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Abstract

This paper presents a generative prob-
abilistic dependency model of parallel
texts that can be used for statistical ma-
chine translation and parallel parsing.
Unlike syntactic models that are based
on context-free dependency grammars,
the dependency model proposed in this
paper is based on a sophisticated notion
of dependency grammar that is capable
of modelling non-projective word order
and island constraints, the complement-
adjunct distinction, as well as deletions
and additions in translations.

1 Introduction

Dependency grammar has attracted much atten-
tion in computational linguistics in recent years.
In statistical machine translation, several re-
searchers have proposed SMT systems that are
based on dependency grammars, including (Fox,
2005; Quirk et al., 2005; Ding, 2006; Smith and
Eisner, 2006; Hall and Němec, 2007). However,
the dependency-based SMT systems that have
been proposed in the literature are almost uni-
formly based on projective (usually context-free)
dependency grammars, ie, grammars that disal-
low the kind of crossing dependencies shown in
Figure 1 and explained in section 3.

From a linguistic point of view, the projec-
tivity assumption is unfortunate because non-
projectivity is a high-frequent phenomenon that
manifests itself in long-distance phenomena such
as topicalization, scrambling, and extraposition.
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Figure 1: Authentic example with a doubly non-
projective dependency tree and corresponding
surface structure. Dependency and landing edges
for non-projective nodes are shown with dashes.

Eg, in the dependency treebanks for Slovene, Ara-
bic, Dutch, Czech, and Danish, 0.4–5.4% of all
dependencies are non-projective, and 11.2–36.4%
of all sentences contain a non-projective depen-
dency (Nilsson et al., 2007). Since it is difficult to
model non-projective word orders correctly with
projective syntax models, and such errors often
result in meaning-disturbing translation errors,
non-projectivity is more important than its rela-
tively small contribution to precision and recall in
monolingual parsing suggests. (Buch-Kromann,
2006, sections 1.4, 2.4, 4.2) gives a more com-
prehensive list of linguistic constructions that are
difficult to model within a projective setting.

Within a monolingual setting, there are many
dependency frameworks that account for most
of these phenomena, including Word Grammar
(Hudson, 2007), Functional-Generative Descrip-
tion (Sgall et al., 1986), Weighted Constraint De-
pendency Grammar (Schröder, 2002), Extensible
Dependency Grammar (Debusmann et al., 2004),
and Discontinuous Grammar (Buch-Kromann,
2006). But, as far as we know, none of these de-

31



pendency frameworks have so far provided a lin-
guistically well-motivated non-projective depen-
dency framework for parallel texts, and done so
within a probabilistic setting. This is a gap that
we hope to fill with the present paper.

The paper is structured as follows. In section
2, we describe how machine translation and par-
allel parsing can be viewed as optimization prob-
lems within a generative probabilistic dependency
model of parallel texts. In section 3, we de-
scribe our notion of parallel dependency analyses
and how they are used to control word order. In
section 4, we introduce our notion of translation
units. In section 5, we describe our generative
probabilistic dependency model of parallel texts.
In section 6, we briefly outline some ideas for how
grammar induction can be carried out within our
framework. Section 7 presents our conclusions.

2 Statistical dependency-based
translation and parallel parsing

From an abstract point of view, a parallel prob-
abilistic dependency grammar can be viewed as
a probability measure P(A) on the space A of
all conceivable parallel dependency analyses. In
this setting, machine translation and parallel pars-
ing can be reduced to the problem of optimizing
P(A) with different side conditions.

In translation, we know a source text t and
need to find the most probable parallel depen-
dency analysis, Trans(t), that matches t. That is,
we must find:

Trans(t) = arg max
A∈A

Y (A)=t

P(A)

where Y (A) denotes the source text associated
with A, and Y ′(A) the target text. Once we have
computed Trans(t), it is easy to compute the op-
timal translation by extracting the target text from
Trans(t) by means of Y ′.1

Similarly, in parallel (synchronous) parsing —
which is essential for turning a parallel corpus

1In the SMT literature, the translation t′ of t is of-
ten defined as the target text t′ that maximizes P(t′|t) =P
A∈A s.t. Y (A)=t,Y ′(A)=t′ P(A|t). From a linguistic point

of view, there is no solid argument for preferring one defi-
nition over the other, and by looking for the optimal paral-
lel analysis rather than the optimal target text, we avoid the
computationally difficult problem of calculating the sum.

into a parallel dependency treebank — we know
a source text t and a target text t′, and need to
find the most probable parallel dependency anal-
ysis, Parse(t, t′), that matches the given source
and target texts t, t′. That is, we must find:

Parse(t, t′) = arg max
A∈A

Y (A)=t
Y ′(A)=t′

P(A).

