Sinuhe — Statistical Machine Translation with a Globally Trained Conditional Exponential Family Translation Model

Matti Kääriäinen

matti.kaariainen@cs.helsinki.fi

Barcelona, 13 May, 2009.

Talk outline

Machine translation by machine learning:

- Theory:
 - Models
 - Training
 - Prediction
- Practice:
 - The Sinuhe machine translation system
 - Experimental results

Part 0: Background – machine learning framework

General framework

Learning to predict:

- Data: examples $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- Task: learn $f: \mathcal{X} \to \mathcal{Y}$
- Goal: f(x) close to y on future examples (x, y)

Structured prediction is a special case:

- Labels *y* ∈ 𝒱 have internal structure (e.g., sequence, matching, partition of a set, ...)
- The problem does not fully decompose over the parts of y

Examples: Sequence labeling, image segmentation, *machine translation*

A structured prediction framework

General linear setting:

- Map (x, y) into features with a *joint feature map* $\phi \colon \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$
- Learn weight vector $w \in \mathbb{R}^d$
- Predict $f_w(x) = \arg \max_{y \in \mathcal{Y}_x} w \cdot \phi(x, y)$, where $\mathcal{Y}_x \subset \mathcal{Y}$ is the set of feasible labels for x.

Binary classification is a special case:

•
$$\mathcal{Y} = \{\pm 1\}$$

•
$$\phi(x,y) = y\phi(x)$$
.

Moving parts

Modelling:

- How to define the joint feature map?
- What criteria to use in learning the weight vector $w \in \mathbb{R}^d$?

Computational:

- Algorithms for learning $w \in \mathbb{R}^d$
- Algorithms for predicting $f_w(x) = \arg \max_{y \in \mathcal{Y}_x} w \cdot \phi(x, y) \in \mathcal{Y}$

Part 1: Theory — Models, training, and prediction for machine translation

Machine translation

Special case of structured prediction, where

 $\mathcal{X} = \text{French text}, \, \mathcal{Y} = \text{English text}$

To be defined:

- Joint feature map
- Criterion for learning w
- Algorithms for finding the optimal w
- Algorithms for producing translations $f_w(x)$

Pipeline for extracting biphrase features

1. Raw data: corpus of sentence pairs $(x, y) \in S_{raw}$:

nous devons leur en donner la possibilite . we must give them this opportunity .

2. Word-alignment: map (x, y) to $(x, a, y) \in S$:

nous devons leur en donner la possibilite . we must give them this opportunity .

3. Biphrase extraction: extract all compatible biphrases (x', a', y'):

Intuition

Motivating goal:

• Given source sentence *x*, predict the set of biphrases extracted from it.

Joint feature map

Represent an aligned sentence pair (x, a, y) by the (extracted) biphrases that occur in it:

- φ(x, a, y)_{(x',a',y'),i} = 1 iff the biphrase (x', a', y') occurs at source position i in (x, a, y)
- Projected down features:

$$\tilde{\phi}(x, a, y)_{(x', a', y')} = \sum_{i} \phi(x, a, y)_{(x', a', y'), i}$$

The joint feature map is $(x, a, y) \mapsto \tilde{\phi}(x, a, y)$

• Thus: one parameter $w_{(x',a',y')}$ per biphrase feature (x',a',y')

Phrase table pruning: use only biphrases that occur more than once in the training data (leave-one-out motivation)

The translation model

Define:

$$P(\phi(x, a, y)|x) = \frac{\exp(w \cdot \tilde{\phi}(x, a, y))}{\sum_{\phi \in \Phi_x} \exp(w \cdot \tilde{\phi})},$$

where Φ_x is the set of feasible feature vectors for x.

- Proper conditional probability model for (features of) translations
- Φ_x the feature space equivalent of \mathcal{Y}_x contains all feature vectors representable by translations (x, a, y) (plus some)
- No reachability problems: the (feature representation of) the training data has non-zero probability!

Criteria for learning w

Two natural probabilistic criteria:

- Maximum likelihood (ML): maximize $\prod_{(x,a,y)\in S} P(\phi(x,a,y)|x)$
 - Overfitting?
- Maximum a posteriori (MAP): maximize

$$P(w|S) \propto \prod_{(x,a,y)\in S} P(\phi(x,a,y)|x,w) \times P(w),$$

where P(w) is a prior on the parameters

- Control overfitting by a proper choice of P(w)

Surprisingly, ML and MAP (with L1 or L2 regularization) seem to give similar translation quality.

