

Large-Margin Structured Prediction via Linear Programming

Zhuoran Wang¹ John Shawe-Taylor¹ Sándor Szedmák²

¹Computer Science, University College London ²Electronics and Computer Science, University of Southampton

May 13, 2009

May 13, 2009

L1-Regularized Structured Prediction

< □ > < □ > < □ > < ≡ > < ≡ > < ≡ >
 Z. Wang, J. Shawe-Taylor, S. Szedmák, 1/29

Sac

• Each (multi-label) output contains multiple (micro-)labels

May 13, 2009 L1-Regularized Structured Prediction

(□) * (□) *

- Each (multi-label) output contains multiple (micro-)labels
- Micro-labels interacts each other

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 ▶ 亘 の Q ○ Z. Wang, J. Shawe-Taylor, S. Szedmák, 2/29

- Each (multi-label) output contains multiple (micro-)labels
- Micro-labels interacts each other
- Example: sequence labeling (HMM)

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 ▶ 亘 の Q ○ Z. Wang, J. Shawe-Taylor, S. Szedmák, 2/29

- Each (multi-label) output contains multiple (micro-)labels
- Micro-labels interacts each other
- Example: sequence labeling (HMM)

• More examples: parsing tree, bipartite matching, hierarchical classification, etc

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 2/29

• Predict multi-label $\mathbf{y} = y_1, y_2, \dots, y_l$ for an input object \mathbf{x} .

May 13, 2009 L1-Regularized Structured Prediction

(日) ◆ (10) \bullet (10)

Structured Prediction (Cont.)

- Predict multi-label $\mathbf{y} = y_1, y_2, \dots, y_l$ for an input object \mathbf{x} .
- Formally, given input and output space X and Y, learn a w-parameterized function f : X × Y → ℝ, such that the prediction ŷ ∈ Y for an arbitrary x ∈ X is derived by:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y}; \mathbf{w})$$

Structured Prediction (Cont.)

- Predict multi-label $\mathbf{y} = y_1, y_2, \dots, y_l$ for an input object \mathbf{x} .
- Formally, given input and output space X and Y, learn a w-parameterized function f : X × Y → ℝ, such that the prediction ŷ ∈ Y for an arbitrary x ∈ X is derived by:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y}; \mathbf{w})$$

• Assume f is from the linear family, and define the joint feature mapping $\Phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$. Then we have:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}^{\top} \Phi(\mathbf{x}, \mathbf{y})$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 3/29

Structured Prediction (Cont.)

- Predict multi-label $\mathbf{y} = y_1, y_2, \dots, y_l$ for an input object \mathbf{x} .
- Formally, given input and output space X and Y, learn a w-parameterized function f : X × Y → ℝ, such that the prediction ŷ ∈ Y for an arbitrary x ∈ X is derived by:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y}; \mathbf{w})$$

• Assume f is from the linear family, and define the joint feature mapping $\Phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$. Then we have:

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}^{\top} \Phi(\mathbf{x}, \mathbf{y})$$

• Seek the **w**-parameterized hyperplane separating the positive and negative training examples $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$ with large margin.

• Structured Perceptron [Collins, 2002]

May 13, 2009 L1-Regularized Structured Prediction

- Structured Perceptron [Collins, 2002]
- Margin Infused Relaxed Algorithm (MIRA) [Crammer et al., 2006]

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2 の Q ペ Z. Wang, J. Shawe-Taylor, S. Szedmák, 4/29

- Structured Perceptron [Collins, 2002]
- Margin Infused Relaxed Algorithm (MIRA) [Crammer et al., 2006]
- SVM-type Algorithms

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2 今 ○ ○ Z. Wang, J. Shawe-Taylor, S. Szedmák, 4/29

- Structured Perceptron [Collins, 2002]
- Margin Infused Relaxed Algorithm (MIRA) [Crammer et al., 2006]
- SVM-type Algorithms
 - Hidden Markov Support Vector Machines [Altun et al., 2003] and extensions [Tsochantaridis et al., 2005]

Z. Wang, J. Shawe-Taylor, S. Szedmák, 4/29

- Structured Perceptron [Collins, 2002]
- Margin Infused Relaxed Algorithm (MIRA) [Crammer et al., 2006]
- SVM-type Algorithms
 - Hidden Markov Support Vector Machines [Altun et al., 2003] and extensions [Tsochantaridis et al., 2005]
 - Max-Margin Markov Networks [Taskar et al., 2003]

May 13, 2009 L₁-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 4/29

- Structured Perceptron [Collins, 2002]
- Margin Infused Relaxed Algorithm (MIRA) [Crammer et al., 2006]
- SVM-type Algorithms
 - Hidden Markov Support Vector Machines [Altun et al., 2003] and extensions [Tsochantaridis et al., 2005]
 - Max-Margin Markov Networks [Taskar et al., 2003]
 - Combinatorial Models [Taskar et al., 2004,2005,2006]

May 13, 2009 L₁-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 4/29

• SVM-style formulation:

$$\begin{split} \max_{\mathbf{w},\gamma} & \gamma \\ \text{s.t.} & \mathbf{w}^{\top} \Delta \Phi(\mathbf{x}_i,\mathbf{y}_i,\mathbf{y}) \geq \gamma, \ \forall \mathbf{y} \neq \mathbf{y}_i, \ i = 1, \dots, m; \\ \|\mathbf{w}\|_2 = 1. \end{split}$$

May 13, 2009 L₁-Regularized Structured Prediction

(□) * (□) *

• SVM-style formulation:

$$\begin{split} \max_{\mathbf{w},\gamma} & \gamma \\ \text{s.t.} & \mathbf{w}^{\top} \Delta \Phi(\mathbf{x}_i,\mathbf{y}_i,\mathbf{y}) \geq \gamma, \ \forall \mathbf{y} \neq \mathbf{y}_i, \ i = 1, \dots, m; \\ \|\mathbf{w}\|_2 = 1. \end{split}$$

• Equivalent form:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w}\|_2^2 \\ \text{s.t.} & \mathbf{w}^\top \Delta \Phi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{y}) \geq 1, \ \forall \mathbf{y} \neq \mathbf{y}_i, \ i = 1, \dots, m. \end{split}$$

where $\Delta \Phi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{y}) = \Phi(\mathbf{x}_i, \mathbf{y}_i) - \Phi(\mathbf{x}_i, \mathbf{y}).$

May 13, 2009

L1-Regularized Structured Prediction

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2 の Q ペ Z. Wang, J. Shawe-Taylor, S. Szedmák, 5/29

• Soft margin:

$$\begin{split} \min_{\mathbf{w}, \boldsymbol{\xi}} & \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{i=1}^m \xi_i \\ \text{s.t.} & \mathbf{w}^\top \Delta \Phi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{y}) \geq 1 - \xi_i, \ \forall \mathbf{y} \neq \mathbf{y}_i, \ i = 1, \dots, m. \\ & \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 6/29

