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Abstract

We present a transliteration system that
introduces minimum description length
training for transliteration and combines
it with discriminative modeling. We ap-
ply the proposed approach to translitera-
tion from English to 8 non-Latin scripts,
with promising results.

1 Introduction

Recent research in transliteration and translation
showed utility of increasing the n-gram size in
transliteration models and phrase tables (Koehn
et al., 2003). Yet most learning algorithms for
training n-gram transliteration models place re-
strictions on the size of n-gram due to tractability
and overfitting issues, and, in the case of machine
translation, construct the phrase table after train-
ing the model, in an ad-hoc manner. In this paper,
we present a minimum description length (MDL)
approach (Grunwald, 2007) for learning transliter-
ation models comprising n-grams of unrestricted
size. Given a bilingual dictionary of transliterated
data we seek to derive a transliteration model so
that the combined size of the data and the model is
minimized.

Use of discriminative modeling for transliter-
ation and translation is another promising direc-
tion allowing incorporation of arbitrary features
in the transliteration process (Zelenko and Aone,
2006; Goldwasser and Roth, 2008). Here we pro-
pose to use the transliteration model derived via
MDL training as a starting point and learn the
model weights in the discriminative manner. The
discriminative approach also provides a natural
way to integrate the language modeling compo-
nent into the transliteration decoding process.

We experimentally evaluate the proposed ap-
proach on the standard datasets for the task of
transliterating from English to 8 non-Latin scripts

2 MDL Training for Transliteration

In our transliteration setting, we are given a string
e written in an alphabetV1 (e.g., Latin), which is
to be transliterated into a stringf written in an al-
phabetV2 (e.g., Chinese). We consider a transliter-
ation process that is conducted by a transliteration
modelT , which represents a function mapping a
pair of strings(ei, fi) into a scoreT (ei, fi) ∈ R.
For an alignment1 A = {(ei, fi)} of e andf , we
define the alignment scoreT (A) =

∑
i T (ei, fi).

For a stringe and a modelT , the decoding process
seeks the optimal transliterationT (e) with respect
to the modelT :

T (e) = arg max
f

{ T (A) | ∃A = {(ei, fi)} }

Different assumptions for transliteration mod-
els lead to different estimation algorithms. A
popular approach is to assume ajoint gener-
ative model for pairs(e, f), so that given an
alignmentA = {(ei, fi)}, a probabilityP (e, f)
is defined to be

∏
i p(ei, fi). The probabili-

ties p(ei, fi) are estimated using the EM algo-
rithm, and the corresponding transliteration model
is T (ei, fi) = log(p(ei, fi)). We can alterna-
tively model theconditional probability directly:
P (f |e) =

∏
i p(fi|ei), where we again estimate

the conditional probabilitiesp(fi|ei) via the EM
algorithm, and define the transliteration model ac-
cordingly: T (ei, fi) = log(p(fi|ei)). We can also
combine joint estimation with conditional decod-
ing, observing thatp(fi|ei) = p(ei,fi)∑

f
p(ei,fi)

and us-

ing the conditional transliteration model after esti-
mating a joint generative model.

Increasing the maximum n-gram size in prob-
abilistic modeling approaches, at some point, de-
grades model accuracy due to overfitting. There-
fore, probabilistic approaches typically use a small
n-gram size, and perform additional modelingpost

1Here we consider only monotone alignments.
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factum: examples include joint n-gram modeling
and phrase table construction in machine transla-
tion.

We propose to apply the MDL principle to
transliteration modeling by seeking the model that
compresses the transliteration data so that the
combined size of the compressed data and the
model is minimized. IfT corresponds to a joint
probabilistic modelP = {p(ei, fi)}, then we can
use the model to encode the dataD = {(e, f)} in

CD(P ) = −
∑

(e,f)

log P (e, f)

= −
∑

(e,f)

maxA

∑

i

log p(ei, fi)

bits, whereA = {(ei, fi)} is an alignment ofe and
f .

We can encode each symbol of an alphabetV
usinglog |V | bits so encoding a strings of length
|s| from alphabetV takesCV (s) = log |V |(|s| +
1) bits (we add an extra string termination sym-
bol for separability). Therefore, we encode each
transliteration model in

CT (P ) =
∑

(ei,fi)

CT (ei, fi)

bits, whereCT (ei, fi) = CV1
(ei) + CV2

(fi) −
log p(ei, fi) is the number of bits used to encode
both the pair(ei, fi) and its code according toP .
Thus, we seek a probability distributionP that
minimizesC(P ) = CD(P ) + CT (P ).