Learning w

For Gaussian priors, MAP parameters can be found by minimizing

$$\mathcal{L}(w) = \sum_{i} \frac{w_i^2}{2\sigma_i^2} - \sum_{(x,a,y)\in S} \log P(\phi(x,a,y)|x) + C$$

The optimization problem is strictly convex, and can be solved by stochastic gradient:

- Gradients computed by dynamic programming
- The sparsity of $\tilde{\phi}(x,a,y)$ leads to sparse updates, regularization can be done lazily
- Easy to parallelize: apply many stochastic gradient updates asynchronously in parallel

Predicting translations

- Vanilla version:
 - 1. Solve $g_w(x) = \arg \max_{\phi \in \Phi_x} P(\phi|x)$
 - 2. Reconstruct $y = f_w(x)$ from $g_w(x)$

Potential problems: No language model, no reordering model

- Alternative version:
 - Augment $\log P(\phi|x)$ with other features (language model $\log P(y)$, lexical translation features, reordering model, ...)
 - Find y by optimizing a weighted combination of the features
 - * beam search
 - * combination weights tuned on development data

The former is conceptually clean and fast, but the latter produces more fluent translations.

Recap: MT system on one slide

- 1. Features: biphrases from phrase-based SMT:
 - (a) Primary features $(\phi(x, a, y))_{(x', a', y'), i} =$ 1 iff (x', a', y') occurs in (x, a, y) at position i
 - (b) Projected down features $\tilde{\phi}_{(x',a',y')} = \sum_{i} \phi_{(x',a',y'),i}$
- 2. Model: conditional exponential probability distribution:

$$P(\phi(x, a, y)|x) = \frac{\exp(w \cdot \tilde{\phi}(x, a, y))}{\sum_{\phi \in \Phi_x} \exp(w \cdot \tilde{\phi})},$$

where Φ_x is the set of feasible feature vectors for x.

- 3. Training: find MAP parameters, scaled Gaussian prior
- 4. Prediction (without an LM):

(a)
$$\hat{\phi}(x) = \arg \max_{\phi(x,a,y) \colon x \text{ covered}} P(\phi(x,a,y)|x)$$

(b) $f_w(x) = \text{some } y \text{ reconstructed from } \hat{\phi}(x)$

Part 2: Practice — implementation and experiments

Sinuhe — a prototype MT system

- Released under GPLv3 (current version v1.3beta2)
- Written in C++, about 12000 lines of code (+some scripts)
- Distributed training and prediction:
 - Queries and updates to components of a shared *w* managed by a server
 - Multiple train and predict clients, communication over TCP
- Scales to large data:
 - GigaFrEn corpus with $22 \cdot 10^6$ sentence pairs crawled from the web, 10^9 words, $w \in \mathbb{R}^{10^8}$
 - Parallel training using ≈ 200 CPU cores converges in a week
- Fast, relatively small memory footprint, good (?) translation quality

Experimental results

- Comparison point: fully tuned Moses, no phrase table pruning
- BLEU scores for Europarl data (~1M sentence pairs for training, 2000 sentence test set):

	es-en	en-es	fr -en	en-fr	de-en	en-de	time (s)
Sinuhe	31.38	30.94	31.50	28.91	25.03	19.26	338.0
Moses	32.18	31.88	32.63	29.92	27.30	20.57	3729.5
Sinuhe _{trans}	29.14	27.12	28.74	26.06	22.38	17.14	44.2
Moses _{trans}	24.32	22.75	23.84	21.22	19.62	13.59	1321.5

• BLEU scores for GigaFrEn data (fr-en, WMT09 test set):

- Sinuhe: **26.32**
- Moses: 26.98

Experiments with pruned phrase table

Last week results (by Esther Galbrun):

Europarl fr-en data	Sinuhe	Mosespruned	Moses
BLEU score	30.84	30.90	33.05
translation model size (gzipped)	42.6 MB	44.1 MB	1.1 GB
translation time	5 min	47 min	94 min

- For Sinuhe, using the full phrase table seems to help with morphologically rich languages, but not with Spanish to English
- The effects of pruning and regularization still not completely understood

Conclusions

- Sinuhe demonstrates feasibility of MT by ML:
 - Faster, smaller memory requirements
 - BLEU scores only slightly behind state-of-the-art
 - Better statistical foundations
- Marketing:
 - Sinuhe:
 - * http://www.cs.helsinki.fi/u/mtkaaria/sinuhe
 - Wikipedia demo:
 - * http://cosco-demo.hiit.fi/smart