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Abstract 

This paper presents a transliteration system 

based on pair Hidden Markov Model (pair 

HMM) training and Weighted Finite State 

Transducer (WFST) techniques. Parameters 

used by WFSTs for transliteration generation 

are learned from a pair HMM. Parameters 

from pair-HMM training on English-Russian 

data sets are found to give better transliteration 

quality than parameters trained for WFSTs for 

corresponding structures. Training a pair 

HMM on English vowel bigrams and standard 

bigrams for Cyrillic Romanization, and using 

a few transformation rules on generated Rus-

sian transliterations to test for context im-

proves the system’s transliteration quality. 

1 Introduction 

Machine transliteration is the automatic trans-

formation of a word in a source language to a 

phonetically equivalent word in a target language 

that uses a different writing system. Translitera-

tion is important for various Natural Language 

Processing (NLP) applications including: Cross 

Lingual Information Retrieval (CLIR), and Ma-

chine Translation (MT). This paper introduces a 

system that utilizes parameters learned for a pair 

Hidden Markov Model (pair HMM) in a shared 

transliteration generation task
1
. The pair HMM 

has been used before (Mackay and Kondrak, 

2005; Wieling et al., 2007) for string similarity 

estimation, and is based on the notion of string 

Edit Distance (ED). String ED is defined here as 

the total edit cost incurred in transforming a 

source language string (S) to a target language 

string (T) through a sequence of edit operations. 

The edit operations include: (M)atching an ele-

ment in S with an element in T; (I)nserting an 

element into T, and (D)eleting an element in S. 

                                                 
1 The generation task is part of the NEWS 2009 machine 

transliteration shared task  (Li et al., 2009) 

Based on all representative symbols used for 

each of the two languages, emission costs for 

each of the edit operations and transition parame-

ters can be estimated and used in measuring the 

similarity between two strings. To generate 

transliterations using pair HMM parameters, 

WFST (Graehl, 1997) techniques are adopted. 

Transliteration training is based mainly on the 

initial orthographic representation and no explicit 

phonetic scheme is used. Instead, transliteration 

quality is tested for different bigram combina-

tions including all English vowel bigram combi-

nations and n-gram combinations specified for 

Cyrillic Romanization by the US Board on Geo-

graphic Names and British Permanent Commit-

tee on Geographic Names (BGN/PCGN). How-

ever, transliteration parameters can still be esti-

mated for a pair HMM when a particular phonet-

ic representation scheme is used. 

The quality of transliterations generated using 

pair HMM parameters is evaluated against trans-

literations generated from training WFSTs and 

transliterations generated using a Phrase-based 

Statistical Machine Translation (PBSMT) sys-

tem. Section 2 describes the components of the 

transliteration system that uses pair HMM para-

meters; section 3 gives the experimental set up 

and results associated with the transliterations 

generated; and section 4 concludes the paper. 

2 Machine Transliteration System 

The transliteration system comprises of a training 

and generation components (Figure 1). In the 

training component, the Baum-Welch Expecta-

tion Maximization (EM) algorithm (Baum et al., 

1970) is used to learn the parameters of a pair 

HMM. In the generation component, WFST 

techniques (Graehl, 1997) model the learned pair 

HMM parameters for generating transliterations.  

2.1 Parameter Estimation for a pair-HMM 

A pair HMM has two output observations (Fig-

ure 2) that are aligned through the hidden states,  
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Figure 1: Machine Transliteration system 

 

 

 

 

 

 

 

 
Figure 2: pair-HMM alignment for converting an 

English string “Peter” to a Russian string “Пётр” 

 

unlike the classic HMMs that have only one ob-

servation sequence. The pair HMM structure dif-

fers from that of WFSTs in that in WFSTs the 

input and output symbols and associated weights 

occur on a transition arc while for the pair HMM, 

the input and output symbols and associated edit 

costs are encoded in a node. Two main sets of 

parameters are learned for the pair HMM: transi-

tion parameters (δ, ε, λ, τM, τDI) as shown in Fig-

ure 3 for different state transitions; and emission 

parameters in the (M)atch state and the other two 

gap states (D and I). si in Figure 3 is the i
th
 sym-

bol in the source language string S while tj is the 

j
th
 symbol in T.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Pair Hidden Markov Model [Adapted from 

Mackay and Kondrak, 2005] 

Pair HMM Emission parameters are stored in 

matrix form in three tables associated with the 

edit operations; transition parameters are also 

stored in matrix form in a table. The emission 

parameters are ( )n m n m× + +  in total; n and m 

are the numbers of symbols in the pair HMM 

source language alphabet (VS) and target lan-

guage alphabet (VT) respectively. The parameters 

of starting in a given edit operation state are de-

rived from the parameters of transiting from the 

match state (M) to either D or I or back to M. 

