to recognize such
words correctly, the model must combine morphs in
ways it has not observed before.

Figure 4 demonstrates that the new unseen words
are very challenging. Now, also the morph mod-
els mostly obtain negative word accuracies, which
means that the number of insertions adjacent to new
words exceeds the number of correctly recognized
new words. The best results are obtained in clean
acoustic conditions (Fin2, Fin3, Fin4) with only few
foreign names, which are difficult to get right using
typical Finnish phoneme-to-grapheme mappings (as
the negative accuracy of Fin1 suggests).

3.3 Vocabulary Growth and Arabic

Figure 5 shows the development of the size of
the vocabulary (unique word forms) for growing
amounts of text in different corpora. The corpora
used for Finnish, Estonian, and Turkish (planned
speech/text), as well as Arabic (spontaneous speech)
are the LM training sets used in the experiments.
Additional sources have been provided for Arabic
and English: Arabic text (planned) from the FBIS
corpus of Modern Standard Arabic (a collection
of transcribed radio newscasts from various radio
stations in the Arabic speaking world), as well as
text from the New York Times magazine (English
planned) and spontaneous transcribed English tele-
phone conversations from the Fisher corpus.

The figure illustrates two points: (1) The faster
the vocabulary growth is, the larger the potential ad-
vantage of morph models is in comparison to stan-
dard word models, because of OOV and data spar-
sity problems. The obtained speech recognition re-
sults seem to support this hypothesis; the applied
morph LMs are clearly beneficial for Finnish and
Estonian, mostly beneficial for Turkish, and slightly
detrimental for ECA. (2) A more slowly growing
vocabulary is used in spontaneous speech than in
planned speech (or written text). Moreover, the
Arabic ‘spontaneous’ curve is located fairly close
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Figure 4: Word accuracies computed for the words
in the test sets that do not occur at all in the train-
ing sets; cf. figures listed on the row “new words
in test set” in Table 1. For comparison, the gray-
shaded bars show the corresponding results for the
entire test sets (also displayed in Figure 2).

to the English ‘planned’ curve and much below
the Finnish, Estonian, and Turkish curves. Thus,
even though Arabic is considered a “morphologi-
cally rich” language, this is not manifested through
a considerable vocabulary growth (and high OOV
rate) in the Egyptian Colloquial Arabic data used in
the current speech recognition experiments. Conse-
quently, it may not be that surprising that the morph
model did not work particularly well for Arabic.

Arabic words consist of a stem surrounded by pre-
fixes and suffixes, which are fairly successfully seg-
mented out by Morfessor. However, Arabic also
hastemplaticmorphology, i.e., the stem is formed
through the insertion of a vowel pattern into a “con-
sonantal skeleton”.

Additional experiments have been performed us-
ing the ECA data and Factored Language Models
(FLMs) (Kirchhoff et al., 2006). The FLM is a
powerful model that makes use of several sources
of information, in particular a morphological lexi-
con of ECA. The FLM incorporates mechanisms for
handling templatic morphology, but despite its so-
phistication, it barely outperforms the standard word
model: The word accuracy of the FLM is 42.3 % and
that of the word model is 41.8 %. The speech recog-
nition implementation of both the FLM and the word
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Figure 5: Vocabulary growth curves for the differ-
ent corpora of spontaneous and planned speech (or
written text). For growing amounts of text (word
tokens) the number of unique different word forms
(word types) occurring in the corpus are plotted.

model is based onwhole words(although subword
units are used for assigning probabilities to word
forms in the FLM). This contrasts these models with
the morph model, which splits words into subword
units also in the speech recognition implementation.
It seems that the splitting is a source of errors in this
experimental setup with very little data available.

4 Discussion

Alternative morph-based and word-based ap-
proaches exist. We have tried some, but none of
them has outperformed the described morph models
for Finnish, Estonian, and Turkish, or the word and
FLM models for Egyptian Arabic (in a statistically
significant way). The tested models comprise
more linguistically accurate morph segmentations
obtained using later Morfessor versions (Categories-
ML and Categories-MAP) (Creutz, 2006), as well
as analyses obtained from morphological parsers.

Hybrids, i.e., word models augmented with
phonemes or other subword units have been pro-
posed (Bazzi and Glass, 2000; Galescu, 2003;
Bisani and Ney, 2005). In our experiments, such
models have outperformed the standard word mod-
els, but not the morph models.

Simply growing the word vocabulary to cover the
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entire vocabulary of large training corpora could be
one (fairly “brute-force”) approach, but this is hardly
feasible for languages such as Finnish. The en-
tire Finnish LM training data of 150 million words
(used in Fin4) contains more than 4 million unique
word forms, a value ten times the size of the rather
large word lexicon currently used. And even if a 4-
million-word lexicon were to be used, the OOV rate
of the test set would still be relatively high: 1.5 %.

Judging by the Arabic experiments, there seems
to be some potential in Factored Language Models.
The FLMs might work well also for the other lan-
guages, and in fact, to do justice to the more ad-
vanced morph models from later versions of Mor-
fessor, FLMs or some other refined techniques may
be necessary as a complement to the currently used
standardn-grams.
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