3

< ∃ >

Sac

$\stackrel{\blacktriangle}{=} L_1$ -Regularized Optimization

• Modifying SVM formulation with *L*₁-norm regularization:

$$\begin{split} \max_{\mathbf{w},\gamma} & \gamma \\ \text{s.t.} & \mathbf{w}^{\top} \Delta \Phi(\mathbf{x}_i,\mathbf{y}_i,\mathbf{y}) \geq \gamma, \ \forall \mathbf{y} \neq \mathbf{y}_i, \ i = 1, \dots, m; \\ \|\mathbf{w}\|_1 = 1; \ \mathbf{w} \geq \mathbf{0}. \end{split}$$

$\stackrel{\blacktriangle}{=} L_1$ -Regularized Optimization

• Modifying SVM formulation with L_1 -norm regularization:

$$\begin{array}{ll} \max_{\mathbf{w},\gamma} & \gamma \\ \text{s.t.} & \mathbf{w}^{\top} \Delta \Phi(\mathbf{x}_i,\mathbf{y}_i,\mathbf{y}) \geq \gamma, \ \forall \mathbf{y} \neq \mathbf{y}_i, \ i = 1, \dots, m; \\ \|\mathbf{w}\|_1 = 1; \ \mathbf{w} \geq \mathbf{0}. \end{array}$$

• Equivalent form:

$$\begin{split} \min_{\mathbf{w}} & \|\mathbf{w}\|_{1} \\ \text{s.t.} & \mathbf{w}^{\top} \Delta \Phi(\mathbf{x}_{i},\mathbf{y}_{i},\mathbf{y}) \geq 1, \ \forall \mathbf{y} \neq \mathbf{y}_{i}, \ i = 1, \dots, m; \\ & \mathbf{w} \geq \mathbf{0}. \end{split}$$

May 13, 2009 L1-Regularized Structured Prediction

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 ▶ 亘 の Q ○ Z. Wang, J. Shawe-Taylor, S. Szedmák, 7/29

$\stackrel{\blacktriangle}{\sqsubseteq}$ L₁-Regularized Optimization (Cont.)

• Soft margin:

$$\begin{split} \max_{\mathbf{w}, \boldsymbol{\xi}, \gamma} & \gamma - D \sum_{i=1}^{m} \xi_{i} \\ \text{s.t.} & \mathbf{w}^{\top} \Delta \Phi(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{y}) \geq \gamma - \xi_{i}, \ \forall \mathbf{y} \neq \mathbf{y}_{i}, \ i = 1, \dots, m; \\ \|\mathbf{w}\|_{1} = 1; \ \mathbf{w} \geq \mathbf{0}; \ \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

May 13, 2009 L1-Regularized Structured Prediction

$\stackrel{\blacktriangle}{\sqsubseteq} L_1$ -Regularized Optimization (Cont.)

• Soft margin:

$$\begin{split} \max_{\mathbf{w}, \boldsymbol{\xi}, \gamma} & \gamma - D \sum_{i=1}^{m} \xi_{i} \\ \text{s.t.} & \mathbf{w}^{\top} \Delta \Phi(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{y}) \geq \gamma - \xi_{i}, \ \forall \mathbf{y} \neq \mathbf{y}_{i}, \ i = 1, \dots, m; \\ \|\mathbf{w}\|_{1} = 1; \ \mathbf{w} \geq \mathbf{0}; \ \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

• Equivalent form:

$$\begin{split} \min_{\mathbf{w}, \boldsymbol{\xi}} & \|\mathbf{w}\|_1 + C \sum_{i=1}^m \xi_i \\ \text{s.t.} & \mathbf{w}^\top \Delta \Phi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{y}) \geq 1 - \xi_i, \ \forall \mathbf{y} \neq \mathbf{y}_i, \ i = 1, \dots, m; \\ & \mathbf{w} \geq \mathbf{0}; \ \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 8/29

3

< E >

Dac

$\stackrel{\blacktriangle}{\sqsubseteq}$ L₁-Regularized Optimization (Cont.)

• Soft margin:

$$\begin{split} \max_{\mathbf{w}, \boldsymbol{\xi}, \gamma} & \gamma - D \sum_{i=1}^{m} \xi_{i} \\ \text{s.t.} & \mathbf{w}^{\top} \Delta \Phi(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{y}) \geq \gamma - \xi_{i}, \ \forall \mathbf{y} \neq \mathbf{y}_{i}, \ i = 1, \dots, m; \\ \|\mathbf{w}\|_{1} = 1; \ \mathbf{w} \geq \mathbf{0}; \ \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

• Equivalent form:

$$\begin{split} \min_{\mathbf{w}, \boldsymbol{\xi}} & \|\mathbf{w}\|_1 + C \sum_{i=1}^m \xi_i \\ \text{s.t.} & \mathbf{w}^\top \Delta \Phi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{y}) \geq 1 - \xi_i, \ \forall \mathbf{y} \neq \mathbf{y}_i, \ i = 1, \dots, m; \\ & \mathbf{w} \geq \mathbf{0}; \ \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

• The latter is more convenient and efficient to handle in practical computations.

May 13, 2009 L1-Regularized Structured Prediction

▲ □ ▶ ▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 の Q (~ Z. Wang, J. Shawe-Taylor, S. Szedmák, 8/29

Algorithm 1: LP-based training with column generation input: $\{(\mathbf{x}_{i}, \mathbf{y}_{i})\}_{i=1}^{m}$ 1 $w \leftarrow 1, \boldsymbol{\xi} \leftarrow 0, \boldsymbol{H} \leftarrow (), \boldsymbol{M} \leftarrow ()$ 2 3 repeat 4 for $i \leftarrow 1$ to m 5 $\hat{\mathbf{y}} \leftarrow \arg \max_{\mathbf{y} \neq \mathbf{y}_i} \mathbf{w}^\top \phi(\mathbf{x}_i, \mathbf{y})$ 6 if $\mathbf{w}^{\top} \Delta \phi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{\hat{y}}) < 1 - \xi_i$ $h \leftarrow \Delta \phi(\mathbf{x}_i, \mathbf{v}_i, \hat{\mathbf{v}})^\top$ 7 $\mathbf{H} \leftarrow \begin{pmatrix} \mathbf{H} \\ h \end{pmatrix}, \mathbf{M} \leftarrow \begin{pmatrix} \mathbf{M} \\ \delta_i^* \end{pmatrix}$ 8 9 end if 10 end for $\begin{array}{rl} \min & \mathbf{1}^\top \mathbf{w} + C \mathbf{1}^\top \boldsymbol{\xi} \\ (\mathbf{w}, \boldsymbol{\xi}) \leftarrow & \text{s.t.} & \mathbf{H} \mathbf{w} \geq \mathbf{1} - \mathbf{M} \boldsymbol{\xi}; \end{array}$ 11 w > 0: $\varepsilon > 0$. 12 until convergence

13 return w

* δ_i denotes the row vector with the *i*th component 1 and all the others 0.