Although pair HMM training is evaluated 

against WFST training, there is no major differ-

ence in the training approach used in both cases; 

a forward-backward EM algorithm is used in 

each case. The main difference is in the struc-

ture; for the pair-HMM, the state transition pa-

rameter is also incorporated into the weight that 

measures the level of relationship between the 

input and output symbol when transformed to a 

WFST arc. 

2.2 Generating Transliterations in WFSTs 

A Weighted Finite State Transducer is a finite 

automaton whose state transitions are labeled 

with input and output elements and weights that 

express the level of relationship between the in-

put and output elements. Although the frame-

work of WFSTs has mostly been applied in 

representing various models for speech recogni-

tion (Mohri et al., 2008) including HMMs, 

WFSTs have as well been used for transliteration  

(Knight and Graehl, 1998), and are the most suit-

able for modeling pair HMM constraints for ge-

nerating transliterations. In the WFST frame-

work, it is possible to specify various configura-

tions associated with constraints inherent in a 

particular model. Figure 4 shows a WFST that 

precisely corresponds to the structure of the pair  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Finite State Transducer corresponding to the 

pair HMM. 

M start end 

D 

I 

si:e 

e:tj 

e:tj 

e:tj 

si:e 

si:e 

e:e 
e:e 

e:e 
e:e 

e:e 

e:e 

si:tj 

si:tj si:tj 

P : П 

 

M 

e : ё 

 

M 

t : т 

 

M 

e : _ 

D 

r : р 

M End 

si 

tj 

si 

tj 

λ 

M end 

D 

I 

τDI 

τDI 

λ 

τM 

δ 

δ 

ε 

ε 
1- ε- λ- τDI 

1- ε- λ- τDI 

1-2δ- τM 

 

Pairs of correct 

transliterations 

Transliteration parame-

ter estimation for pair 

HMM 

Estimated 

parameters 

Transliteration gen-

eration using 

Weighted Finite State 

Transducers 

Source 

name 

Target 

name 

101



HMM considering the constraints specified for 

the pair HMM. In Figure 4, e is an empty symbol 

while si and sj are as defined for the pair HMM in 

Figure 3. Note that, in Figure 4, a start state is 

needed to model pair HMM parameter con-

straints for starting in any of the three edit states. 

However, it is possible to specify a WFST cor-

responding to the pair HMM with no start state. 

Various WFST configurations that do not con-

form to the bias corresponding to the pair HMM 

constraints had low transliteration quality and for 

space limitations, are not reported in this paper.  

2.3 Transformation Rules 

A look into the transliterations generated using 

pair HMM parameters on English-Russian de-

velopment data showed consistent mistranslitera-

tions mainly due to lack of contextual modeling 

in the generated transliterations. For example in 

all cases where the Russian character л ‘l’ pre-

cedes the Russian soft sign ь ‘ ' ’, the Russian 

soft sign was missing, resulting into a loss of 

transliteration accuracy. Two examples of mi-

stransliterations that do not include the Russian 

soft sign ь are: крефелд instead of крефельд 

‘krefeld’, and билбао instead of бильбао 

‘bilbao’. For such cases, simple transformation 

rules, such as “л→ль” were defined on the out-

put transliterations in a post processing step. 25 

transformation rules were specified for some of 

the mistransliterations to test the effect of model-

ing context.  

2.4 Transliteration using PSMT system  

Transliterations generated using pair HMM pa-

rameters and WFSTs are evaluated against those 

generated from a state of the art Phrase-based 

Statistical Machine Translation system called 

Moses. Moses has been used before for machine 

transliteration (Matthews, 2007) and performed 

way better than a baseline system that was asso-

ciated with finding the most frequent mappings 

between source and target transliteration units in 

the training data. In the PBSMT system, bilin-

gual phrase-tables are used and several compo-

nents are combined in a log-linear model (trans-

lation models, reverse translation model, word 

and phrase penalties, language models, distortion 

parameters, etc.) with weights optimized using 

minimum error rate training. For machine transli-

teration: characters are aligned instead of words, 

phrases refer to character n-grams instead of 

word n-grams, and language models are defined 

over character sequences instead of word se-

quences. A major advantage of the PBSMT sys-

tem over the pair HMM and a WFST models is 

that the phrase tables (character n-grams) cover a 

lot of contextual dependencies found in the data.   

