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Abstract
We describe a scalable decoder for parsing-based machine translation. e decoder is written in

Java and implements all the essential algorithms described in (Chiang, 2007) and (Li and Khudanpur,
2008b): chart-parsing, n-gram language model integration, beam- and cube-pruning, and k-best extrac-
tion. Additionally, parallel and distributed computing techniques are exploited to make it scalable. We
demonstrate experimentally that our decoder is more than 30 times faster than a baseline decoder written
in Python.

1. Motivation

Large-scale parsing-based statistical machine translation has made significant progress in
the last few years. e systems being developed differ in whether they use source- or target-
language syntax. For instance, the hierarchical translation system of Chiang (2007) extracts
a synchronous grammar from pairs of strings, whereas Quirk, Menezes, and Cherry (2005),
Liu, Liu, and Lin (2006) andHuang, Knight, and Joshi (2006) perform syntactic analyses in the
source-language, and Galley et al. (2006) uses target-language syntax.

A critical component in parsing-based MT systems is the decoder, which is complex to
implement and scale up for large data sets. Most of the systems described above employ tailor-
made, dedicated decoders that are not open-source, which results in a high barrier to entry
for other researchers in the field. However, with the algorithms proposed in (Huang and Chi-
ang, 2005, Chiang, 2007, Huang and Chiang, 2007), it is possible to develop a general-purpose
decoder that can be used by all the parsing-based systems. In this paper, we describe an im-
portant first-step towards an extensible, general-purpose, scalable, and open-source parsing-
based MT decoder. Our decoder is written in Java and implements all the essential algorithms
described in (Chiang, 2007): chart-parsing, n-gram language model integration, beam- and
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cube-pruning, and unique k-best extraction. Additionally, parallel and distributed computing
techniques are exploited to make it scalable.

We demonstrate experimentally that our decoder is 38 times faster than a previous de-
coder written in Python. Furthermore, the distributed computing permits improving transla-
tion quality via large-scale language models. e decoder has been used to translate roughly
a million sentences in a parallel corpus for large-scale discriminative training experiments (Li
and Khudanpur, 2008a). e decoder has also been successfully used by other researchers.
For example, (Chen et al., 2008) have demonstrated that our decoder achieves performance
competitive with Moses (Koehn et al., 2007), another major open-source machine translation
toolkit. We hope the release of the decoder will greatly contribute the progress of the syntax-
based machine translation research.

2. Parsing-based MT Decoder

In this section, we discuss the core algorithms implemented in our decoder. ese algo-
rithms have been discussed by (Chiang, 2007) in detail, and we recapitulate the essential parts
here for completeness.¹

2.1. Grammar Formalism

Our decoder assumes a probabilistic synchronous context-free grammar (SCFG). Follow-
ing the notation in (Venugopal, Zollmann, and Vogel, 2007), a probabilistic SCFG comprises
a set of source-language terminal symbols, TS, a set of target-language terminal symbols, TT , a
shared set of nonterminal symbols, N, and a set of rules of the form

X → ⟨γ, α, ∼, w⟩ (1)

whereX ∈ N, γ ∈ [N∪TS]∗ is a (mixed) sequence of nonterminals and source terminals,α ∈
[N∪TT ]∗ is a sequence of nonterminals and target terminals, ∼ is a one-to-one correspondence
or alignment between the nonterminal elements of γ and α, and w ≥ 0 is a weight assigned to
the rule. An illustrative rule for Chinese-to-English translation is

NP → ⟨NP0 的 NP1 , NP1 of NP0 ⟩

where the Chinese word的 (pronounced de or di) means of, and the alignment, encoded via
subscripts on the nonterminals, causes the two noun phrases around的 to be reordered around
of in the translation. e rule weight is omitted in this example.

A bilingual SCFG derivation is analogous to a monolingual CFG derivation. It begins with
a pair of aligned start symbols. At each step, an aligned pair of nonterminals is rewritten as the
two corresponding components of a single rule. In this sense, the derivations are generated
synchronously.

¹Most of the descriptions here are adopted from (Li and Khudanpur, 2008b).
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Our decoder presently handles SCFGs of the kind extracted by Heiro (Chiang, 2007), but
is easily extensible to more general SCFGs and closely related formalisms such as synchronous
tree substitution grammars (Eisner, 2003, Chiang, 2006).