May 13, 2009

L1-Regularized Structured Prediction

◄ □ ▷ < </p>
 ▲ □ ▷ < </p>
 ■ ▷ < </p>
 ■ ▷ < </p>
 ♦ ○

 Z. Wang, J. Shawe-Taylor, S. Szedmák, 9/29

Let Q ⊂ ℝ^m and S ⊂ ℝⁿ be two subsets of Euclidean space, and π(u, v) be a real valued function, where u ∈ Q and v ∈ S. We assume that:

Z. Wang, J. Shawe-Taylor, S. Szedmák, 10/29

Dac

- Let Q ⊂ ℝ^m and S ⊂ ℝⁿ be two subsets of Euclidean space, and π(u, v) be a real valued function, where u ∈ Q and v ∈ S. We assume that:
 - $\bullet \ \mathcal{Q} \mbox{ and } \mathcal{S} \mbox{ are closed and convex.}$

Z. Wang, J. Shawe-Taylor, S. Szedmák, 10/29

Dac

- Let Q ⊂ ℝ^m and S ⊂ ℝⁿ be two subsets of Euclidean space, and π(u, v) be a real valued function, where u ∈ Q and v ∈ S. We assume that:
 - $\bullet \ \mathcal{Q} \mbox{ and } \mathcal{S} \mbox{ are closed and convex.}$
 - $\pi(\mathbf{u}, \mathbf{v})$ is convex on \mathbf{u} and concave on \mathbf{v} , differentiable and its partial derivatives satisfy the Lipschitz condition on $\mathcal{Q} \times \mathcal{S}$, i.e. there exists a constant $K \geq 0$ such that:

$$\begin{aligned} \|\pi_{\mathbf{u}}(\mathbf{u},\mathbf{v}) - \pi_{\mathbf{u}}(\mathbf{u}',\mathbf{v}')\|_{2} &\leq & \mathcal{K}(\|\mathbf{u}-\mathbf{u}'\|_{2}^{2} + \|\mathbf{v}-\mathbf{v}'\|_{2}^{2})^{1/2} \\ \|\pi_{\mathbf{v}}(\mathbf{u},\mathbf{v}) - \pi_{\mathbf{v}}(\mathbf{u}',\mathbf{v}')\|_{2} &\leq & \mathcal{K}(\|\mathbf{u}-\mathbf{u}'\|_{2}^{2} + \|\mathbf{v}-\mathbf{v}'\|_{2}^{2})^{1/2} \end{aligned}$$

Z. Wang, J. Shawe-Taylor, S. Szedmák, 10/29

- Let Q ⊂ ℝ^m and S ⊂ ℝⁿ be two subsets of Euclidean space, and π(u, v) be a real valued function, where u ∈ Q and v ∈ S. We assume that:
 - $\bullet \ \mathcal{Q} \mbox{ and } \mathcal{S} \mbox{ are closed and convex.}$
 - $\pi(\mathbf{u}, \mathbf{v})$ is convex on \mathbf{u} and concave on \mathbf{v} , differentiable and its partial derivatives satisfy the Lipschitz condition on $\mathcal{Q} \times \mathcal{S}$, i.e. there exists a constant $K \geq 0$ such that:

$$\begin{aligned} \|\pi_{\mathbf{u}}(\mathbf{u},\mathbf{v}) - \pi_{\mathbf{u}}(\mathbf{u}',\mathbf{v}')\|_{2} &\leq & \mathcal{K}(\|\mathbf{u}-\mathbf{u}'\|_{2}^{2} + \|\mathbf{v}-\mathbf{v}'\|_{2}^{2})^{1/2} \\ \|\pi_{\mathbf{v}}(\mathbf{u},\mathbf{v}) - \pi_{\mathbf{v}}(\mathbf{u}',\mathbf{v}')\|_{2} &\leq & \mathcal{K}(\|\mathbf{u}-\mathbf{u}'\|_{2}^{2} + \|\mathbf{v}-\mathbf{v}'\|_{2}^{2})^{1/2} \end{aligned}$$

• The set of saddle points $\mathcal{U}^* \times \mathcal{V}^*$ of $\pi(\mathbf{u}, \mathbf{v})$ on $\mathcal{Q} \times \mathcal{S}$ is nonempty.

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 10/29

Extragradient Method (Cont.)

 The extragradient method finds saddle points of π(u, v) by the following update rules:

$$\begin{aligned} \bar{\mathbf{u}}^{t} &= P_{\mathcal{Q}}(\mathbf{u}^{t} - \alpha \pi_{\mathbf{u}}(\mathbf{u}^{t}, \mathbf{v}^{t})) \end{aligned} \tag{1} \\ \bar{\mathbf{v}}^{t} &= P_{\mathcal{S}}(\mathbf{v}^{t} + \alpha \pi_{\mathbf{v}}(\mathbf{u}^{t}, \mathbf{v}^{t})) \\ \mathbf{u}^{t+1} &= P_{\mathcal{Q}}(\mathbf{u}^{t} - \alpha \pi_{\mathbf{u}}(\bar{\mathbf{u}}^{t}, \bar{\mathbf{v}}^{t})) \\ \mathbf{v}^{t+1} &= P_{\mathcal{S}}(\mathbf{v}^{t} + \alpha \pi_{\mathbf{v}}(\bar{\mathbf{u}}^{t}, \bar{\mathbf{v}}^{t})) \end{aligned}$$

where $\alpha \ge 0$, and P_Q and P_S are operators projecting their argument onto the corresponding sets.

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 11/29

200

Extragradient Method (Cont.)

 The extragradient method finds saddle points of π(u, v) by the following update rules:

$$\begin{aligned} \bar{\mathbf{u}}^{t} &= P_{\mathcal{Q}}(\mathbf{u}^{t} - \alpha \pi_{\mathbf{u}}(\mathbf{u}^{t}, \mathbf{v}^{t})) \end{aligned} (1) \\ \bar{\mathbf{v}}^{t} &= P_{\mathcal{S}}(\mathbf{v}^{t} + \alpha \pi_{\mathbf{v}}(\mathbf{u}^{t}, \mathbf{v}^{t})) \\ \mathbf{u}^{t+1} &= P_{\mathcal{Q}}(\mathbf{u}^{t} - \alpha \pi_{\mathbf{u}}(\bar{\mathbf{u}}^{t}, \bar{\mathbf{v}}^{t})) \\ \mathbf{v}^{t+1} &= P_{\mathcal{S}}(\mathbf{v}^{t} + \alpha \pi_{\mathbf{v}}(\bar{\mathbf{u}}^{t}, \bar{\mathbf{v}}^{t})) \end{aligned}$$

where $\alpha \geq$ 0, and $P_{\mathcal{Q}}$ and $P_{\mathcal{S}}$ are operators projecting their argument onto the corresponding sets.

• Theorem 1.[Korpelevich, 1976] If assumptions hold and in addition $0 \le \alpha \le \frac{1}{K}$, then there exits a saddle point $(\mathbf{u}^*, \mathbf{v}^*) \in \mathcal{U}^* \times \mathcal{V}^*$ such that $(\mathbf{u}^t, \mathbf{v}^t) \to (\mathbf{u}^*, \mathbf{v}^*)$ when $t \to \infty$.