Let P be an initial joint probability distribution
for a transliteration modelT such that a string pair
(ei, fi) appearedn(ei, fi) times, andp(ei, fi) =
n(ei, fi)/N , where N =

∑
(ei,fi) n(ei, fi).

Then, encoding a pair(ei, fi) takes on aver-
age C(ei, fi) = CT (ei,fi)

n(ei,fi)
− log p(ei, fi) bits -

here we distribute the model size component to
all occurrences of(ei, fi) in the data. Notice
that the combined data and model sizeC(P ) =∑

(ei,fi) n(ei, fi)C(ei, fi). It is this quantity
C(ei, fi) that we propose to use when conducting
the MDL training algorithm below.

1. Pick an initial P . ComputeC(ei, fi) =
CT (ei,fi)
n(ei,fi)

− log p(ei, fi). Set combined size
C(P ) =

∑
(ei,fi) n(ei, fi)C(ei, fi).

2. Iterate: during each iteration, for each
(e, f) ∈ D, find the minimum codesize
alignment A = arg minA

∑
i C(ei, fi) of

(e, f). Use the alignments to re-estimateP
and re-computeC. Exit when there is no im-
provement in the combined model and data
size.

Experimentally, we observed fast convergence of
the above algorithm just after a few iterations,
though we cannot present a convergence proof as
yet. We picked the initial model by computing
co-occurrence counts of n-gram pairs inD, that
is, n(ei, fi) =

∑
(e,f) min(ne(ei), nf (fi)), where

ne(ei) (nf (fi)) is the number of times the n-gram
ei (fi) appeared in the stringe (f ).

Note that a Bayesian interpretation of the pro-
posed approach is not straightforward due to
the use of empirical component− log p(ei, fi) in
model encoding. Changing the model encoding to
use, for example, a code forn(ei, fi) would allow
for a direct Bayesian interpretation of the proposed
code, and we plan to pursue this direction in the
future.

The output of the MDL training algorithm is
the joint probability modelP that we use to de-
fine the transliteration model weights as the loga-
rithm of corresponding conditional probabilities:
T (ei, fi) = log p(ei,fi)∑

f
p(ei,f)

. During the decod-

ing process of inferringf from e via an align-
mentA, we integrate the language model proba-
bility p(f) via a linear combination:TGEN (e) =
arg maxf{T (A) + µ log p(f)/|f |}, where µ is
a combination parameter estimated via cross-
validation.

3 Discriminative Training

We use the MDL-trained transliteration model
T as a starting point for discriminative train-
ing: we consider all n-gram pairs(ei, fi) with
nonzero probabilitiesp(ei, fi) as features of a lin-
ear discriminative modelTDISCR. We also in-
tegrate the normalized language modeling prob-

ability p0(f) = p(f)
1

|f | in the discriminative
model as one of the features:TDISCR(e) =
arg maxf{T (A) + T0p0(f)}. We learn the
weights T (ei, fi) and T0 of the discriminative
model using the average perceptron algorithm of
(Collins, 2002). Since both the transliteration
model and the language model are required to be
learned from the same data, and the language mod-
eling probability is integrated into our decoding
process, we remove the stringe from the language
model before processing the example(f, e) during
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training; we re-incorporate the stringe in the lan-
guage model after the example(f, e) is processed
by the averaged perceptron algorithm. We use the
discriminatively trained model as the ”standard”
system in our experiments.

4 Experiments

We use the standard data for transliterating
from English into 8 non-Latin scripts: Chinese
(Haizhou et al., 2004); Korean, Japanese (Kanji),
and Japanese (Katakana) (CJK Institute, 2009);
Hindi, Tamil, Kannada, and Russian (Kumaran
and Kellner, 2007). The data is provided as part
of the Named Entities Workshop 2009 Machine
Transliteration Shared Task (Li et al., 2009).

For all 8 datasets, we report scores on the stan-
dard tests sets provided as part of the evaluation.
Details of the evaluation methodology are pre-
sented in (Li et al., 2009).

4.1 Preprocessing

We perform the same uniform processing of data:
names are considered sequences of Unicode char-
acters in their standard decomposed form (NFD).
In particular, Korean Hangul characters are de-
composed into Jamo syllabary. Since the evalu-
ation data are provided in the re-composed form,
we re-compose output of the transliteration sys-
tem.

We split multi-word names (in Hindi, Tamil,
and Kannada datasets) in single words and con-
ducted training and evaluation on the single word
level. We assume no word order change for multi-
word names and ignore name pairs with different
numbers of words.