2.2. MT Decoding as Chart Parsing

Given a source-language sentence, f∗, the decoder must find the target-language yield,
e(D), of the derivation D which has the best composite weight, w(D), among all derivations
whose source-language yield, f(D), is the source-language sentence. Or equationally,

e∗ = e

(
argmax

D : f(D)=f∗
w(D)

)
(2)

e composite weight is a linear combination of feature function weights and feature function
values. General feature functions include translation model features, language model features,
and word penalty features.

e actual decoding algorithm maintains a chart, which contains an array of cells. Each
cell in turn maintains a list of proven items. e parsing process starts with the axioms, and
proceeds by applying the inference rules repeatedly to prove new items until proving a goal
item. Whenever the parser proves a new item, it adds the item to the appropriate chart cell. e
new item alsomaintains backpointers to antecedent items, which are used fork-best extraction,
as discussed in Section 2.4 below.

In a SCFG-based decoder, an item is identified by its source-language span, le-side non-
terminal label, and le- and right-contexts for the target-language n-gram LM. erefore, in
a given cell, the maximum possible number of items is O(|N| |TT |2(n−1)), and the worst case
decoding complexity is

O

(
l3 |N|K |TT |2K(n−1)

)
(3)

where K is the maximum number of nonterminal pairs per rule and l is the source-language
sentence length (Venugopal, Zollmann, and Vogel, 2007).

2.3. Pruning in a Decoder

Severe pruning is needed in order tomake the decoding computationally feasible for SCFGs
with large target-language vocabularies and detailed nonterminal sets. In our decoder, we in-
corporate two pruning techniques described by (Chiang, 2007, Huang and Chiang, 2007). For
beam pruning, in each cell, we discard all items whose weight is β-times worse than the weight
of the best item in the same cell. If too many items pass that relative threshold, then only the
top b items by weight are retained in each cell. When applying an inference rule to combine
smaller items and obtain a larger item, we use cube pruning to simulate k-best extraction in
each destination cell, discarding combinations which lead to an item whose weight is worse
than the best item in that cell by a margin of ϵ.
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2.4. Hyper-graphs and k-best Extraction

For each source-language sentence the output of the chart-parsing algorithmmay be treated
as a hyper-graph representing a set of likely derivation hypotheses. Briefly, a hyper-graph is a
set of vertices and hyper-edges, with each hyper-edge connecting a set of antecedent vertices to
a consequent vertex, and a special vertex designated as the target vertex. In parsing parlance, a
vertex corresponds to an item in the chart, a hyper-edge corresponds to a SCFG rule with the
nonterminals on the right-side replaced by back-pointers to antecedent items, and the target
vertex corresponds to the goal item².

Given a hyper-graph for a source-language sentence f∗, we use the k-best extraction algo-
rithm of (Huang and Chiang, 2005) to extract its k most likely translations. Moreover, since
many different derivationsmay lead to the same target-language yield e(D), we adopt themod-
ification described in (Huang, Knight, and Joshi, 2006) to efficiently generate the unique k best
translations of f∗.

3. Underlying Methodologies

When designing our decoder we applied principles of soware engineering to improve us-
ability and hence utility to open-source users. Our three major design goals are: extendibility,
end-to-end coherence, and scalability.

3.1. Extendibility

To make Joshua a suitable baseline for future research it is necessary that it be easily ex-
tended by other researchers. As befitting a project of its size, the Joshua code is organized into
separate packages for each major aspect of functionality (e.g. chart parsing, feature functions,
and hyper-graph algorithms). In this way it is clear which files contribute to a given func-
tionality and researchers can focus on a single package without worrying about the rest of the
system.

Illicit interactions and unseen dependencies are a common hinderance to extensibility in
large projects. To minimize these problems, all extensible components are defined by Java in-
terfaces. e interfaces are designed to beminimalistic so that they do not hinder radical depar-
tures from current implementations, such as using per-sentence or non-trie-based translation
grammars. Where there is a clear point of departure for research, a basic implementation of
each interface is provided as an abstract class to minimize the work necessary for new exten-
sions.