May 13, 2009 L1-Regularized Structured Prediction

▲ □ ▶ ▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ ④ 三 ⑦
Z. Wang, J. Shawe-Taylor, S. Szedmák, 11/29

200

• LP in standard form:

May 13, 2009 L1-Regularized Structured Prediction

《□ ▷ 《□ ▷ 《□ ▷ 《 臣 ▷ 臣 ⑦ Q ○ Z. Wang, J. Shawe-Taylor, S. Szedmák, 12/29

• LP in standard form:

$$\begin{array}{ll} \mbox{Primal:} & \mbox{Dual:} \\ \mbox{min} & \mbox{c^{\top}w$} & \mbox{max} & \mbox{$b^{\top}u} \\ \mbox{s.t.} & \mbox{Hw} \geq \mbox{b; $w \geq 0$.} & \mbox{s.t.} & \mbox{H^{\top}u \geq c; $u \geq 0$.} \end{array}$$

• Solve LP by finding the saddle point of its Lagrange function: $\label{eq:logithtargenergy} \min_{w \geq 0} \max_{u \geq 0} \mathcal{L}(w,u) = \mathbf{c}^\top \mathbf{w} + \mathbf{b}^\top \mathbf{u} - \mathbf{u}^\top \mathbf{H} \mathbf{w}$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 12/29

Dac

• LP in standard form:

$$\begin{array}{ll} \mbox{Primal:} & \mbox{Dual:} \\ \mbox{min} & \mbox{c^{\top}w$} & \mbox{max} & \mbox{$b^{\top}u} \\ \mbox{s.t.} & \mbox{Hw} \geq \mbox{b; $w \geq 0$.} & \mbox{s.t.} & \mbox{H^{\top}u \geq c; $u \geq 0$.} \end{array}$$

• Solve LP by finding the saddle point of its Lagrange function: $\label{eq:loss_loss} \min_{w \geq 0} \max_{u \geq 0} \mathcal{L}(w,u) = \mathbf{c}^\top \mathbf{w} + \mathbf{b}^\top \mathbf{u} - \mathbf{u}^\top \mathbf{H} \mathbf{w}$

• Update rules:

$$\mathbf{\bar{w}}^{k} = P_{\mathbf{w} \ge \mathbf{0}}(\mathbf{w}^{k} - \alpha(\mathbf{c} - \mathbf{H}^{\top}\mathbf{u}^{k}))$$
$$\mathbf{\bar{u}}^{k} = P_{\mathbf{u} \ge \mathbf{0}}(\mathbf{u}^{k} + \alpha(\mathbf{b} - \mathbf{H}\mathbf{w}^{k}))$$
$$\mathbf{w}^{k} = P_{\mathbf{w} \ge \mathbf{0}}(\mathbf{w}^{k} - \alpha(\mathbf{c} - \mathbf{H}^{\top}\mathbf{\bar{u}}^{k}))$$
$$\mathbf{u}^{k} = P_{\mathbf{u} \ge \mathbf{0}}(\mathbf{u}^{k} + \alpha(\mathbf{b} - \mathbf{H}\mathbf{\bar{w}}^{k}))$$

where step size $0 < \alpha < \|2\mathbf{H}\|_{F}^{-\frac{1}{2}}$.

May 13, 2009

L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 12/29

Dac

• LP in standard form:

$$\begin{array}{ll} \mbox{Primal:} & \mbox{Dual:} \\ \mbox{min} & \mbox{c^{\top}w$} & \mbox{max} & \mbox{$b^{\top}u} \\ \mbox{s.t.} & \mbox{Hw} \geq \mbox{b; $w \geq 0$.} & \mbox{s.t.} & \mbox{H^{\top}u \geq c; $u \geq 0$.} \end{array}$$

• Solve LP by finding the saddle point of its Lagrange function: $\label{eq:loss_loss} \min_{w \geq 0} \max_{u \geq 0} \mathcal{L}(w,u) = \mathbf{c}^\top \mathbf{w} + \mathbf{b}^\top \mathbf{u} - \mathbf{u}^\top \mathbf{H} \mathbf{w}$

• Update rules:

$$\begin{split} \bar{\mathbf{w}}^k &= P_{\mathbf{w} \ge \mathbf{0}}(\mathbf{w}^k - \alpha(\mathbf{c} - \mathbf{H}^\top \mathbf{u}^k))\\ \bar{\mathbf{u}}^k &= P_{\mathbf{u} \ge \mathbf{0}}(\mathbf{u}^k + \alpha(\mathbf{b} - \mathbf{H}\mathbf{w}^k))\\ \mathbf{w}^k &= P_{\mathbf{w} \ge \mathbf{0}}(\mathbf{w}^k - \alpha(\mathbf{c} - \mathbf{H}^\top \bar{\mathbf{u}}^k))\\ \mathbf{u}^k &= P_{\mathbf{u} \ge \mathbf{0}}(\mathbf{u}^k + \alpha(\mathbf{b} - \mathbf{H}\bar{\mathbf{w}}^k)) \end{split}$$

where step size $0 < \alpha < \|2\mathbf{H}\|_{F}^{-\frac{1}{2}}$.

• Converge geometrically.

May 13, 2009

L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 12/29

Sac

Extragradient Method for LP (Cont.)

• Apply to our problem, the Lagrange function is:

$$\begin{split} \min_{\mathbf{u}=(\mathbf{w},\boldsymbol{\xi})} \max_{\mathbf{v}=\boldsymbol{\lambda}} & \pi(\mathbf{u},\mathbf{v}) = \mathbf{1}^{\top}\mathbf{w} + C\mathbf{1}^{\top}\boldsymbol{\xi} + \boldsymbol{\lambda}^{\top}\mathbf{1} - \boldsymbol{\lambda}^{\top}\mathsf{M}\boldsymbol{\xi} - \boldsymbol{\lambda}^{\top}\mathsf{H}\mathbf{w} \\ \text{s.t.} & \mathcal{Q} = \{\mathbf{u} = (\mathbf{w},\boldsymbol{\xi}) | \mathbf{w} \geq \mathbf{0}, \boldsymbol{\xi} \geq \mathbf{0}\}; \\ & \mathcal{S} = \{\mathbf{v} = \boldsymbol{\lambda} | \boldsymbol{\lambda} \geq \mathbf{0}\}. \end{split}$$

SQR

Extragradient Method for LP (Cont.)