In our generative probability model, we assume
that a parallel dependency analysis A consists of
a source text analysis D, a target text analysis D′,
and a word alignment W . We will factor:

P(A) = P(D, D′,W ) = P(D) · P(D′,W |D)

and model the monolingual source analysis prob-
ability P(D) and the translation probability
P(D′,W |D) separately. Note that unlike the
probability model in phrase-based SMT (Koehn
et al., 2003), where the source text is generated
from the target text, our probability model fol-
lows the natural direction of translation. This is
also the approach used in the probability model
by (Smith and Eisner, 2006), but for projective
rather than non-projective dependency grammars.

The asymmetry between source and target lan-
guage in our model is sensible from a linguis-
tic point of view, since it is well-known among
translation scholars that translations tend to dif-
fer significantly from normal texts in the target
language. This asymmetry means that our trans-
lation model resembles a transfer-based system in
important respects. However, unlike traditional
transfer systems, the model does not require the
parallel parser or translation system to make a
hard choice about the source language analysis
before deciding on a target language analysis.

Several problems must be solved in order to
build a functioning parallel parser or machine
translation system that uses these ideas to cir-
cumvent the linguistic limitations of projective
dependency grammars: we must (a) formulate a
linguistically sensible notion of parallel depen-
dency analyses and parallel probabilistic depen-
dency grammars; (b) specify a method for induc-
ing such grammars from parallel corpora and/or
parallel dependency treebanks; and (c) identify
computationally efficient optimization algorithms
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for translation and parallel parsing that normally
succeed in finding optimal or near-optimal trans-
lations and parallel parses. This paper focuses
on (a), and largely ignores (b) and (c). More
information about our solution to (b) and (c)
is presented in (Buch-Kromann, 2007a; Buch-
Kromann, 2007b). Our analyses are based on the
dependency framework Discontinuous Grammar
(Buch-Kromann, 2006).

3 Parallel dependency analyses

In a parallel dependency analysis A = (D, D′,
W ), each word alignment w↔w′ in W is as-
sumed to encode a translational correspondence
between the word clusters w and w′ in the source
text and target text, ie, the word alignment en-
codes the intuition that the subset w of words in
the source text corresponds roughly in meaning
or function to the subset w′ of words in the tar-
get text. The translations may contain additions
or deletions, ie, w and w′ may be empty.

The monolingual dependency analyses D and
D′ are assumed to consist of dependency edges
linking the words in the text. Each dependency
edge d r←− g encodes a complement or adjunct
relation between a word g (the governor) and
a complement or adjunct phrase headed by the
word d (the dependent), where the edge label r
specifies the complement or adjunct dependency
role.2 In our analyses, the dependencies in the
source analysis are required to form a tree (or
a forest), and similarly with the dependencies in
the target analysis. Moreover, our parallel depen-
dency analyses must be well-formed with respect
to translation units, in a sense that is described
briefly in section 4 and defined formally in (Buch-
Kromann, 2007a).