4.2 System Parameters and Tuning

We apply pre-set system parameters with very lit-
tle tuning. In particular, we utilize a 5-gram lan-
guage model with Good-Turing discounting. The
MDL training algorithm requires only the cardi-
nalities of the corresponding alphabets as parame-
ters, and we use the following approximate vocab-
ulary sizes typically rounded to the closest power
of 2 (except for Chinese and Japanese): for En-
glish, Russian, Tamil, and Kannada, we set|V | =
32; for Katakana and Hindi,|V | = 64; for Korean
Jamo,|V | = 128; for Chinese and Japanese Kanji,
|V | = 1024.

We perform 10 iterations of the average per-
ceptron algorithm for discriminative training. For

Init Comp Ratio Dict
Chinese 333 Kb 158 Kb 0.48 5780
Hindi 159 Kb 72 Kb 0.45 1956
Japanese

170 Kb 82 Kb 0.48 4394
(Kanji)
Kannada 131 Kb 62 Kb 0.48 2010
Japanese

289 Kb 136 Kb 0.47 3383
(Katakana)
Korean 69 Kb 31 Kb 0.45 1181
Russian 78 Kb 37 Kb 0.48 865
Tamil 134 Kb 62 Kb 0.46 1827

Table 1: MDL Data and Model Compression
showing initial data size, final combined data and
model size, the compression ratio, and the number
of n-gram pairs in the final model.

T1(Acc) T2(Acc) T2(F) T2(MRR)

Chinese 0.522 0.619 0.847 0.711
Hindi 0.312 0.409 0.864 0.527
Japanese

0.484 0.509 0.675 0.6
(Kanji)
Kannada 0.227 0.345 0.854 0.462
Japanese

0.318 0.420 0.807 0.541
(Katakana)
Korean 0.339 0.413 0.702 0.524
Russian 0.488 0.566 0.919 0.662
Tamil 0.267 0.374 0.880 0.512

Table 2: Experimental results for transliteration
from English to 8 non-Latin scripts comparing
performance of generative (T1) and corresponding
discriminative (T2) models.

both alignment and decoding, we use a beam
search decoder, with the beam size set to 100.

4.3 Results

Our first set of experiments illustrates compres-
sion achieved by MDL training. Table 1 shows for
each for the training datasets, the original size of
the data, compressed size of the data including the
model size, the compression ratio, and the number
of n-gram pairs in the final model.

We see very similar compression for all lan-
guages. The number of n-gram pairs for the final
model is also relatively small. In general, MDL
training with discriminative modeling allows us to
discover a flexible small set of features (n-gram
pairs) without placing any restriction on n-gram
size. We can interpret MDL training as search-
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ing implicitly for the best bound on the n-gram
size together with searching for appropriate fea-
tures. Our preliminary experiments also indicate
that performance of models produced by the MDL
approach roughly corresponds to performance of
models trained with the optimal bound on the size
of n-gram features.

Table 2 demonstrates that discriminative model-
ing significantly improves performance of the cor-
responding generative models. In this setting, the
MDL training step is effectively used for feature
construction: its goal is to automatically hone in
on a small set of features whose weights are later
learned by discriminative methods.

From a broader perspective, it is an open
question whether seeking a compact representa-
tion of sequential data leads to robust and best-
performing models, especially in noisy environ-
ments. For example, state-of-the-art phrase trans-
lation models eschew succinct representations,
and instead employ broad redundant sets of fea-
tures (Koehn et al., 2003). On the other hand,
recent research show that small translation mod-
els lead to superior alignment (Bodrumlu et al.,
2009). Therefore, investigation of the trade-off
between robust redundant and succinct representa-
tion present an interesting area for future research.

5 Related Work

There is plethora of work on transliteration cov-
ering both generative and discriminative models:
(Knight and Graehl, 1997; Al-onaizan and Knight,
2002; Huang et al., 2004; Haizhou et al., 2004; Ze-
lenko and Aone, 2006; Sherif and Kondrak, 2007;
Goldwasser and Roth, 2008). Application of the
minimum description length principle (Grunwald,
2007) in natural language processing has been
heretofore mostly limited to morphological analy-
sis (Goldsmith, 2001; Argamon et al., 2004). (Bo-
drumlu et al., 2009) present a related approach on
optimizing the alignment dictionary size in ma-
chine translation.

6 Conclusions

We introduced a minimum description length ap-
proach for training transliteration models that al-
lows to avoid overfitting without putting apriori
constraints of the size of n-grams in transliteration
models. We plan to apply the same paradigm to
other sequence modeling tasks such as sequence

classification and segmentation, in both super-
vised and unsupervised settings.
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