• Apply to our problem, the Lagrange function is:

$$\begin{split} \min_{\mathbf{u}=(\mathbf{w},\boldsymbol{\xi})} \max_{\mathbf{v}=\boldsymbol{\lambda}} & \pi(\mathbf{u},\mathbf{v}) = \mathbf{1}^{\top}\mathbf{w} + C\mathbf{1}^{\top}\boldsymbol{\xi} + \boldsymbol{\lambda}^{\top}\mathbf{1} - \boldsymbol{\lambda}^{\top}\mathsf{M}\boldsymbol{\xi} - \boldsymbol{\lambda}^{\top}\mathsf{H}\mathbf{w} \\ \text{s.t.} & \mathcal{Q} = \{\mathbf{u} = (\mathbf{w},\boldsymbol{\xi}) | \mathbf{w} \geq \mathbf{0}, \boldsymbol{\xi} \geq \mathbf{0}\}; \\ & \mathcal{S} = \{\mathbf{v} = \boldsymbol{\lambda} | \boldsymbol{\lambda} \geq \mathbf{0}\}. \end{split}$$

• The corresponding update rules are:

$$\begin{split} \bar{\mathbf{w}}^t &= P_{\mathbf{w} \ge \mathbf{0}} (\mathbf{w}^t - \alpha (\mathbf{1} - \mathbf{H}^\top \lambda^t)) \\ \bar{\boldsymbol{\xi}}^t &= P_{\boldsymbol{\xi} \ge \mathbf{0}} (\boldsymbol{\xi}^t - \alpha (C\mathbf{1} - \mathbf{M}^\top \lambda^t)) \\ \bar{\boldsymbol{\lambda}}^t &= P_{\boldsymbol{\lambda} \ge \mathbf{0}} (\boldsymbol{\lambda}^t + \alpha (\mathbf{1} - \mathbf{M} \boldsymbol{\xi}^t - \mathbf{H} \mathbf{w}^t)) \\ \mathbf{w}^{t+1} &= P_{\mathbf{w} \ge \mathbf{0}} (\mathbf{w}^t - \alpha (\mathbf{1} - \mathbf{H}^\top \bar{\boldsymbol{\lambda}}^t)) \\ \boldsymbol{\xi}^{t+1} &= P_{\boldsymbol{\xi} \ge \mathbf{0}} (\boldsymbol{\xi}^t - \alpha (C\mathbf{1} - \mathbf{M}^\top \bar{\boldsymbol{\lambda}}^t)) \\ \boldsymbol{\lambda}^{t+1} &= P_{\boldsymbol{\lambda} \ge \mathbf{0}} (\boldsymbol{\lambda}^t + \alpha (\mathbf{1} - \mathbf{M} \bar{\boldsymbol{\xi}}^t - \mathbf{H} \bar{\mathbf{w}}^t)) \end{split}$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 13/29

SQR
Extragradient Method with CG

Algorithm 2: Extragradient method with column generation 1 tolerances: ϵ_1, ϵ_2 $\mathbf{w}^0 \leftarrow \mathbf{w}, \, \boldsymbol{\xi}^0 \leftarrow \boldsymbol{\xi}, \, \boldsymbol{\lambda}^0 \leftarrow \boldsymbol{\lambda}$ 2 3 for $i \leftarrow 1$ to m if $\mathbf{w}^{\top} \Delta \phi(\mathbf{x}_i, \mathbf{v}_i, \mathbf{\hat{v}}) < 1 - \varepsilon_i$ 4 $\xi_i^0 \leftarrow (1 - \mathbf{w}^\top \Delta \phi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{\hat{y}}))$ 5 $\boldsymbol{\lambda}^0 \leftarrow \left(egin{array}{c} \boldsymbol{\lambda}^0 \\ 0 \end{array}
ight)$ 6 7 end if 8 end for iteratively update from $((\mathbf{w}^0, \boldsymbol{\xi}^0), \boldsymbol{\lambda}^0)$ 9 until $\frac{\|(\mathbf{w}^{t}, \boldsymbol{\xi}^{t}) - (\mathbf{w}^{t-1}, \boldsymbol{\xi}^{t-1})\|_{2}}{\|(\mathbf{w}^{t}, \boldsymbol{\xi}^{t})\|_{2}} < \epsilon_{1} \&\& \frac{\|\lambda^{t} - \lambda^{t-1}\|_{2}}{\|\lambda^{t}\|_{2}} < \epsilon_{1}$ 10 && $0 < \|\mathbf{w}^t\|_1 + C \|\mathbf{\xi}^t\|_1 - \|\mathbf{\lambda}^t\|_1 < \epsilon_2$ $\mathbf{w} \leftarrow \mathbf{w}^t$. $\boldsymbol{\xi} \leftarrow \boldsymbol{\xi}^t$. $\boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda}^t$ 11

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 14/29

• Visualizations of the extragradient method and the CG process:

• Task: part-of-speech tagging

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29

 \exists

Dac

- Task: part-of-speech tagging
- Features: first-order HMM features

Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29

Dac

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:

Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:
 - 6700 manually tagged sentences from MEDLINE

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:
 - 6700 manually tagged sentences from MEDLINE
 - 5700 for training

May 13, 2009 L₁-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:
 - 6700 manually tagged sentences from MEDLINE
 - 5700 for training
 - 1000 for test

May 13, 2009 L₁-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:
 - 6700 manually tagged sentences from MEDLINE
 - 5700 for training
 - 1000 for test
 - 5 splits

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:
 - 6700 manually tagged sentences from MEDLINE
 - 5700 for training
 - 1000 for test
 - 5 splits
- \bullet Implementation: C/C++

Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:
 - 6700 manually tagged sentences from MEDLINE
 - 5700 for training
 - 1000 for test
 - 5 splits
- \bullet Implementation: C/C++
- Computing Environment:

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:
 - 6700 manually tagged sentences from MEDLINE
 - 5700 for training
 - 1000 for test
 - 5 splits
- \bullet Implementation: C/C++
- Computing Environment:
 - 8×3.00 GHz Intel(R) Xeon(R) CPU

Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29

- Task: part-of-speech tagging
- Features: first-order HMM features
- Corpus:
 - 6700 manually tagged sentences from MEDLINE
 - 5700 for training
 - 1000 for test
 - 5 splits
- \bullet Implementation: C/C++
- Computing Environment:
 - 8×3.00GHz Intel(R) Xeon(R) CPU
 - 32GB RAM

Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29

Experimental Results 1 (Cont.) UCL

Model	Err _{all}	Err _{voc}	# CPU Sec.	# Iteration	
HMM	20.02±0.29	14.44±0.19	_	_	
MIRA	$4.91{\pm}0.06$	$1.96{\pm}0.12$	9084	46	
Perceptron	$5.38{\pm}0.19$	$2.10{\pm}0.07$	26	100	
LP-Simplex	$4.94{\pm}0.18$	$1.96{\pm}0.14$	3879	23	
LP-Xgrad	$4.92{\pm}0.13$	$1.98{\pm}0.12$	856	14	
CRF	$4.58{\pm}0.14$	$1.81{\pm}0.19$	51403	205	

May 13, 2009 L1-Regularized Structured Prediction

三 900 Z. Wang, J. Shawe-Taylor, S. Szedmák, 17/29

 $\leftarrow \equiv \rightarrow$

• Dual-Simplex vs. Extragradient

• More complex situations:

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 19/29

 \exists

- More complex situations:
 - Many possible translations exist for a given source sentence

Z. Wang, J. Shawe-Taylor, S. Szedmák, 19/29

- More complex situations:
 - Many possible translations exist for a given source sentence
 - Many paths in a word lattice may lead to a same translation

- More complex situations:
 - Many possible translations exist for a given source sentence
 - Many paths in a word lattice may lead to a same translation
 - Correct translation may not be achieved by decoder

Z. Wang, J. Shawe-Taylor, S. Szedmák, 19/29

- More complex situations:
 - Many possible translations exist for a given source sentence
 - Many paths in a word lattice may lead to a same translation
 - Correct translation may not be achieved by decoder
- Possible solutions:

May 13, 2009 L₁-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 19/29

Sar

- More complex situations:
 - Many possible translations exist for a given source sentence
 - Many paths in a word lattice may lead to a same translation
 - Correct translation may not be achieved by decoder
- Possible solutions:
 - Taking each path y as a potential multi-label output, but not the final translation **y**

Sar

- More complex situations:
 - Many possible translations exist for a given source sentence
 - Many paths in a word lattice may lead to a same translation
 - Correct translation may not be achieved by decoder
- Possible solutions:
 - Taking each path y as a potential multi-label output, but not the final translation **y**
 - Using pseudo-references (with inner alignment structures) as positive examples

Z. Wang, J. Shawe-Taylor, S. Szedmák, 19/29

More General Formulations

• Separating negative examples from closest positive examples (I):

$$\begin{split} \min_{\mathbf{w}, \boldsymbol{\xi}} & \|\mathbf{w}\|_1 + C \sum_{i=1}^m \xi_i \\ \text{s.t.} & \mathbf{w}^\top \Delta \Phi(\mathbf{x}_i, \arg\min_{y \in Y_i} \vartheta(y, \bar{y}), \bar{y}) \geq 1 - \xi_i, \\ & \forall \bar{y} \in \overline{Y}_i, \ i = 1, \dots, m; \\ & \mathbf{w} \geq \mathbf{0}; \ \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 20/29

< 3 > 3

More General Formulations

• Separating negative examples from closest positive examples (I):

$$\begin{split} \min_{\mathbf{w}, \boldsymbol{\xi}} & \|\mathbf{w}\|_1 + C \sum_{i=1}^m \xi_i \\ \text{s.t.} & \mathbf{w}^\top \Delta \Phi(\mathbf{x}_i, \arg\min_{y \in Y_i} \vartheta(y, \bar{y}), \bar{y}) \geq 1 - \xi_i, \\ & \forall \bar{y} \in \overline{Y}_i, \ i = 1, \dots, m; \\ & \mathbf{w} \geq \mathbf{0}; \ \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

• Separating all negative examples from all positive examples (II):

$$\begin{split} \min_{\mathbf{w}, \boldsymbol{\xi}} & \|\mathbf{w}\|_1 + C \sum_{i=1}^m \xi_i \\ \text{s.t.} & \mathbf{w}^\top \Delta \Phi(\mathbf{x}_i, y, \bar{y}) \geq 1 - \xi_i, \ \forall y \in Y_i \forall \bar{y} \in \overline{Y}_i \ i = 1, \dots, m; \\ & \mathbf{w} \geq \mathbf{0}; \ \boldsymbol{\xi} \geq \mathbf{0}. \end{split}$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 20/29

• Task: purely-discriminative training for SMT

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 21/29

 \exists

- Task: purely-discriminative training for SMT
- Corpus: Canada Hansard Senate Debates corpus

Z. Wang, J. Shawe-Taylor, S. Szedmák, 21/29

- Task: purely-discriminative training for SMT
- Corpus: Canada Hansard Senate Debates corpus
- Baseline system: Moses

Z. Wang, J. Shawe-Taylor, S. Szedmák, 21/29

- Task: purely-discriminative training for SMT
- Corpus: Canada Hansard Senate Debates corpus
- Baseline system: Moses
- Features:

Blanket Features			Discriminative Features		
distortion log-prob.	1		phrase distortions	213,191	
-orientation-based		$\times 3$	-orientation-based		$\times 3$
-forward-backward		$\times 2$	-forward-backward		$\times 2$
translation log-prob.	1		phrase translations	213,191	
-bidirectional		$\times 2$	-bidirectional		$\times 2$
lexicon weight	1		LM uni-grams	78,400	
-bidirectional		$\times 2$	 backoff weights 	78,400	
tri-gram LM log-prob.	1		LM bi-grams	1,544,378	
word penalty	1		 backoff weights 	1,544,378	
phrase penalty	1		LM tri-grams	1,593,959	
distortion distance	1				
Total:		14	Total:	7,925,81	1

Z. Wang, J. Shawe-Taylor, S. Szedmák, 21/29

- Pseudo-reference extraction:
 - Decode top 10,000-best lists
 - Keep all paths yielding translations
 - Filter out those with bad inner alignments (open questions)
 - Artificial rules
 - Statistically significant tests

• Results with all features

	LP (I)	LP (II)	Baseline
BLEU (%)	32.53	32.30	31.69
NIST	8.06	8.19	7.94

• Effects of different features

LP (I): Blanket +	DLM	DTM	DLM+DTM	DD+DLM+DTM
BLEU (%)	33.00	31.55	32.79	32.53
NIST	8.12	7.89	8.15	8.06
LP (II): Blanket +	DLM	DTM	DLM+DTM	DD+DLM+DTM
BLEU (%)	33.80	31.47	32.87	32.30
NIST	8.11	7.80	7.98	8.19

May 13, 2009 L1-Regularized Structured Prediction

《□ 》 《 伊 》 《 三 》 《 三 》 差 の Q ペ Z. Wang, J. Shawe-Taylor, S. Szedmák, 23/29

Approximate Large-Margin Separation

• L₂-regularization vs. L₁-regularization:

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 24/29

• Proposition 1.

May 13, 2009 L1-Regularized Structured Prediction

 $\rightarrow \rightarrow \equiv \rightarrow$ 3 996 Z. Wang, J. Shawe-Taylor, S. Szedmák, 25/29

- Proposition 1.
 - Suppose **w** parameterizes the supporting hyperplane for the data set *S*. Then **w** parameterizes the optimal separating hyperplane for the labeled data set, $\{((\mathbf{x}_i, \mathbf{y}_i, \hat{\mathbf{y}}, 1)|\hat{\mathbf{y}} \neq \mathbf{y}_i\}_{i=1}^m \cup \{((\mathbf{x}_i, \hat{\mathbf{y}}, \mathbf{y}_i), -1)|\hat{\mathbf{y}} \neq \mathbf{y}_i\}_{i=1}^m.$

Generalization Bound Analysis

- Proposition 1.
 - Suppose **w** parameterizes the supporting hyperplane for the data set *S*. Then **w** parameterizes the optimal separating hyperplane for the labeled data set, $\{((\mathbf{x}_i, \mathbf{y}_i, \hat{\mathbf{y}}, 1) | \hat{\mathbf{y}} \neq \mathbf{y}_i\}_{i=1}^m \cup \{((\mathbf{x}_i, \hat{\mathbf{y}}, \mathbf{y}_i), -1) | \hat{\mathbf{y}} \neq \mathbf{y}_i\}_{i=1}^m$.
 - Suppose w parameterizes the optimal separating hyperplane passing through the origin for a labeled data set, $\{((\mathbf{x}_i, \mathbf{y}, \hat{\mathbf{y}}), z_i) | z_i \in \{-1, +1\}, i = 1, \dots, m\}$, aligned such that $\mathbf{y} = \mathbf{y}_i, \hat{\mathbf{y}} \neq \mathbf{y}_i$ for $z_i = 1$, and $\mathbf{y} \neq \mathbf{y}_i, \hat{\mathbf{y}} = \mathbf{y}_i$ for $z_i = -1$. Then w parameterizes the supporting hyperplane for the unlabeled data set, $\{(\mathbf{x}_i, \mathbf{y}_i, \hat{\mathbf{y}}) | \hat{\mathbf{y}} \neq \mathbf{y}_i\}_{i=1}^m$.