Figure 2 shows an example of this kind of anal-
ysis, based on the annotation conventions used
in the Copenhagen Danish-English Dependency
Treebank (Buch-Kromann, 2007a). In the exam-
ple, word alignments are indicated by lines con-
necting Danish word clusters with English word

2Following standard dependency theoretic assumptions,
we assume: (a) complements are lexically licensed by their
governor, whereas adjuncts license their adjunct governor;
(b) in the functor-argument structure, complements act as
arguments of their governor, whereas adjuncts act as modi-
fiers; (c) a governor can have several adjuncts with the same
adjunct role, whereas complement roles must be unique.
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subj mod vobjmod dobj pobj nobj

X has to concentrate only on Y

subj dobj vobj pobjmod nobj

Figure 2: Parallel dependency treebank analysis
with word alignment and two monolingual depen-
dency analyses (with non-projective word order).

clusters, and dependencies are indicated by means
of arrows that point from the governor to the de-
pendent, with the dependency role written at the
arrow tip. For example, the Danish word cluster
“koncentrere sig” (“concentrate self”) has been
aligned with the English word “concentrate”, and
the English phrase headed by “on” is analyzed as
a prepositional object of the verb “concentrate.”3

In order to model word order and island con-
straints, each word w in the source and target de-
pendency trees is assigned a landing site l, de-
fined as the lowest transitive governor of w that
dominates all words between w and l; a node w
that has l as its landing site is called a landed node
of l, and the landing relation between w and l is
encoded by means of a landing edge w land←− l. If
the governor g and landing site l of a word w do
not coincide (g 6= l), then the dependency edge
w← g is called non-projective; otherwise, it is
called projective. In projective dependency gram-
mars, we always have g = l. Figure 1 shows
an example of a dependency tree with two non-
projective dependency edges (‘to pobj←− hard’ and
‘as pobj←− as’). The word “a” functions as the land-
ing site for both “hard” and ”as” because it is the
lowest transitive governor that dominates all the
nodes between these two words and their respec-

3Dependency analyses differ from phrase-structure anal-
yses in that phrases are a derived notion: in a dependency
tree, each word has a derived phrase that consists of all the
words that can be reached from the word by following the
arrows. For example, the English word “concentrate” heads
the phrase “concentrate only on Y,” and the Danish word
“om” heads the discontinuous phrase “kun . . . om Y.”
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tive governors.
It can be shown that the landing edges associ-

ated with a dependency tree always form a projec-
tive tree, called the surface tree. The projectivity
allows landing sites to control the global word or-
der by controlling the local relative word order of
their landed nodes — ie, landing sites have the
word ordering responsibility assigned to gover-
nors in projective dependency grammars.

The extraction path for a word w is de-
fined as the shortest path from the governor
g to the landing site l of w. For example,
in Figure 1, the word “to” has extraction path
‘hard mod←− a’, and the second “as” (“as2”) has ex-
traction path ‘as1

mod←− hard mod←− a’. As argued by
(Buch-Kromann, 2006, p. 98), extraction paths
are useful for modelling island constraints in a
dependency-based setting. For example, the ad-
junct island constraint states that nothing may be
moved out of an adverbial adjunct, which corre-
sponds to the claim that an extraction path cannot
contain an adjunct edge of the form x← y where
y is a verb.

4 Syntactic translation units4

In order to define our notion of syntactic trans-
lation units, we need to introduce the following
terminology. The definitions below apply to both
source and target words and dependencies. Two
words are said to be coaligned if they belong to
the same alignment edge. A dependency edge
d r←− g is called internal if d and g are coaligned,
and external otherwise. A word w is called sin-
gular if it fails to be coaligned with at least one
word in the other language. By an abuse of termi-
nology, we will say that a word d is a dependent
of an alignment edge w↔w′ provided d is a de-
pendent of some word in w∪w′ and d is not itself
contained in w∪w′. For example, in Figure 2, the
words “has”, “to”, and “skal” are coaligned, the
dependency ‘to dobj←− has’ is internal, the depen-
dency ‘concentrate vobj←− to’ is external, the word
“nu” is singular, and the word “X” is a dependent
of the alignment edge “skal↔ has to”.