A non-exhaustive list of future extensions we envisioned when designing our interfaces
include:

• Using a new decoding algorithm such as agenda-based parsing, instead of the default
CKY algorithm;

²In a decoder integrating ann-gram LM, there may be multiple goal items due to different LM contexts. However,
one can image a single goal item identified by the span [0, n] and the goal nonterminal S, but not by the LM contexts.
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• Addingnewpruning algorithms, beside the already implemented beam- and cube-pruning;
• Using grammars with linguistic syntax such as the grammar described in (Galley et al.,
2006, Venugopal and Zollmann, 2009), rather than Hiero-style grammars;

• Handling non-SCFG grammar formalisms, e.g. synchronous tree substitution grammars
(Eisner, 2003);

• Adding new feature functions, e.g. the source-side syntax constraints described by (Mar-
ton and Resnik, 2008);

• Using novel languagemodels like the bloom-filter LMdescribed in (Talbot andOsborne,
2007), not just ARPA backoff n-gram models;

• Addingnewalgorithms that operate on the hyper-graph, for example, hyper-graph rerank-
ing or discriminative training over the hyper-graph.

3.2. End-To-End Cohesion

ere are many components to a machine translation pipeline aside from the decoder. One
of the great difficulties with current MT pipelines is that these diverse components are oen
designed by separate groups and have different file format and interaction requirements. is
leads to a large investment in scripts to convert formats and connect the different components,
and oen leads to untenable and non-portable projects as well as hindering repeatability of
experiments.

To combat these issues, the Joshua toolkit integrates other critical components of the ma-
chine translation pipeline as well as the decoder. Two critical components being integrated
are suffix-array grammar extraction (Callison-Burch, Bannard, and Schroeder, 2005, Lopez,
2007) and minimum error rate training (MERT) (Och, 2003, Bertoldi, Haddow, and Fouet,
2009, Zaidan, 2009). Additional components we hope to integrate include tools for building
language models and generating word alignments, as well as a general infrastructure for con-
figuring and connecting segments of the pipeline.

For researchers who have already invested much work into their pipelines, the decoder can
be treated as a stand-alone tool and does not rely on the rest of the toolkit we provide.

3.3. Scalability

Our third design goalwas to ensure that the decoder is scalable to largemodels anddata sets.
e parsing and pruning algorithms are carefully implemented with dynamic programming
strategies, and efficient data structures are used to minimize overhead.

e integration of suffix-array grammar extraction and MERT also contributes to scala-
bility. Suffix arrays are compact data structures which can store many more n-grams than a
traditional phrase table with the same memory footprint. ey are also amenable to extract-
ing small per-sentence grammars on the fly, rather than needing a monolithic grammar for
the entire test set. With MERT integration we do not need to start a new decoder instance
each iteration, which means we can load the grammar into memory once (an expensive task
compared to the decoding time itself) instead of repeatedly.
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We also implement parallel decoding and a distributed language model. Parallel decoding is
able to exploitmulti-core andmulti-processor architectures by translatingmultiple sentences in
separate threads and storing the language model and translation grammar in shared memory.
Enabling the distributed language model reduces memory pressure and makes it feasible to
use large LMs by running the LM on a separate machine from the decoder or decoders. More
details on these two features are provided in (Li and Khudanpur, 2008b).

4. Using the Decoder

To produce a translation output for a test document, one needs to follow the following
general five-step procedure.

1. Train a language model using a toolkit such as the SRI LM tools (Stolcke, 2002);
2. Extract a translation grammar for the test set. is step itself involves several sub-steps,

e.g. preparing a bilingual corpus, obtaining word alignments with a tool like GIZA (Och
and Ney, 2003), and extracting the grammar using the suffix-array infrastructure;

3. Find optimal weights for combining the different models and feature functions by using
MERT or another training procedure;

4. Write the decoder’s configuration file, specifying the language model, translationmodel,
feature weights, and other options. e integrated MERT, when given an initial config-
uration file, will produce a modified configuration with the final weights. Table 1 shows
an example configuration file.

5. Finally, run the decoder to produce the k best translations for each sentence in the test
document. For an input file, test.in, an output k-best file, test.kbest, and a con-
figuration file, config, the decoder can be invoked with:

java joshua.JoshuaDecoder config test.in test.kbest

Oen it is helpful to pass additional flags to the JVM to specify the minimum and maxi-
mum size of the heap, to adjust the minimum free-heap ratio, or to enable 64-bit mode.