Generalization Bound Analysis

- Proposition 1.
 - Suppose w parameterizes the supporting hyperplane for the data set S. Then w parameterizes the optimal separating hyperplane for the labeled data set, {((x_i, y_i, ŷ, 1)|ŷ ≠ y_i}^m_{i=1} ∪ {((x_i, ŷ, y_i), -1)|ŷ ≠ y_i}^m_{i=1}.
 - Suppose w parameterizes the optimal separating hyperplane passing through the origin for a labeled data set, $\{((\mathbf{x}_i, \mathbf{y}, \hat{\mathbf{y}}), z_i) | z_i \in \{-1, +1\}, i = 1, \dots, m\}$, aligned such that $\mathbf{y} = \mathbf{y}_i, \hat{\mathbf{y}} \neq \mathbf{y}_i$ for $z_i = 1$, and $\mathbf{y} \neq \mathbf{y}_i, \hat{\mathbf{y}} = \mathbf{y}_i$ for $z_i = -1$. Then w parameterizes the supporting hyperplane for the unlabeled data set, $\{(\mathbf{x}_i, \mathbf{y}_i, \hat{\mathbf{y}}) | \hat{\mathbf{y}} \neq \mathbf{y}_i\}_{i=1}^m$.
- Definition 1. Define the auxiliary inner product space:

$$L(X) = \left\{ f \in \mathbb{R}^X : \operatorname{supp}(f) \text{ is countable and } \sum_{\mathsf{z} \in \operatorname{supp}(f)} f(\mathsf{z})^2 < \infty \right\},$$

in which the inner product is given by $\langle f, g \rangle = \sum_{z \in \text{supp}(f)} f(z)g(z)$.

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 25/29

Generalization Bound Analysis (Cont.)

• Embed our input spaceinto space $X \times L(X)$ using the mapping $\tau : (\mathbf{x}, \mathbf{y}, \hat{\mathbf{y}}) \mapsto ((\mathbf{x}, \mathbf{y}), \frac{1}{C} \delta_{\hat{\mathbf{x}}})$ where C > 0 is a constant, and $\delta_{\hat{\mathbf{x}}} \in L(X)$ is defined to be:

$$\delta_{\hat{\mathbf{x}}}(\mathbf{x}, \mathbf{y}, \hat{\mathbf{y}}) = \begin{cases} 1 & \text{if } \mathbf{x} = \hat{\mathbf{x}}; \\ 0 & \text{otherwise.} \end{cases}$$

ヨト・モヨト
• Embed our input spaceinto space $X \times L(X)$ using the mapping $\tau : (\mathbf{x}, \mathbf{y}, \hat{\mathbf{y}}) \mapsto ((\mathbf{x}, \mathbf{y}), \frac{1}{C} \delta_{\hat{\mathbf{x}}})$ where C > 0 is a constant, and $\delta_{\hat{\mathbf{x}}} \in L(X)$ is defined to be:

$$\delta_{\hat{\mathbf{x}}}(\mathbf{x}, \mathbf{y}, \hat{\mathbf{y}}) = \begin{cases} 1 & \text{if } \mathbf{x} = \hat{\mathbf{x}}; \\ 0 & \text{otherwise.} \end{cases}$$

• For a function $(f,g) \in \mathcal{F} \times L(X)$, define its action on $\tau(\mathbf{x}, \mathbf{y}, \hat{\mathbf{y}}) \in X \times L(X)$ as:

$$(f,g)(\tau(\mathbf{x},\mathbf{y},\hat{\mathbf{y}})) = f(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) + \frac{1}{C}\langle g,\delta_{\mathbf{x}}\rangle.$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 26/29

• Embed our input spaceinto space $X \times L(X)$ using the mapping $\tau : (\mathbf{x}, \mathbf{y}, \hat{\mathbf{y}}) \mapsto ((\mathbf{x}, \mathbf{y}), \frac{1}{C} \delta_{\hat{\mathbf{x}}})$ where C > 0 is a constant, and $\delta_{\hat{\mathbf{x}}} \in L(X)$ is defined to be:

$$\delta_{\hat{\mathbf{x}}}(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) = \begin{cases} 1 & \text{if } \mathbf{x} = \hat{\mathbf{x}}; \\ 0 & \text{otherwise.} \end{cases}$$

• For a function $(f,g) \in \mathcal{F} \times L(X)$, define its action on $\tau(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) \in X \times L(X)$ as:

$$(f,g)(\tau(\mathbf{x},\mathbf{y},\hat{\mathbf{y}})) = f(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) + \frac{1}{C}\langle g,\delta_{\mathbf{x}}\rangle.$$

 For a fixed margin γ, the slack variables ξ_i in our LP problems can be derived from ξ_i = max(0, γ − inf_{ŷ≠y_i} f(x_i, y_i, ŷ)).

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 26/29

• Embed our input spaceinto space $X \times L(X)$ using the mapping $\tau : (\mathbf{x}, \mathbf{y}, \hat{\mathbf{y}}) \mapsto ((\mathbf{x}, \mathbf{y}), \frac{1}{C}\delta_{\hat{\mathbf{x}}})$ where C > 0 is a constant, and $\delta_{\hat{\mathbf{x}}} \in L(X)$ is defined to be:

$$\delta_{\hat{\mathbf{x}}}(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) = \begin{cases} 1 & \text{if } \mathbf{x} = \hat{\mathbf{x}}; \\ 0 & \text{otherwise.} \end{cases}$$

• For a function $(f,g) \in \mathcal{F} \times L(X)$, define its action on $\tau(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) \in X \times L(X)$ as:

$$(f,g)(\tau(\mathbf{x},\mathbf{y},\hat{\mathbf{y}})) = f(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) + \frac{1}{C}\langle g,\delta_{\mathbf{x}}\rangle.$$

- For a fixed margin γ, the slack variables ξ_i in our LP problems can be derived from ξ_i = max(0, γ − inf_{ŷ≠y_i} f(x_i, y_i, ŷ)).
- Define $g_f = g(S, f, \gamma) \in L(\hat{X})$ to be $g_f = C \sum_{i=1}^m \xi_i \delta_{x_i}$. It easy to check:

$$(f,g)(\tau(\mathbf{x},\mathbf{y},\hat{\mathbf{y}})) = \begin{cases} f(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) + \xi_{\mathbf{x}} \ge \gamma & \forall (\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) \in S; \\ f(\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) & \forall (\mathbf{x},\mathbf{y},\hat{\mathbf{y}}) \notin S. \end{cases}$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 26/29

• Theorem 2. [Cristianini and Shawe-Taylor, 2000] Consider thresholding a real-valued function space \mathcal{F} and fixed $\gamma \in \mathbb{R}^+$. For any probability distribution \mathcal{D} on X, with probability $1 - \eta$ over the training set S, any function $f \in \mathcal{F}$ for which $(f, g_f) \in \mathcal{G} = \mathcal{F} \times L(X)$ has generalization error no more than

$$\operatorname{err}_{\mathcal{D}}(f) \leq \varepsilon(|\mathcal{S}|, \mathcal{F}, \eta, \gamma) = \frac{2}{|\mathcal{S}|} \left(\log_2 \mathcal{N}(\mathcal{G}, 2|\mathcal{S}|, \frac{\gamma}{2}) + \log_2 \frac{2}{\eta} \right).$$

provided $|S|>\frac{2}{\varepsilon},$ and there is no discrete probability on misclassified training points.