The translation unit corresponding to the word
alignment w↔w′ is defined as the subgraph
of the analysis A consisting of all nodes in

4This section is based on (Buch-Kromann, 2007a).
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Figure 3: The six translation units derived from
the parallel dependency analysis in Figure 2.

w∪w′, all internal dependency and alignment
edges within w↔w′, and all external dependen-
cies of w↔w′ except for parallel and singular
adjuncts, where the external dependents are re-
placed with argument variables x1, . . . , xn and
x′1, . . . , x

′
n′ . Figure 3 shows the six translation

units that can be derived from the parallel depen-
dency analysis in Figure 2 in this way. Each trans-
lation unit can be interpreted as a bidirectional
translation rule: eg, the first translation unit in
Figure 3 can be interpreted as a translation rule
stating that a Danish dependency tree with termi-
nals “x1 skal x2” can be translated into an En-
glish dependency tree with terminals “x′1 has to
x′2” where the English phrases x′1, x

′
2 are transla-

tions of the Danish phrases x1, x2, and vice versa.
In order to have a meaningful interpretation as

a translation rule, a translation unit must have a
parallel set of source and target argument vari-
ables, and a well-formed source and target de-
pendency analysis, as defined formally in (Buch-
Kromann, 2007a). In general, parallel depen-
dency treebanks are not guaranteed to lead to
translation units that satisfy these requirements.
However, (Buch-Kromann, 2007a) has defined an
algorithm that can compute a minimal reduction
that is computed by merging word alignments in
a minimal way, in which the resulting transla-
tion units satisfy the requirements. As an exam-
ple of how this procedure works, Figure 4 shows
a head-switching example (left) borrowed from
(Way, 2001), and the corresponding minimal re-
duction (right) computed by the merging algo-
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Figure 4: A head-switching example (left) and the
associated minimal reduction (right).

rithm, with the original word alignments indi-
cated by means of the numbered boxes. We can
think of the original word alignments in the tree-
bank as lexical translation units (the smallest lex-
ically meaningful units of translation), and of the
merged word alignments as syntactic translation
units (the smallest syntactically meaningful units
of translation).

In this paper, we will for simplicity as-
sume that each syntactic translation unit con-
sists of a single lexical translation unit. How-
ever, a more elegant and general account of head-
switching phenomena can be provided by decom-
posing syntactic translation units by means of
their original lexical translation units. Eg, in-
stead of using zwemt(modtoevallig,modgraag) ↔
happens(pobjto(vobjlike(pobjto( vobjswim)))) as an
atomic lexical translation unit in the translation of
the example in Figure 4, we can decompose the
translation into several steps by first matching the
source analysis with the abstract syntactic transla-
tion template shown in Figure 5, and then decid-
ing on the choice of lexical translation units in a
target language top-down manner: ie, we first se-
lect “toevallig↔ happen(pobjto)” as a translation
of “toevallig”, then “graag↔ like(pobjto)”, and fi-
nally “zwemt↔ swim.”

5 A generative probabilistic dependency
model of parallel texts

We will now present a generative probabilistic
dependency model of parallel texts that models
complements, adjuncts, landing sites, local word
order, island constraints, and additions and dele-
tions during translation. The source dependency
model is a simplification of (Buch-Kromann,

 

x1     H1        H2        H3    

subj mod mod

x1’ H2a’ H2b’ H3a’ H3b’  H1’ 
subj pobj vobj pobj vobj

Source match
H1 = zwemt
H2 = toevallig
H3 = graag

Target match
H ′

1 = swims
H ′

2a,b = happens(pobjto)

H ′
3a,b = like(pobjto)

Figure 5: Syntactic translation template induced
from Figure 4, with source and target match.

procedure probabilistic graph generation
begin

recursively expand source root TOP (cf. Figure 7)
recursively translate source root TOP (cf. Figure 8)
return generated graph and probability

end

Figure 6: Our probabilistic graph generation pro-
cedure (a Markov process).

Top-down expansion of source node wi

S1. Identify landing site and relative word order
S2. Select complement frame
S3. Generate and recursively expand complements
S4. Generate and recursively expand adjuncts

Figure 7: The steps in the top-down expansion of
a source word wi in our generative probabilistic
dependency model.

2006, ch. 6) in that we ignore secondary depen-
dencies, gapping coordinations, antecedents, and
punctuation. We assume that the source and target
analyses have formal root nodes TOP and TOP′

(aligned with each other), and that all words in the
source and target text are transitive dependents of
the top nodes; in particular, the root of a sentence
in the source and target analysis is assumed to be
a root adjunct of the top node.