5. Experimental Results

In this section, we evaluate the performance of our decoder on a large-scale Chinese to
English translation task.³

5.1. System Training

We use various parallel text corpora distributed by the Linguistic Data Consortium (LDC)
for the NIST MT evaluation. e parallel data we select contains about 570K Chinese-English
sentence pairs, adding up to about 19M words on each side. To train the English language

³Again, most of the descriptions here are adopted from (Li and Khudanpur, 2008b).
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# lm file location
lm_file=example.trigram.lm.gz

# tm file location
tm_file=example.hiero.tm.gz

# lm model weight
lm 1.000000

# translation model weights
phrasemodel pt 0 1.066893
phrasemodel pt 1 0.752247
phrasemodel pt 2 0.589793

# wordpenalty weight
wordpenalty -2.844814

Table 1. An example configuration file. For conciseness, this file neglects some
standard configuration options (e.g.k-best size).

models, we use the English side of the parallel text and a subset of the EnglishGigaword corpus,
for a total of about 130M words.

We use the GIZA toolkit (Och andNey, 2003), a suffix-array architecture (Lopez, 2007), the
SRILM toolkit (Stolcke, 2002), and minimum error rate training (Och, 2003) to obtain word-
alignments, a translationmodel, languagemodels, and the optimal weights for combining these
models, respectively.

5.2. Improvements in Decoding Speed

We use a Python implementation of a state-of-the-art decoder as our baseline⁴ for decoder
comparisons. For a direct comparison, we use exactly the same models and pruning parame-
ters. e SCFG contains about 3M rules, the 5-gram LM explicitly lists about 49M n-grams,
n = 1, 2, . . . , 5, and the pruning uses β = 10, b = 30 and ϵ = 0.1.

As shown in Table 2, the Java decoder (without explicit parallelization) is 22 times faster
than the Python decoder, while achieving slightly better translation quality as measured by
BLEU-4 (Papineni et al., 2002). e parallelization further speeds it up by a factor of 1.7, mak-
ing the parallel Java decoder is 38 times faster than the Python decoder.

We have also used the decoder to successfully decode about one million sentences for a
large-scale discriminative training experiment (Li and Khudanpur, 2008a), showing that the

⁴We are extremely thankful to Philip Resnik at University of Maryland for allowing us the use of their Python
decoder as the baseline. anks also go to David Chiang who originally implemented the decoder.
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Decoder Speed BLEU-4
(sec/sent) MT ’03 MT ’05

Python 26.5 34.4% 32.7%
Java 1.2 34.5% 32.9%Java (parallel) 0.7

Table 2. Decoder Comparison: Translation speed and quality on the 2003 and 2005
NIST MT benchmark tests.

decoder is stable and scalable.

5.3. Impact of a Distributed Language Model

We use the SRILM toolkit to build eight 7-gram language models, and load and call the
LMs using a distributed LM architecture as discussed before. As shown in Table 3, the 7-gram
distributed language model (DLM) significantly improves translation performance over the 5-
gram LM.However, decoding is significantly slower (12.2 sec/sent when using the non-parallel
decoder) due to the added network communication overhead.

LM type # n-grams MT ’03 MT ’05
5-gram LM 49M 34.5% 32.9%
7-gram DLM 310M 35.5% 33.9%

Table 3. Distributed language model: the 7-gram LM cannot be loaded alongside
the SCFG on a single machine; via distributed computing, it yields significant

improvement in BLEU-4 over a 5-gram.

6. Conclusions

Wehave described a scalable decoder for parsing-basedmachine translation. It is written in
Java and implements all the essential algorithms described in (Chiang, 2007) and (Li and Khu-
danpur, 2008b): chart-parsing, n-gram language model integration, beam- and cube-pruning,
and unique k-best extraction. Additionally, parallel and distributed computing techniques are
exploited tomake it scalable. We demonstrate that our decoder is 38 times faster than a baseline
decoder written in Python, and that the distributed language model is very useful to improve
translation quality in a large-scale task. e decoder has been used for decoding millions of
sentences for a large-scale discriminative training task (Li and Khudanpur, 2008b).
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