3 Experiments 

3.1 Data Setup 

The data used is divided according to the expe-

rimental runs that were specified for the NEWS 

2009 shared transliteration task (Li et al., 2009): 

a standard run and non-standard runs. The stan-

dard run involved using the transliteration system 

described above that uses pair HMM parameters 

combined with transformation rules. The Eng-

lish-Russian datasets used here were provided for 

the NEWS 2009 shared transliteration task (Ku-

maran and Kellner, 2009): 5977 pairs of names 

for training, 943 pairs for development, and 1000 

for testing.  For the non-standard runs, an addi-

tional English-Russian dataset extracted from the 

Geonames data dump was merged with the 

shared transliteration task data above to form 

10481 pairs for training and development. For a 

second set of experiments (Table 2), a different 

set of test data (1000 pairs) extracted from the 

Geonames data dump was used. For the system 

used in the standard run, the training data was 

preprocessed to include representation of bi-

grams associated with Cyrillic Romanization and 

all English vowel bigram combinations. 

3.2 Results  

Six measures were used for evaluating system 

transliteration quality. These include (Li et al., 

2009): Accuracy (ACC), Fuzziness in Top-1 

(Mean F Score), Mean Reciprocal Rank (MRR), 

Mean Average Precision for reference translite-

rations (MAP_R), Mean Average Precision in 10 

best candidate transliterations (MAP_10), Mean 

Average Precision for the system (MAP_sys). 

Table 1 shows the results obtained using only the 

data sets provided for the shared transliteration 

task. The system used for the standard run is 

“phmm_rules” described in section 2 to sub sec-

tion 2.3. “phmm_basic” is the system in which 

pair HMM parameters are used for transliteration 

generation but there is no representation for bi-

grams as described for the system used in the 

standard run. Table 2 shows the results obtained 

when additional data from Geonames data dump 

was used for training and development. In Table 

2, “WFST_basic” and “WFST_rules” are sys-

tems associated with training WFSTs for the 

“phmm_basic” and “phmm_rules” systems  
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     metrics 

models 
ACC Mean F 

Score 

MRR 

phmm_basic 0.293 0.845 0.325 

Moses_PSMT   0.509 0.908 0.619 

phmm_rules 0.354 0.869 0.394 

      metrics 

models 

MAP_R MAP_10 MAP_sys 

phmm_basic 0.293 0.099 0.099 

Moses_PSMT 0.509 0.282 0.282 

phmm_rules 0.354 0.134 0.134 

 

Table 1 Results from data sets for shared transli-

teration task.  
 

     metrics 

models 
ACC Mean F 

Score 

MRR 

phmm_basic 0.341 0.776 0.368 

phmm_rules 0.515 0.821 0.571 

WFST_basic 0.321 0.768 0.403 

WFST_rules 0.466 0.808 0.525 

Moses_PSMT 0.612 0.845 0.660 

      metrics 

models 

MAP_R MAP_10 MAP_sys 

phmm_basic 0.341 0.111 0.111 

phmm_rules 0.515 0.174 0.174 

WFST_basic 0.321 0.128 0.128 

WFST_rules 0.466 0.175 0.175 

Moses_PSMT 0.612 0.364 0.364 

 

Table 2 Results from additional Geonames data 

sets.  

 

respectively. Moses_PSMT is the phrase-based 

statistical machine translation system. The results 

in both tables show that the systems using pair 

HMM parameters perform relatively better than 

the systems trained on WFSTs but not better than 

Moses. The low transliteration quality in the pair 

HMM and WFST systems as compared to Moses 

can be attributed to lack of modeling contextual 

dependencies unlike the case in PBSMT. 

4 Conclusion 

A Transliteration system using pair HMM para-

meters has been presented. Although its perfor-

mance is better than that of systems based on 

only WFSTs, its transliteration quality is lower 

than the PBSMT system. On seeing that the pair 

HMM generated consistent mistransliterations, 

manual specification of a few contextual rules 

resulted in improved performance. As part of 

future work, we expect a technique that automat-

ically identifies the mistransliterations would 

lead to improved transliteration quality.  A more 

general framework, in which we intend to inves-

tigate contextual issues in addition to other fac-

tors such as position in source and target strings 

and edit operation memory in transliteration, is 

that of Dynamic Bayesian Networks (DBNs). 
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