The generative procedure is modelled as a top-
down Markov process (Figure 6). The generative
procedure first creates the source tree by recur-
sively expanding TOP in steps S1–S4, and then
creates the target tree and the word alignments
by recursively translating TOP in steps T1–T5.
The individual steps in the source and target node
expansion are shown in Figures 7 and 8, and de-
scribed in detail below. In our dependency model,
the probability of a parallel dependency analysis
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Top-down translation of source node wi

T1. Identify landing sites and word order in target tunit
T2. Generate and recursively expand tunit arguments
T3. Identify deleted source adjuncts
T4. Generate and recursively translate parallel adjuncts
T5. Generate added target adjuncts

Figure 8: The steps in the top-down translation of
a source word wi in our generative probabilistic
dependency model.

Notation Meaning
wi ith word (source > 0, target < 0)
di dependency role of ith word
cframei complement frame at wi

aframei adjunct roles at wi

gi governor of wi

li landing site of wi

oi relative word order of wi at li
path(wi, wj) upwards path from node wi to transitive

governor wj

τi syntactic translation unit for wi

Si source analysis for τi

Ti target analysis for τi

wi′ target root of τi

inti internal source nodes in τi

int′i internal target nodes in τi

extadji external adjuncts of τi

addedi added external target adjuncts of τi

argsi source arguments of τi

Figure 9: The notation used to refer to the gover-
nor, landing site, word order, etc. of a source or
target node N .

A is computed by

P(A) = PS(TOP) · PT(TOP)

where PS and PT are defined recursively by
PS(wi) = PS1(wi) · · ·PS4(wi) and PT(wi) =
PT1(wi) · · ·PT5(wi), using the probabilities for
steps S1–S4 and T1–T5 defined below.

In the following, given a source or target node
wi (with source nodes having i > 0, target nodes
i < 0), we will use the notation shown in Figure
9. By an abuse of notation, we will use w∗i to de-
note the set of all relevant covariates associated
with wi when wi is expanded or translated; the
covariates may include any aspects of the struc-
ture that have been generated at the given point
in the generation, including (but not necessarily
restricted to) all relevant node features and de-
pendency roles of wi, li, gi, etc. Determining the
right set of covariates for each of the distributions
in our model is an empirical question which we
will ignore in the rest of this paper.

5.1 Modelling source analyses

The steps S1–S4 are used to model node expan-
sion in source analyses. Steps S2–S4 are similar
in spirit to the steps proposed by (Eisner, 1996;
Collins, 1997) for statistical dependency parsing,
whereas the submodel S1 for island constraints
and local word order is new.

S1. Identify landing site and word order
The first step in the source expansion of wi is

to choose a landing site li among the transitive
governors of wi, and a linear ordering oi that in-
dicates the word order of wi at li relative to the
previously landed nodes at li.5 For each possible
landing site l and word order o, we want to quan-
tify how well-formed that choice of landing site
and word order is with respect to (a) island con-
straints expressed in terms of the extraction path
from gi to l, and (b) the local word order position
o assigned to wi at l.

As noted in section 3, an extraction can be
blocked by the presence of island edges in the ex-
traction path (eg, adjunct edges with verbal gover-
nors). Island edges can be detected statistically by
observing that if an edge x r←− y occurs less often
in extraction paths than in the treebank in general,
then the edge is likely to be an island edge, ie, the
blocking effect of an edge x r←− y for the word
wi can be modelled by means of:

min
(

1,
Pextpath(x r←− y|wi)
Pdeptree(x r←− y)

)

where the minimum ensures that non-island edges
cannot improve the global extraction probability.
Pextpath is the probability distribution of edges in
extraction paths, and Pdeptree is the probability dis-
tribution of edges in dependency trees. Ie, the rel-
ative probability Ewi,l of the extraction path pro-
duced by choosing l as the landing site of wi is
expressed by:

Ewi,l =
∏

(x r←− y)∈
path(gi,l)

min
(

1,
Pextpath(x r←− y|wi)
Pdeptree(x r←− y)

)