Theorem 2. [Cristianini and Shawe-Taylor, 2000] Consider thresholding a real-valued function space *F* and fixed *γ* ∈ ℝ⁺. For any probability distribution *D* on *X*, with probability 1 − η over the training set *S*, any function *f* ∈ *F* for which (*f*, *g_f*) ∈ *G* = *F* × *L*(*X*) has generalization error no more than

$$\operatorname{err}_{\mathcal{D}}(f) \leq \varepsilon(|\mathcal{S}|, \mathcal{F}, \eta, \gamma) = \frac{2}{|\mathcal{S}|} \left(\log_2 \mathcal{N}(\mathcal{G}, 2|\mathcal{S}|, \frac{\gamma}{2}) + \log_2 \frac{2}{\eta} \right).$$

provided $|S|>\frac{2}{\varepsilon},$ and there is no discrete probability on misclassified training points.

• Based on our definition $\mathcal{F}(X) = \{f = \langle \mathbf{w}, \Delta \Phi(X) \rangle | \mathbf{w} \in \mathbb{R}^{d+}\}$ with respect to a given projection $\Delta \Phi : X \to \mathbb{R}^d$, the L_1 -norm of (f, g_f) is then given by:

$$\|(f, g_f)\|_1 = \|\mathbf{w}\|_1 + C \sum_{i=1}^m \xi_i$$

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 27/29

• Theorem 2. [Cristianini and Shawe-Taylor, 2000] Consider thresholding a real-valued function space \mathcal{F} and fixed $\gamma \in \mathbb{R}^+$. For any probability distribution \mathcal{D} on X, with probability $1 - \eta$ over the training set S, any function $f \in \mathcal{F}$ for which $(f, g_f) \in \mathcal{G} = \mathcal{F} \times L(X)$ has generalization error no more than

$$\operatorname{err}_{\mathcal{D}}(f) \leq \varepsilon(|\mathcal{S}|, \mathcal{F}, \eta, \gamma) = \frac{2}{|\mathcal{S}|} \left(\log_2 \mathcal{N}(\mathcal{G}, 2|\mathcal{S}|, \frac{\gamma}{2}) + \log_2 \frac{2}{\eta} \right).$$

provided $|S|>\frac{2}{\varepsilon},$ and there is no discrete probability on misclassified training points.

• Based on our definition $\mathcal{F}(X) = \{f = \langle \mathbf{w}, \Delta \Phi(X) \rangle | \mathbf{w} \in \mathbb{R}^{d+}\}$ with respect to a given projection $\Delta \Phi : X \to \mathbb{R}^d$, the L_1 -norm of (f, g_f) is then given by:

$$\|(f, g_f)\|_1 = \|\mathbf{w}\|_1 + C \sum_{i=1}^m \xi_i.$$

• Corollary 3. (Zhang, 2002) If $\max\{\|\Delta\Phi(X)\|_{\infty}, \frac{1}{C}\} \le b$ and $\|\mathbf{w}\|_1 + C\sum_{i=1}^m \xi_i \le c$, for the function class $\mathcal{G} = \mathcal{F} \times L(X)$ defined above, we have that

$$\log_2 \mathcal{N}(\mathcal{G}, n, \gamma) \leq \frac{36c^2b^2(2 + \ln(d + m))}{\gamma^2} \log_2 \left(2 \left\lceil \frac{4cb}{\gamma} + 2 \right\rceil n + 1 \right).$$

May 13, 2009

L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 27/29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Advantages:

May 13, 2009 L1-Regularized Structured Prediction

Z. Wang, J. Shawe-Taylor, S. Szedmák, 28/29

토 > 토

900

< A >

- Advantages:
 - Accepting arbitrary structures

Z. Wang, J. Shawe-Taylor, S. Szedmák, 28/29

∃ > _ ∃

- Advantages:
 - Accepting arbitrary structures
 - More efficient than QP-based methods

Z. Wang, J. Shawe-Taylor, S. Szedmák, 28/29

 \exists

Sac

- Advantages:
 - Accepting arbitrary structures
 - More efficient than QP-based methods
 - More accurate than perceptron

Sac

- Advantages:
 - Accepting arbitrary structures
 - More efficient than QP-based methods
 - More accurate than perceptron
 - Nice generalization properties

Sac

- Advantages:
 - Accepting arbitrary structures
 - More efficient than QP-based methods
 - More accurate than perceptron
 - Nice generalization properties
- Drawbacks:

Z. Wang, J. Shawe-Taylor, S. Szedmák, 28/29

Sac

- Advantages:
 - Accepting arbitrary structures
 - More efficient than QP-based methods
 - More accurate than perceptron
 - Nice generalization properties
- Drawbacks:
 - $\bullet\,$ Sensitive to pseudo-references in the SMT case

Z. Wang, J. Shawe-Taylor, S. Szedmák, 28/29

- Advantages:
 - Accepting arbitrary structures
 - More efficient than QP-based methods
 - More accurate than perceptron
 - Nice generalization properties
- Drawbacks:
 - Sensitive to pseudo-references in the SMT case
 - Force the solution to be too sparse sometimes

Z. Wang, J. Shawe-Taylor, S. Szedmák, 28/29

- Advantages:
 - Accepting arbitrary structures
 - More efficient than QP-based methods
 - More accurate than perceptron
 - Nice generalization properties
- Drawbacks:
 - Sensitive to pseudo-references in the SMT case
 - Force the solution to be too sparse sometimes
- ANSI C code for extragradient LP solver is available at: http://www.cs.ucl.ac.uk/staff/z.wang/

Z. Wang, J. Shawe-Taylor, S. Szedmák, 28/29

- Advantages:
 - Accepting arbitrary structures
 - More efficient than QP-based methods
 - More accurate than perceptron
 - Nice generalization properties
- Drawbacks:
 - Sensitive to pseudo-references in the SMT case
 - Force the solution to be too sparse sometimes
- ANSI C code for extragradient LP solver is available at: http://www.cs.ucl.ac.uk/staff/z.wang/
- For reference, see:
 Z. Wang & J. Shawe-Taylor (2009). Large-Margin Structured Prediction via Linear Programming. In AISTATS 2009. USA.

Thank you!

May 13, 2009 L1-Regularized Structured Prediction

▲□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ↓ □ ♥ Q ℃ Z. Wang, J. Shawe-Taylor, S. Szedmák, 29/29