5Following (Buch-Kromann, 2006, pp. 276-277), we as-
sume that dependencies are generated in a predefined deriva-
tion order. Nodes that precede the current landed node in the
derivation order are called previously landed nodes.
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In order to model the probability of the local
word order position, we note that the choice of
local word order o for wi at l can be modelled as
a process where wi is inserted at position o, and
the dummy node STOP is inserted at all other posi-
tions so that we can detect the absence of an obli-
gatorily present node. If we let Pworder(w|cl,o) de-
note the probability of inserting word or dummy
word w as a landed node at a position o with
word order context cl,o, then the relative proba-
bility Owi,l,o of the choice of local word order o
for wi at l is expressed by:

Owi,l,o = Pworder(w|cl,o)
∏

o′ 6=o

Pworder(STOP|cl,o′)

(Buch-Kromann, 2006, section 6.2) has proposed
a local word order context that only includes the
neighbouring complements, the neighbouring ad-
juncts, the landing site, and a binary variable that
indicates whether the position is to the left or right
of the landing site. These covariates suffice to en-
code a wide range of local word order constraints,
such as “adverbials cannot be inserted between a
verb and an adjacent subject,” “a verb does not
allow two simultaneous complements on its left,”
and “a finite verb requires a subject to its left,” but
in probabilistic rather than absolute terms.

With the relative probability of the extraction
path quantified by Ewi,l and the relative probabil-
ity of the local word order quantified by Owi,l,o,
we can compute the probability of the actual
choice of li, oi by normalizing the probabilities,
ie by setting:

PS1(wi) =
Ewi,li ·Owi,li,oi∑
l,o Ewi,l ·Owi,l,o

.

As argued by (Buch-Kromann, 2006, section 7.3),
under linguistically reasonable assumptions about
island constraints and the number of comple-
ments and adjuncts that a word can have, a land-
ing site has a bounded number of landing posi-
tions, and a word has at most log n landing sites
where n is the number of words in the graph.
The sum can therefore be computed efficiently in
O(log n) time.

S2. Select complement frame
In step 2 of the source expansion, we must

choose a complement frame cframei for wi. This

choice can be modelled by means of

PS2(wi) = Pcframe(cframei|w∗i )

where Pcframe(cframe|w∗i ) is the probability of
generating the complement frame cframe at wi.

S3. Generate and expand complements
In step 3 of the source expansion, we must

choose a complement word wj for each comple-
ment role dj in cframei, and expand the comple-
ment recursively. We model this by:

PS3(wi) =
∏

dj∈cframei

Pcomp(wj |dj , w
∗
i )PS(wj)

where Pcomp(w|d, w∗i ) is the probability of gener-
ating the complement w for complement role d at
wi.6

S4. Generate and expand adjuncts
In step 4 of the source expansion, we must gen-

erate the adjuncts of wi and expand them recur-
sively. We model this as a process where the gov-
ernor generates a list of adjunct roles aframei at
wi one by one with probability Parole(dj |w∗i ), un-
til the special adjunct role STOP is generated with
probability Parole(STOP|w∗i ). As each adjunct role
dj is generated, we generate an adjunct word wj

with probability Padj(wj |dj , w
∗
i ) and expand wj

recursively, ie, the adjuncts of wi are generated
with probability:

PS4(wi) = Parole(STOP|w∗i )
·

∏

dj∈aframei

Parole(dj |w∗i )Padj(wj |dj , w
∗
i )PS(wj)

5.2 Modelling the translation from source
analyses to target analyses

The steps T1–T5 are used to model the translation
from source analyses to target analyses. Probabil-
ity distributions for the target language are indi-
cated by means of primes. Eg, PS1′(wi) denotes
the probability of the monolingual expansion step
S1 at the target word wi, but for the target lan-
guage rather than the source language.

6Although we could have designed a model that can learn
statistical dependencies between different complement slots,
we use a simpler model where the complements are gener-
ated independently of each other. The simple model is justi-
fied by (Li and Abe, 1999), who report that the statistical de-
pendencies between complement roles are rather weak, and
therefore difficult to detect.
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T1. Identify landing site and relative word
order in target unit

In step T1, we must identify landing sites and
relative word order for the internal target nodes
int′i in the syntactic translation unit τi with source
root wi. If the target word order is assumed to be
completely independent of the source word order,
we can simply define:

PT1(wi) =
∏

wj∈int′i

PS1′(wj)

where int′i is processed in the target language
derivation order.

However, languages tend to place discourse-
old material in the beginning of sentences, and
discourse-new material in the end. It therefore of-
ten makes sense to use the source word order as
a guide to target word order. This can be accom-
plished by including the relative ordering of the
source nodes corresponding to the target nodes
within the target word order context c′l,o.

T2. Generate and translate tunit arguments
In step T2, we need to recursively translate the

source arguments argsi of the translation unit τi.
For each wj ∈ argsi we select a translation unit
τj that matches the source analysis at wj . Like
in noisy-channel SMT, we must balance the ade-
quacy A and fluency F of our choice of τj at wj ,
ie, we must try to find a compromise between the
admissibility of τj as a translation of the source
tree in τj (adequacy) and the admissibility of the
target tree in τj as a target subtree at the target
root wj′ of τj (fluency).

We can model the adequacy of τj as a trans-
lation of the source tree at wj by means of the
probability:

A(wj , τj) = Ptunit(τj |w∗j )

where Ptunit(τ |w∗j ) is the probability of translating
a source structure at wj by means of the matching
translation unit τ .

Similarly, we can model the fluency of the
source tree Tj at the target root wj′ by means of
the probability:

F (wj , τj) = Pcomp′/adj′(wj′ |dj′ , w
∗
j′)

· PS′234(Tj)

where Pcomp′/adj′ denotes either Pcomp′ or Padj′ ,
depending on whether wj′ is a complement or an
adjunct, and where PS234′(Tj) denotes the mono-
lingual target language probability of the target
dependency tree Tj without any word order (ie,
steps S2′–S4′ only).

Like in noisy-channel SMT, we can compro-
mise between adequacy and fluency by weighing
them by means of the formula AλF 1−λ for some
λ ∈ [0, 1]. Setting λ close to 1 results in trans-
lations with high adequacy and low fluency, and
vice versa when setting λ close to 0. We can
therefore model the probability of choosing the
translation unit τj to transfer the source tree at wj

by means of:

Ptransfer(wj , τj) =
A(wj , τj)λF (wj , τj)1−λ

∑
τ A(wj , τ)λF (wj , τ)1−λ

.

This allows us to model:

PT2(wi) =
∏

wj∈argsi

Ptransfer(wj , τj)PT(wj).

T3. Identify deleted source adjuncts
In step T3, we need to decide for each external

source adjunct wj in extadji whether wj should
be deleted in the translation (δj = 1) or trans-
lated into the target language (δj = 0). In gen-
eral, it is not a good idea to delete content words
in the translation. However, there are sometimes
mismatches in the translation, and there are also
some aspects of syntax, especially discourse par-
ticles and punctuation, that are language-specific
and consequently often ignored in the translation.
We will therefore include deletions in our model,
by defining:

PT3(wi) =
∏

wj∈extadji

Pdel(δj |w∗j )

where Pdel(δj = 1|w∗j ) is the probability of delet-
ing the adjunct wj in the translation.

T4. Generate and translate parallel adjuncts
For each non-deleted external source adjunct

wj in extadji (ie, each wj where δj = 0), we need
to (a) select a target adjunct role dj′ and a target
adjunct governor gj′ within the target tree Ti, (b)
select a translation unit τj that matches the source
analysis at wj , and (c) expand wj recursively.
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In step T4a, we want to quantify the probabil-
ity of the chosen target adjunct governor gj′ and
role dj′ , given the corresponding source adjunct
governor gj and role dj . The relative probabil-
ity of a particular choice (g′, d′) can be modelled
statistically by assigning large weight to choices
of (g′, d′) that occur above chance level, and low
weight to choices that occur below chance level,
ie, the relative probability of the choice (g′, d′)
can be expressed by the quantity

Ig′,d′|g,d =
Padjtrans(g′, d′|g, d)

Padjtrans(g′, d′)

where Padjtrans(g′, d′) is the probability that a par-
allel adjunct has target governor g′ and target role
d′, and Padjtrans(g′, d′|g, d) is the same probability
with the conditional knowledge that the parallel
adjunct has source governor g and source role d.
By normalizing the weights, we can compute:

PT4a(wj) =
Igj′ ,dj′ |gj ,dj∑

g′,d′
Ig′,d′|gj ,dj

.

In step T4b, we must select a translation unit
τj for each non-deleted adjunct wj , given the tar-
get adjunct role dj′ and target adjunct governor
gj′ . This is modelled exactly as in step T2, but for
non-deleted external source adjuncts rather than
translation unit arguments.

Combining (a) and (b), we therefore define:

PT4(wi) =
∏

wj∈extadji
δj=0

PT4a(wj)PT4b(wj)PT(wj).

T5. Generate added adjuncts
In step T5, we must generate the added target

adjuncts in the target analysis. We do this by
traversing the internal target nodes in int′i in tar-
get derivation order: for each internal target node
wj in int′i, we (a) generate a sequence addedj of
added target adjunct phrases one at a time, until
the special stop symbol STOP is generated, and
(b) assign landing sites to the generated target ad-
junct phrases in the process.

Step T5a can therefore be computed by:

PT5a(wj) = Padd-arole(STOP|w∗j )
·

∏

wk∈addedj

Padd-arole(dk|w∗j )Padd-adj(Tk|dk, w
∗
j )

where Padd-arole(d|w∗j ) is the probability of creat-
ing an added target adjunct with adjunct role d
at wj , and Padd-adj(T |dk, w

∗
j ) is the probability of

creating the added target adjunct tree T given ad-
junct role dk at wj . T5b can be computed by
means of:

PT5b(wj) =
∏

wk∈addedj

PT1’(Tk)

where PT1’(Tk) is the probability of the target
landing sites assigned to the words in the target
adjunct phrase Tk.

We therefore have:

PT5(wi) =
∏

wj∈int′i

PT5a(wj)PT5b(wj).

6 Statistical estimation and optimization

Our generative probabilistic dependency model
decomposes the probability of the entire analy-
sis into probabilities associated with individual
steps in the generative procedure, such as Pcframe,
Pextpath, Padd-adj, etc. Each of these distributions
can be estimated from parallel dependency tree-
bank data by means of any suitable density esti-
mator, including Generalized Linear Models and
Generalized Additive Models (which have log-
linear models as a special case) and the XHPM
estimator proposed by (Buch-Kromann, 2006, ch.
5,6). The XHPM estimator is a generalization of
(Li and Abe, 1999) that is designed specifically
for categorical data equipped with classification
hierarchies. As a correction estimator, the XHPM
estimator may be particularly suited to estimat-
ing probability ratios of the form P(x|y)/P(x),
which is needed in steps S1 and T4.

7 Conclusions

In this paper, we have presented a generative
probabilistic dependency model of parallel texts
that can be used for machine translation and par-
allel parsing. Unlike previous dependency models
used in machine translation, the proposed model
is not based on context-free dependency gram-
mar, but builds on a more sophisticated notion of
dependency theory that is capable of modelling
complements and adjuncts, non-projective depen-
dencies and island constraints, as well as dele-
tions and additions in the translation. In this re-
spect, our model can be seen as a step towards
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translation models that are more realistic from
a linguistic point of view. By allowing syntac-
tic translation units to be arbitrarily large par-
allel tree structures, and decomposing syntactic
translation units into lexical translation units, the
model may even provide an elegant account of
head-switching.

There are many issues that need to be addressed
before the dependency model we have presented
can be used to build a functioning machine trans-
lation or parallel parsing system. First of all,
we have not described how to estimate the many
probabilities in our dependency model from par-
allel treebank data. Secondly, some empirical
work remains to be done with respect to choos-
ing the relevant covariates in each generative step.
Finally, although (Buch-Kromann, 2007b) has
started work in this direction, we still need to de-
velop a computationally efficient algorithm that
is capable of computing optimal or near-optimal
solutions to the optimization problems posed by
parallel parsing and machine translation.
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